
2 Dependence and non–stationarity

The asymptotic results introduced in Part 1 have assumed theunderlying process to be indepen-
dent and identically distributed (i.i.d.). They also assume this process is stationary. In practice,
extreme value data – particularly environmental time series – exhibit some form of departure
from this ideal. The most common forms are:

— Local temporal dependence, where successive values of thetime series are dependent, but
values farther apart are independent (to a good approximation);

— Long term trends, where the underlying distribution changes gradually over time;

— Seasonal variation, where the underlying distribution changes periodically through time.

These departures can be handled through a combination of extending both the theory and the
modelling. However, although a wide range of theoretical models for non–stationarity have
been studied, only in a few cases have these been used for statistical modelling; the results
have generally been too specific to be of use in modelling datafor which the form of non–
stationarity is unknown. Over the last decade or so, it has been more usual for practitioners to
employ statistical procedures which allow the existing results to be applied. In Part 2, we will
consider some of these in detail.

2.1 Extremes of dependent sequences

For the types of data to which extreme value models are commonly applied, temporal indepen-
dence is usually an unrealistic assumption. In particular,extreme conditions often persist over
several consecutive observations, bringing into questionthe appropriateness of models such as
the GEV. A detailed investigation of this requires mathematical treatment at a level of sophis-
tication beyond which we have time to capitulate in this short course; however, the general
ideas are not difficult and the main result offers a simple, practical, interpretation. For the re-
mainder of this section on dependent sequences, we shall assume that our process isstationary,
corresponding to a series whose variables may be mutually dependent, but whose stochastic
properties are homogeneous throughout time.

Dependence in stationary sequences can take many differentforms. With practical applications
in mind, it is common to assume a condition that limits the extent of dependence to short–
range temporal dependence so that, for example, eventsXi andXj, both of which are extreme,
are independent provided time pointsi and j are far enough apart. Indeed, many stationary
sequences satisfy this property. By excluding the possibility of long–range dependence in this
way, we focus our attention on dependence at a much shorter range. Effects of such short–range
dependence, it turns out, can be quantified within the standard extreme value limits discussed
in Part 1.

2.1.1 Maxima of stationary sequences

The book by Leadbetteret al. (1983) considers, in great detail, properties of extremes of depen-
dent processes. A key result often used is ‘Leadbetter’sD(un) condition’, which ensures that
long–range dependence is sufficiently weak so as not to affect the asymptotics of an extreme
value analysis. This condition is stated more formally in the Definition below.
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Definition (Leadbetter’s D(un) condition)
A stationary seriesX1, X2, . . . is said to satisfy theD(un) condition if, for all i1 < . . . < ip <
j1 < . . . < jq with j1 − ip > l,






Pr

{

Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq
≤ un

}

−Pr
{

Xi1 ≤ un, . . . , Xip ≤ un

}

Pr
{

Xj1 ≤ un, . . . , Xjq
≤ un

}






≤ α(n, l), (7)

whereα(n, l) → 0 for some sequenceln such thatln/n→ 0 asn→ ∞.

For sequences of independent variables, the difference in probabilities in the above expression
is exactly zero foranysequenceun. More generally, we will require that theD(un) condition
holds only for a specific sequence of thresholdsun that increases withn. For such a sequence,
theD(un) condition ensures that, for sets of variables that are far enough apart, the difference
in probabilities expressed in (7), while not zero, is sufficiently close to zero to have no effect on
the limit laws for extremes.

Theorem
Let X̃1, X̃2, . . . be a stationary series satisfying Leadbetter’sD(un) condition, and letM̃n =
max{X̃1, . . . , X̃n}. Now letX1, X2, . . . be anindependentseries withX having the same dis-
tribution asX̃, and letMn = max{X1, . . . , Xn}. Then ifMn has a non–degenerate limit law
given by Pr{(Mn − bn)/an ≤ x} → G(x), it follows that

Pr
{

(M̃n − bn)/an ≤ x
}

→ Gθ(x) (8)

for some0 ≤ θ ≤ 1.

The parameterθ is known as theextremal index, and quantifies the extent of extremal de-
pendence:θ = 1 for a completely independent process, andθ → 0 with increasing levels
of (extremal) dependence. SinceG in the above theorem is necessarily an extreme value distri-
bution, and due to themax–stabilityproperty (see Leadbetteret al., 1983), then the distribution
of maxima in processes displaying short–range temporal dependence (characterised by the ex-
tremal indexθ) is also a GEV distribution; the powering of the limit distribution by θ only
affects the location and scale parameters of this distribution.

