
3 R session: Weather extremes

To get started, you will need to be seated at a computer with R installed, and initiateR, which
is usually done through menus selected from theStart menu, or an icon. In addition the
librariesismev andevd should be installed. We will connect these, and install someof our
own supplementary routines, using the commands

> library(ismev)
> library(evd)
> source(’Rstufflee.r’)

Provided these all go through without a hitch, we are ready togo!

1. In this question, we will do a simple analysis of annual maximum wind speeds recorded
at Boston, Massachusetts, for 50 years from 1936 to 1985.

(a) Provided you have the fileboston.txt in your working directory, this can be
loaded intoRusing the command:

> boston<-scan(‘boston.txt’)

We have now created an R object calledboston which is a single column con-
taining consecutive years with annual maximum wind speeds in mph. We can have
a look at this by simply typing:

> boston

(b) We now wish to separate out theyear andmaximum components into separate
vectors. This can be done using the commands:

bosyear<-as.numeric(boston[seq(1,length(boston),2)])
bosmax<-as.numeric(boston[seq(2,length(boston),2)])

which has the effect of creating vectorsbosyear andbosmax containing the years
and maxima respectively. [Note that when entering consecutive similar commands
in R, it is convenient to use the up arrow to bring up the previous command and then
edit it!] We can check the vectors by simply typing:

> bosyear
> bosmax

(c) Now we can have a look at the annual maxima over time using the command:

> plot(bosyear,bosmax)

If you like you can give your plot some nice labels:

> plot(bosyear,bosmax,xlab=’Year’,ylab=’Wind speed (mph)’,
main=’Annual maximum wind speeds at Boston MA’)
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(d) We are now ready to carry out an extreme value analysis on the annual maxima.
Since these are regarded as observations on i.i.d. random variables, we can forget
about the vectorbosyear. We fit the GEV to the data inbosmax:

>gev.fit(bosmax)

Notice the output:

∗ $conv gives a value of zero (in row [1] of the output), which indicates success-
ful convergence, i.e. no errors in fitting;

∗ $nllh shows the negative (maximised) log–likelihood;
∗ $mle shows the maximum likelihood estimates forµ, σ andξ respectively;
∗ $se gives the associated standard errors for these parameters.

(e) We can investigate the model performance using the in–built diagnostics. First we
must store the relevant information from the fit in an object we name ourselves, e.g.

> fit1<-gev.fit(bosmax) > gev.diag(fit1)

creates the ‘fit’ objectfit1 and then runs the diagnostic routines on the stored
object. Make sure you interpret the four plots in the contextof Section 1.2.6.

(f) We can obtain inference on return levels using the additional command which we
have supplied inRstufflee.R, which is calledgev.ret(data,period).
This command refits the GEV model, and then provides us with the inference on the
specified return level. E.g. for the100–year levelq100, we would type:

> gev.ret(bosmax,100)

In addition to the information we obtained earlier, we get the 100–year return level
estimate with associated standard error. Notice how this matches up with the return
level plot in the diagnostic plots.

(g) If we want to construct a confidence interval forq100, we are better off using the
method of profile–likelihood as described in Section 1.2.8.We can use the func-
tiongev.prof(fit,period,lower-bound, upper-bound). This com-
mand is slightly unstable, and relies on an appropriate choice of the bounds for the
profile–likelihood. For the Boston annual maxima, the following works well for the
100–year level:

> gev.prof(fit1,100,75,130)

Note that this enables us to read off the95% confidence interval (the default) for
q100. Suppose we wanted a99% interval we would use:

> gev.prof(fit1,100,<lower>,<upper>,conf=0.99)

for appropriate choices of<lower> and<upper>. You may like to experiment.
Note how asymmetrical these intervals are, and how misleading it would be to base
the confidence intervals on±1.96(s.e.)!
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2. In this question, we will analyse annual maximum sea levels (in cm) observed at Venice,
Italy, between the years 1931 and 1981 (inclusive).

(a) Load the data into R by typing:

> data(venice)

Now look at the data by typing

> venice

You should see a matrix with 51 rows (one for each of the years 1931–1981) and 11
columns. The values in each column correspond to the year, and theten largest sea
levels observed in each of these years (in descending order)For example, in 1979,
the ten largest sea levels were: 166, 140, 131, 130, 122, 118,116, 115, 115, 112, the
largest being 166cm.

(b) We intend to fit the Generalised Extreme Value distribution to the set of annual
maxima – i.e. the largest sea levels only (166cm in 1979, for example). Extract the
set of annual maxima in the following way:

(i) Create a new vector to store the set of annual sea level maxima by typing:

> maxima<-vector(’numeric’, length=51)

(ii) Now type:

> maxima<-venice[,2]

which will store the observations from column 2 invenice – i.e. the largest
sea levels from each year – in the vectormaxima.

We can fit the Generalised Extreme Value distribution to the set of annual maxima
using the functiongev.fit. Type

> gev.fit(maxima)

Write down the maximum likelihood estimates ofµ, σ and ξ, along with their
estimated standard errors. Also make a note of the value of the maximised log–
likelihood.

(c) Now produce a time series plot of the set of annual maxima by typing

> plot(maxima∼venice[,1],type=’l’,xlab=’Year’,ylab=’Sea level
(cm)’)

which will plot the annual maxima against the first column invenice, which cor-
responds to the year. This will also provide convenient labels for both thex andy

axes in the plot. Does the time series plot of annual maxima look stationary?

