2 Dependence and non-stationarity

The asymptotic results introduced in Part 1 have assumadhitherlying process to be indepen-
dent and identically distributed (i.i.d.). They also assums process is stationary. In practice,
extreme value data — particularly environmental time seri@xhibit some form of departure
from this ideal. The most common forms are:

— Local temporal dependence, where successive values tiftbseries are dependent, but
values farther apart are independent (to a good approxamati

— Long term trends, where the underlying distribution chesgradually over time;
— Seasonal variation, where the underlying distributioanges periodically through time.

These departures can be handled through a combinationaidirg both the theory and the
modelling. However, although a wide range of theoreticatais for non—stationarity have
been studied, only in a few cases have these been used fististhtmodelling; the results
have generally been too specific to be of use in modelling fitatavhich the form of non—
stationarity is unknown. Over the last decade or so, it has Ibeore usual for practitioners to
employ statistical procedures which allow the existingitssto be applied. In Part 2, we will
consider some of these in detail.

2.1 Extremes of dependent sequences

For the types of data to which extreme value models are corlynapplied, temporal indepen-
dence is usually an unrealistic assumption. In particetereme conditions often persist over
several consecutive observations, bringing into questierappropriateness of models such as
the GEV. A detailed investigation of this requires mathaoahtreatment at a level of sophis-
tication beyond which we have time to capitulate in this sloourse; however, the general
ideas are not difficult and the main result offers a simplacfcal, interpretation. For the re-
mainder of this section on dependent sequences, we shathagbat our process sationary
corresponding to a series whose variables may be mutugligratent, but whose stochastic
properties are homogeneous throughout time.

Dependence in stationary sequences can take many differam. With practical applications

in mind, it is common to assume a condition that limits theeakiof dependence to short—
range temporal dependence so that, for example, evgraad X ;, both of which are extreme,
are independent provided time poiritand j are far enough apart. Indeed, many stationary
sequences satisfy this property. By excluding the possilaf long—range dependence in this
way, we focus our attention on dependence at a much shonige r&ffects of such short—range
dependence, it turns out, can be quantified within the staneldreme value limits discussed
in Part 1.

2.1.1 Maxima of stationary sequences

The book by Leadbettet al. (1983) considers, in great detail, properties of extrenfieepen-
dent processes. A key result often used is ‘Leadbetfe(is,) condition’, which ensures that
long—range dependence is sufficiently weak so as not totafiecasymptotics of an extreme
value analysis. This condition is stated more formally i& Befinition below.
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Definition (Leadbetter’s D(u,,) condition)
A stationary series(;, X», ... is said to satisfy thé(u,,) condition if, for alli; < ... < i, <
1< ... < JgWith jy — iy, > 1,

Pr{Xi, S, Xy Sty Xy St X, S )
—Pr{XZ-1 < Up, .., X, < un} F’I’{Xj1 < Up,...,Xj, < un} ‘ < a(n,l), (7)

wherea(n,l) — 0 for some sequendg such that,,/n — 0 asn — oc.

For sequences of independent variables, the differencelmapilities in the above expression
is exactly zero foany sequence:,,. More generally, we will require that thB(w,,) condition
holds only for a specific sequence of threshalgthat increases with. For such a sequence,
the D(u,,) condition ensures that, for sets of variables that are faugh apart, the difference
in probabilities expressed in (7), while not zero, is sudfitly close to zero to have no effect on
the limit laws for extremes.

Theorem

Let X,, X, ... be a stationary series satisfying LeadbettéNa.,) condition, and let\,, =
max{X'l, . ,X’n}. Now let X1, X5, ... be anindependenseries withX having the same dis-
tribution asX, and let)M,, = max{ X, ..., X, }. Then if M,, has a non—degenerate limit law
given by P{(M,, — b,)/a, < z} — G(z), it follows that

Pr{(Mn — b)) an < x} s G0(x) 8)

for somel) < 9 < 1.