The above theorem implies that if maxima of a stationary series converge – which, from Part 1,
we know they will do – then, provided an appropriateD(un) condition is satisfied, the limit dis-
tribution is related to the limit distribution of an independent series. The effect of dependence,
as seen in expression (8), is just a replacement ofG as the limit distribution withGθ. In fact, if
G corresponds to the GEV distribution with parameters(µ, σ, ξ), then

Gθ(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}θ

= exp

{

−

[

1 + ξ

(

z − µ∗

σ∗

)]

−1/ξ
}

,

whereµ∗ = µ − σ
ξ

(

1 − θ−ξ
)

andσ∗ = σθξ. Thus, if the (approximate) distribution ofMn is

GEV with parameters(µ, σ, ξ), then the (approximate) distribution of̃Mn is GEV with param-
eters(µ∗, σ∗, ξ).
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2.1.2 Modelling block maxima

Provided long–range dependence is weak, we can proceed to model block maxima from series
with short–range extremal dependence as outlined in Part 1,since the distribution of block
maxima falls within the same family of distributions as would be appropriate if the series were
truly independent. This is fantastic news! Short–range temporal dependence is a much more
plausible assumption than complete independence, and our modelling approach is still valid!
However, the main difference – excluding the change in parameters from(µ, σ, ξ) to (µ∗, σ∗, ξ)
– is that our impliedn (the number we are taking the maxima over) is now effectivelyreduced
due to the dependence, so convergence of maxima to the limit distribution will be slower. And
shouldn’t we be using threshold methods anyway, which use information onall extremes and
not just those that are the maximum within their block?

2.1.3 Modelling threshold exceedances

Though the modelling procedure for fitting the GEV to a set of annual maxima is unchanged for
series which display short–term temporal dependence, somerevision is needed of the threshold
exceedance approach. If all threshold exceedances are usedin our analysis, and the GPD fitted
to the set of threshold excesses, the likelihoods we use willbe incorrect since they assume
independence of sample observations. In practice, severaltechniques have been developed to
circumvent this problem, including:

1. filtering out an (approximately) independent set of threshold exceedances

2. fitting the GPD toall exceedances, ignoring dependence, but then appropriatelyadjusting
the inference to take into account the reduction in information

3. Explicitly modelling the temporal dependence in the process

Though the first approach above is by far the most widely–used, our research has focussed on
the relative merits of the other two approaches. The third approach makes use of multivariate
extreme value theory, and so we shall re–visit this idea in more detail in Parts 4 and 5 this
afternoon. For now, let us consider the first two approaches,which we will call removing
dependence andignoringdependence, respectively.

2.1.4 Example: Cluster peaks or all excesses?

Figure 9 shows a series of 3–hourly measurements of sea–surge heights at Newlyn, a coastal
town in the southwest of England, collected over a three yearperiod. The sea–surge is the me-
teorologically induced non–tidal component of the still–water level of the sea. The practical
motivation for the study of such data is that structural failure — probably a sea–wall in this case
— is likely under the condition of extreme surges. Also shownin Figure 9 is a plot of the time
series against the lag 1 time series.

A natural way of modelling extremes such time series is to usethe Generalised Pareto Dis-
tribution (GPD) as a model for excesses over a high threshold. As already discussed in Part
1, this approach might be preferable to the block maxima approach which is highly wasteful
of data (and precious extremes!). Figure 9 also shows the presence of substantial temporal de-
pendence in the sequence of three–hourly surges. We will nowconsider approaches1 and2,
outlined above, to circumvent this problem.
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Figure 9: Newlyn sea–surge data: (a) Time series plot; (b) histogram; (c) plot of the time series
against the series at lag 1.

‘Removing’ dependence
The most commonly adopted approach to circumvent the problems caused by such temporal
dependence is to employ a declustering scheme to filter out a set of approximately independent
threshold excesses. One method, which is often considered to be the most ‘natural’ way of
identifying ‘clusters’ of extremes, is ‘runs–declustering’. This is how it works:

1. Choose an auxiliary ‘declustering parameter’ (which we call κ)

2. A cluster of threshold excesses is then deemed to have terminated as soon as at leastκ
consecutive observations fall below the threshold

3. Go through the entire series identifying clusters in this way

4. The maximum (or ‘peak’) observation from each cluster is then extracted, and the GPD
fitted to the set of cluster peak excesses.
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This approach is often referred to as thepeaks over thresholdapproach (POT, Davison and
Smith, 1990) and is widely accepted as the main pragmatic approach for dealing with clustered
extremes. Although this approach is quite easy to implement, there are issues surrounding the
choice ofκ; if

• κ is too small, the cluster peaks will not be far enough apart tosafely assume indepen-
dence

• κ is too large, there will be too few cluster exceedances on which to form our inference

It has also been shown that parameter estimates can be sensitive to the choice ofκ. In this
example, we use a separation interval of 60 hours (and soκ = 20) following the example of
Coles and Tawn (1991), which should be large enough to safelyassume independence between
successively identified clusters allowing for wave propagation time. We used a mean residual
life plot (see Part 1) to identify a suitably high threshold (0.3m).