(d) We will now attempt to model variations through time in the sequence of annual sea
level maxima by modelling a linear trend in the location parameterµ, i.e. µ(t) =
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β0 + β1(t), wheret represents the time–point (sot = 1 corresponds to 1931, etc.)
Set up a time matrix by typing:

> time<-matrix(1:51,ncol=1)

Now type

> gev.fit(maxima, ydat=time, mul=1)

which tells R to use the matrixydat as a matrix of covariates, andmul=1 tells
R which column in that matrix to use (as well as which parameter to use it for –µ!).
Write down the maximum likelihood estimates forβ0, β1, σ andξ, along with their
estimated standard errors, and make a note of the maximised log–likelihood.

(e) Use the maximised log–likelihood values from parts (b) and (d) to perform a like-
lihood ratio test to see if the model which allows for a trend provides a significant
improvement over the stationary fit (Hint:χ2

1
(5%) = 3.84).

(f) Write down the simple linear regression equation forµ found from the fit in part (d),
i.e. µ(t) = β0 + β1(t). We will now write an R function to calculate the fitted trend
at each time point, and then superimpose this on the plot produced in part (c). Type

> trend.plot<-vector(’numeric’,51)

The vectortrend.plot will take the fitted values of the trend forµ obtained
from the equation. Now write

> for(i in 1:51)
+ {
+ trend.plot[i]<-beta0+beta1*time[i,1]
+ }

wherebeta0 andbeta1 should be replaced with the estimated values found in
the fit in part (d). Now type

> lines(trend.plot∼venice[,1])

which should superimpose a plot of the trend line against theyear on the original
time series plot.
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3. In this question we will investigate the use of “Peaks Over Threshold” to circumvent the
problems of serial dependence when modelling threshold exceedances. We will do this
by examining hourly gust maximum wind speeds observed at High Bradfield, a location
in the Peak District in central northern England.

(a) These data were collected by the U.K. Meteorological Office, and are not included
with any of the standard R packages. Thus, to load the data, type

> gusts<-scan(’bradfield.txt’)

which will store the data in a vector calledgusts. Now produce a time series
plot of these data, by typing

> plot(ts(gusts))

The data you see correspond to the hourly gust maximum wind speeds (in knots)
collected over a ten–year period (1975–1984 inclusive) in the month of January;
thus, the first observation is the maximum gust wind speed observed between mid-
night and 01:00 on the 1st January 1975, etc. We restrict our analysis to January
because the U.K. has a seasonally varying wind climate, and the strongest wind
speeds are usually observed in the month of January (i.e. in January we observe
’genuine’ extremes of wind speed). Comment on the nature of this time series.

(b) We will now investigate the extent of temporal dependence in the series.

(i) Type

> acf(gusts) and
> pacf(gusts)

These commands will produce plots of the autocorrelation, and partial auto-
correlation function.

(ii) Now type

> plot(gusts[1:7259]∼gusts[2:7260])

This will produce a plot of the time series against the seriesat lag 1 (the length
of this dataset is 7260).

Using your plots in (i) and (ii) above, comment on the degree of short–term temporal
dependence present in the series.

(c) We now intend to fit the Generalised Pareto Distribution (GPD) to a set of threshold
exceedances. Use the command

> mrl.plot(gusts)

to produce a mean residual life plot for the gust data, and usethis to choose an
appropriate threshold for identifying extremes.

(d) Now fit the GPD to the set of threshold exceedances, by using
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> gpd.fit(gusts,threshold)

wherethreshold is your chosen threshold from the mean residual life plot in
part (c). Make a note of the estimates forσ andξ (as well as their estimated stan-
dard errors).

(e) Nowdecluster the series of gusts and employ aPeaks Over Threshold analysis. Type

> cluster.peaks<-cluster10(gusts,threshold)

again, wherethreshold is the threshold identified in part (c). The function
cluster10 uses a value ofκ = 10 observations to identify clusters of extremes,
i.e. a cluster of extremes is deemed to have terminated as soon as at least 10 obser-
vations fall below the threshold. Now fit the GPD to the set of cluster peak excesses,
and make a note of the parameter estimates and estimated standard errors.[Note: you
can vary the declustering interval κ by using different functions, e.g. cluster20
or cluster30]

(f) We will now calculate thethreshold exceedance rate for each of the approaches in
parts (d) and (e). Typing

> length(gusts[gusts>threshold])/length(gusts) and
> length(cluster.peaks)/length(gusts)

wherethreshold is as before, will work out the threshold exceedance rateλ
u

for all excesses, andcluster peak excesses, respectively. Write down these thresh-
old exceedance rates.

(g) You should now compare estimates of the 1000–observation return level using (i)
all threshold excesses and (ii) cluster peak excesses. Typing

> gpd.ret(data,threshold,1000)

but replacingdatawith gusts and thencluster.peaks (and thethreshold
is that identified in part (c)) will estimate this value forall excesses andcluster peak
excesses, respectively. The output produced will be the same as before – i.e. you
will get estimates of the GPD parameters and their standard errors, but now you will
also get an estimate of the specified return level (and its standard error via the delta
method).

(h) Comment on your estimates of the 1000–observation return level in part (g) and
your GPD parameter estimates in parts (d) and (e). Which approach to inference do
you trust most?
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