The parametef is known as theextremal indexand quantifies the extent of extremal de-
pendence:d = 1 for a completely independent process, #d- 0 with increasing levels

of (extremal) dependence. SinGen the above theorem is necessarily an extreme value distri-
bution, and due to theax—stabilityproperty (see Leadbettet al., 1983), then the distribution

of maxima in processes displaying short-range temporartignce (characterised by the ex-
tremal indexd) is also a GEV distribution; the powering of the limit disution by only
affects the location and scale parameters of this distabut

The above theorem implies that if maxima of a stationaryesaronverge — which, from Part 1,
we know they will do — then, provided an appropri&éu,,) condition is satisfied, the limit dis-
tribution is related to the limit distribution of an indepbamt series. The effect of dependence,
as seen in expression (8), is just a replacement a$ the limit distribution withG?. In fact, if

G corresponds to the GEV distribution with parameterss, £), then

G'(z) = exp{{l_i_g(,zaﬂ)}l/g}e
el [ree (2]}

whereu* = i — ¢ (1—67¢) ando* = o6*. Thus, if the (approximate) distribution af,, is
GEV with parameter$u, o, ¢), then the (approximate) distribution f,, is GEV with param-
eters(u*, 0%, €).
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2.1.2 Modelling block maxima

Provided long—range dependence is weak, we can proceeddel ilock maxima from series
with short—range extremal dependence as outlined in Painte the distribution of block
maxima falls within the same family of distributions as wable appropriate if the series were
truly independent. This is fantastic news! Short-rangeptma dependence is a much more
plausible assumption than complete independence, and odellimg approach is still valid!
However, the main difference — excluding the change in patara from(u, o, &) to (u*, 0*, &)
—is that our impliech (the number we are taking the maxima over) is now effectivetiuced
due to the dependence, so convergence of maxima to the istribdtion will be slower. And
shouldn’t we be using threshold methods anyway, which ulerration onall extremes and
not just those that are the maximum within their block?

2.1.3 Modelling threshold exceedances

Though the modelling procedure for fitting the GEV to a setrofiaal maxima is unchanged for
series which display short—term temporal dependence, sevigon is needed of the threshold
exceedance approach. If all threshold exceedances arénusedanalysis, and the GPD fitted
to the set of threshold excesses, the likelihoods we usebaiiincorrect since they assume
independence of sample observations. In practice, setemtaiques have been developed to
circumvent this problem, including:

1. filtering out an (approximately) independent set of thrédlesceedances

2. fitting the GPD tcall exceedances, ignoring dependence, but then appropraatieisting
the inference to take into account the reduction in inforamat

3. Explicitly modelling the temporal dependence in the praces

Though the first approach above is by far the most widely—usedresearch has focussed on
the relative merits of the other two approaches. The thigt@gch makes use of multivariate
extreme value theory, and so we shall re—visit this idea imentetail in Parts 4 and 5 this
afternoon. For now, let us consider the first two approachésch we will call removing
dependence andnoring dependence, respectively.

2.1.4 Example: Cluster peaks or all excesses?

Figure 9 shows a series of 3—hourly measurements of sea&-karghts at Newlyn, a coastal
town in the southwest of England, collected over a three geegod. The sea—surge is the me-
teorologically induced non—-tidal component of the stilater level of the sea. The practical
motivation for the study of such data is that structuralfiel— probably a sea—wall in this case
— is likely under the condition of extreme surges. Also shamRigure 9 is a plot of the time
series against the lag 1 time series.

A natural way of modelling extremes such time series is tothseGeneralised Pareto Dis-
tribution (GPD) as a model for excesses over a high threshafdalready discussed in Part
1, this approach might be preferable to the block maximaaggtr which is highly wasteful
of data (and precious extremes!). Figure 9 also shows treepee of substantial temporal de-
pendence in the sequence of three—hourly surges. We willaomsider approachesand 2,
outlined above, to circumvent this problem.
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Figure 9: Newlyn sea—surge data: (a) Time series plot; &pgram; (c) plot of the time series
against the series at lag 1.