The table below shows maximum likelihood estimates of the GPD scale and shape parame-
tersσ andξ, along with the associated 95% confidence intervals, fitted to the set of cluster peak
excesses usingκ = 20. Shown for comparison are the corresponding estimates using all thresh-
old exceedances, ignoring temporal dependence. Note the discrepancy in the estimation of the
two parameters under the two approaches; however, when allowing for sampling variability,
these differences are not significant.

σ̂ ξ̂
Cluster peaks 0.187 –0.259

95% confidence interval (0.109, 0.265) (–0.545, 0.027)
All excesses 0.104 –0.090

95% confidence interval (0.084, 0.125) (–0.215, 0.035)

Table 1: Maximum likelihood estimates, and associated 95% confidence intervals, for the GPD
scale and shape parameters

‘Ignoring’ dependence
Table 1 above shows that, although there is a slight discrepancy in parameter estimation when
using (i) cluster peak exceedances and (ii)all exceedances, these discrepancies are non–significant.
Therefore, why bother declustering? Surely we’re better off usingall excesses?

The confidence intervals for the estimates using all excesses are too narrow – fitting to all
exceedances when there is clearly evidence of short–term temporal dependence will result in
underestimated standard errors. Smith (1991) suggests a procedure in which the usual asymp-
totic likelihood calculations are supplemented by empirical information on dependence, in order
to produce a modified covariance matrix for the parameters, which is approximately correct af-
ter the dependence has been taken into account.

Under the model fitting procedure which assumes independence, denote the observed infor-
mation matrix byH. If independence were a valid assumption, then the covariance matrix of
the maximum likelihood estimates (m.l.e.s) would be approximatelyH−1. Smith (1991) shows
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that to account for dependence this approximation should bereplaced byH−1V H−1, whereV
is the covariance matrix of the likelihood gradient vector.Furthermore,V can be estimated by
decomposing the log–likelihood sum into its contributionsby year (which should be indepen-
dent up to a good approximation) and obtaining the appropriate covariance matrix empirically.

Similar arguments can be applied to modify the procedure fortesting hypotheses. Specifically,
denoting model parameters byψ = (ρ, ζ) whereρ andζ are of dimensionsp andq respectively,
suppose that a test ofH0 : ρ = ρ0 againstH1 : ρ 6= ρ0 is required,ζ being a nuisance parameter.
Assuming independence, test procedures are usually based on the asymptotic distribution of

2{ℓ(ψ̂1) − ℓ(ψ̂0)}, (9)

which isχ2
p. Here,ℓ(ψ̂0) andℓ(ψ̂1) denote the log–likelihood evaluated at the maximum like-

lihood estimate underH0 andH1 (respectively). Now suppose we wish to account for depen-
dence. Partitioning

H =

(

H11 H12

H21 H22

)

,

whereH11,H12,H21 andH22 are the appropriate sub–matrices of dimensionsp×p, p×q, q×p
andq × q respectively, then we partition the inverse ofH as

H−1 =

(

H11 H12

H21 H22

)

,

where each sub–matrixH ·· has the same dimensions asH··. Now let

C =

(

H11 H12

H21 H22 −H−1

22

)

.

Then Smith (1991) shows that the approximate distribution of expression (9) is given by

p
∑

i=1

λiz
2

i (10)

where thezi, i = 1, . . . , p, are standard normal variates and theλi are the non–zero eigenvalues
of V 1/2CV 1/2. This replaces the usualχ2

p–distribution, which is valid in the case of indepen-
dence, and which would be recovered if all theλi were set equal to 1. It is then easy to simulate
from the modified distribution (10) to estimate any requiredquantile of the test statistic. Profile
likelihood confidence intervals then arise as the set of values ofψ̂1 such that the test statistic (9)
is smaller than the quantile which represents the desired level of significance.

Table 2 reports maximum likelihood estimates for the GPD scale and shape parameters, along
with their 95% confidence intervals, for analyses usingall excessesand justcluster peak ex-
cesses(as before); in the analysis using information on all extremes, though, standard errors
have now been inflated to account for temporal dependence viaSmith’s method (1991).

Table 3 shows maximum likelihood estimates for return levels for four return periods —s = 10,
50, 200 and1000 years. The corresponding 95% confidence intervals have beenobtained using
the method of profile likelihood, where the appropriate cut–off for the test statistic (9) has been
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obtained using the modified distribution (10). In this way the profile likelihood confidence in-
tervals have been inflated to account for the dependence in a way which is consistent with the
modifications proposed by Smith (1991). Figure 10 shows a plot of the profile likelihood for
one of these return levels —z50 — illustrating the severe asymmetry which is commonly ob-
served for return levels. This plot is for the analysis usingall threshold exceedances. The 95%
profile likelihood confidence interval forz50, after adjusting for dependence, is identified on the
plot. Also shown is the much narrower interval which would have been obtained if dependence
had been ignored.

Table 2 shows that, when the analysis is restricted to a set ofcluster peak exceedances, the
GPD scale parameterσ is overestimated, and the shape parameterξ underestimated, relative to
the approach which uses all exceedances. However, when we account for sampling variability,
we see that these differences are not significant.

Of greater practical interest are the estimated return levels. Table 3 shows that estimates barely
differ for the ten year return period, but are consistently smaller in the cluster peaks analysis for
the other three periods studied — in fact, quite substantially so for the 200 and 1000 year return
periods. Since estimates of such long–range return levels are often used as a design requirement
in oceanographic situations (e.g. for the height of sea walls), designing to a level specified by
an analysis based on cluster peak excesses could result in substantial under–protection.

σ̂ ξ̂
Cluster peaks 0.187 –0.259

95% Confidence Interval (0.109, 0.265) (–0.545, 0.027)
All excesses 0.104 –0.090

95% Confidence Interval (0.082, 0.126) (–0.217, 0.037)

Table 2: Maximum likelihood estimates, and associated Wald95% confidence intervals, for the
GPD scale and shape parameters and the threshold exceedancerate when using all excesses,
and just cluster peak excesses.

ẑ10 ẑ50 ẑ200 ẑ1000
Cluster peaks 0.868 0.920 0.951 0.975

95% Confidence Interval (0.770, 1.031) (0.813, 1.099) (0.838, 1.008) (0.858, 1.063)
All excesses 0.867 0.947 1.007 1.068

95% Confidence Interval (0.736, 1.067) (0.790, 1.193) (0.844, 1.257) (0.891, 1.335)

Table 3: Maximum likelihood estimates, and associated 95% profile likelihood confidence in-
tervals, for four return levels (units are in metres).
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Figure 10: Profile log–likelihood surface, with corresponding 95% confidence intervals, for the
50 year return level̂z50. The dashed lines show the construction of the interval which has been
inflated to account for temporal dependence in the sea–surgedata (since in this example all
threshold excesses were used). The dotted lines show how theinterval would be constructed if
dependence had been ignored.

Simulation study
So we know there are differences – some significant – in returnlevel estimation when we use
(i) cluster peak excesses and (ii) all threshold excesses. Which approach are we to trust?

— The usual approach is to use cluster peaks, then we have effectively removed temporal
dependence

— However, return levels using this approach are underestimated relative to the procedure
which uses all threshold excesses

— Using cluster peak excesses could result in substantial under–protection (i.e. not building
a sea–wall high enough to protect against the 1 in 1000 year surge)

Figure 11 below shows some results of a simulation study undertaken by Fawcett and Walshaw
(2007), in which the GPD was fitted to a simulated dataset for which the true values ofσ, ξ and
various return levels wereknown, and the strength of temporal dependence was similar to that
of which is often observed in real–life environmental time series. The bold lines correspond
to sampling distributions for the GPD parameters (and two return levels) using all threshold
excesses, the thin lines correspond to the equivalent when using just cluster peak excesses.
Clearly, for all parameters, the analysis using all threshold excesses outperforms that which
uses just cluster peak excesses. Of most concern are the result shown for the two return levels;
Fawcett and Walshaw (2007) found systematic underestimation of return levels when using
cluster peak excesses (remember, this is the approach most commonly adopted to circumvent
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the problem of temporal dependence), whereas estimates of these return levels were much more
accurate under the approach using all threshold excesses.
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2.2 Non–stationarity: trend

In Section 2.1 we demonstrated that, subject to specified limitations, the usual extreme value
limit models are still applicable in the presence of short–term temporal dependence. In fact, we
can use the results for block maxima directly as they stand, though some thought is required
when considering threshold models. The general theory cannot be extended for non–stationary
series; instead, it is usual to adopt a pragmatic approach ofusing the standard extreme value
models as basic templates that can be augmented by statistical modelling.

Figure 12 (over-leaf) below shows a time series plot of annual maximum sea levels observed
at Fremantle, Western Australia, between 1900 and 1986; theright–hand–side plot shows these
sea–levels plotted against the annual mean value of theSouthern Oscillation Index(SOI), which
is a proxy for meteorological volatility. There appears to be an increase in annual maximum
sea levels through time, as well as an association between annual maximum sea levels and the
mean SOI.

We can accommodate the time–trend shown in the plot on the left–hand–side of Figure 12 by
fitting the GEV distribution (as we have annual maxima), but allowing for a linear trend in the
underlying level of extreme behaviour. For example, if we defineZt to be the annual maximum
sea level at Fremantle in yeart, then we might use

Zt ∼ GEV (µ(t), σ, ξ)

where

µ(t) = β0 + β1t. (11)
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Figure 12: Time series plot of annual maximum sea levels observed at Fremantle (left), and a
plot of the mean SOI against annual maximum sea level (right).

In this way, variations through time in the observed processare modelled as a linear trend in the
location parameter of the appropriate extreme value model (the GEV in this case). We might
choose to adopt the following model forµ(t):

µ(t) = β0 + β1SOI(t)

to allow for a linear association between the maximum sea level in yeart and the SOI in yeart.
Or perhaps a textitmultiple linear regression model forµ(t), whereby

µ(t) = β0 + β1t+ β2SOI(t); (12)

we can then assess our preferences between the stationary model (µ(t) = β0), the models
which allow for a dependence in time (alone), a dependence onSOI through time (alone), and
the model which allows the underlying extremal behaviour tobe determined bybotha change
in timeandSOI, by referring to the usual likelihood ratio tests (sincethese models are nested).
For example, fitting a stationary GEV distribution to these data, we get:

µ̂ = 1.482(0.017) σ̂ = 0.141(0.011) ξ̂ = −0.217(0.064),

with a maximised log–likelihood of 43.6. Fitting the model which allows for a trend in time
(the model shown in 11), we get:

β̂0 = 1.387(0.027) β̂1 = 0.002(0.0005) σ̂ = 0.124(0.010) ξ̂ = −0.128(0.068)

with a maximised log–likelihood of 49.79. Referring

D = 2 {49.79 − 43.6}

= 12.38

toχ2
1 tables, we have a significant result, suggesting that the model which includes a linear trend

in time forµ explains substantially more of the variation in the data than the stationary model.
Figure 13 shows the time series plot of the Fremantle sea level data with fitted estimates for
µ superimposed. Also shown, for comparison, is the fitted estimate forµ under the stationary
model.
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Figure 13: Time series plot of annual maximum sea levels observed at Fremantle, with fitted
estimates forµ based on the stationary GEV model and the model which allows for a linear
trend in time.

Similar methodology actually suggests that the model in equation 12 is the best model to use
here, i.e. that which allows for a trend inµ depending on both time and SOI. In fact, we get:

β̂0 = 1.389(0.027) β̂1 = 0.002(0.0005) β̂2 = 0.055(0.020)

σ̂ = 0.121(0.010) ξ̂ = −0.154(0.064)

giving

µ̂ = 1.389 + 0.002t+ 0.055SOI(t).

Of course, more exotic model structures can be incorporatedinto this framework, including
quadratic models, higher–order polynomial models, and models which allow for non–normal
error structures. Trend can also be incorporated into the other GEV/GPD model parameters.

2.3 Non–stationarity: seasonality

The most widely adopted technique to deal with data which vary seasonally is to partition the
data into seasons (within which we can assume the data to be homogeneous), and perform a
separate extremal analysis on each season. Examples of suchan approach can be found in
Smith (1989) and Walshaw (1994). These seasons might be, forexample, ‘winter’ and ‘sum-
mer’, or ‘dry’ and ‘wet’, where the seasonal variation is clearly understood. However, for data
which exhibit less defined seasons, we can fit to separate months or years. Disadvantages of
this approach are that a separate set of extremal parametersrequire estimating for each season,
and that recombining these estimates is often non–trivial.To overcome these disadvantages, an-
other approach is to allow the extremal parameters to vary continuously throughout the period
of seasonality – for example, within the year. Fourier formscan be fitted to the parameters, and
a model selected based on likelihood ratio tests. However, Walshaw (1991) suggests that infer-
ences are barely altered in relation to a piecewise seasonality approach (for extreme wind gusts,
anyway), and that the significant increase in computation time incurred by fitting continuously
varying parameters is therefore not worthwhile.
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