‘Removing’ dependence

The most commonly adopted approach to circumvent the pmablgaused by such temporal
dependence is to employ a declustering scheme to filter attaf approximately independent
threshold excesses. One method, which is often considerbd the most ‘natural’ way of
identifying ‘clusters’ of extremes, is ‘runs—declusteyinThis is how it works:

1. Choose an auxiliary ‘declustering parameter’ (which wé ggal

2. A cluster of threshold excesses is then deemed to have tategims soon as at least
consecutive observations fall below the threshold

3. Go through the entire series identifying clusters in thiywa

4. The maximum (or ‘peak’) observation from each cluster isitegtracted, and the GPD
fitted to the set of cluster peak excesses.
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This approach is often referred to as fheaks over thresholdpproach (POT, Davison and
Smith, 1990) and is widely accepted as the main pragmatimaph for dealing with clustered
extremes. Although this approach is quite easy to implentbate are issues surrounding the
choice ofx; if

e x is too small, the cluster peaks will not be far enough apasafely assume indepen-
dence

e x istoo large, there will be too few cluster exceedances orchvta form our inference

It has also been shown that parameter estimates can beisetsithe choice ok. In this
example, we use a separation interval of 60 hours (and s020) following the example of
Coles and Tawn (1991), which should be large enough to sagslyme independence between
successively identified clusters allowing for wave propiagetime. We used a mean residual
life plot (see Part 1) to identify a suitably high threshddd3m).

The table below shows maximum likelihood estimates of th&®GPale and shape parame-
terso and¢, along with the associated 95% confidence intervals, fitiede set of cluster peak
excesses using= 20. Shown for comparison are the corresponding estimateg allithresh-
old exceedances, ignoring temporal dependence. Notedheegancy in the estimation of the
two parameters under the two approaches; however, wheriagdor sampling variability,
these differences are not significant.

o £
Cluster peaks 0.187 —0.259

95% confidence interval (0.109, 0.265) (—0.545, 0.027)
All excesses 0.104 —0.090

95% confidence interval (0.084, 0.125) (—0.215, 0.035)

Table 1: Maximum likelihood estimates, and associated 986&fidence intervals, for the GPD
scale and shape parameters

‘Ignoring’ dependence

Table 1 above shows that, although there is a slight disogpia parameter estimation when
using (i) cluster peak exceedances andifligxceedances, these discrepancies are non-significant.
Therefore, why bother declustering? Surely we're betteusihgall excesses?

The confidence intervals for the estimates using all exsease too narrow — fitting to all
exceedances when there is clearly evidence of short—tenpaiel dependence will result in
underestimated standard errors. Smith (1991) suggestcadgure in which the usual asymp-
totic likelihood calculations are supplemented by empinigsformation on dependence, in order
to produce a modified covariance matrix for the parametengwis approximately correct af-
ter the dependence has been taken into account.

Under the model fitting procedure which assumes indepemrgatenote the observed infor-
mation matrix byH. If independence were a valid assumption, then the covaeiamatrix of
the maximum likelihood estimates (m.l.e.s) would be apjmnaxely 7 —!. Smith (1991) shows
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that to account for dependence this approximation shouteplaced by ~'V H~!, whereV/

is the covariance matrix of the likelihood gradient vecteurthermore)” can be estimated by
decomposing the log—likelihood sum into its contributidaysyear (which should be indepen-
dent up to a good approximation) and obtaining the apprtgpdavariance matrix empirically.

Similar arguments can be applied to modify the procedur¢efsting hypotheses. Specifically,
denoting model parameters y= (p, () wherep and¢ are of dimensiong andgq respectively,
suppose that a test éf, : p = py againstt; : p # po is required{ being a nuisance parameter.
Assuming independence, test procedures are usually bagbd asymptotic distribution of

2{0(th) — £(o)}, (9)

which is x?. Here,((1),) and{(v),) denote the log-likelihood evaluated at the maximum like-
lihood estimate undefl, and H; (respectively). Now suppose we wish to account for depen-

dence. Partitioning
Hll H12
H = ,
< Hy  Ha )

whereH, H,», Hy; and H,, are the appropriate sub—matrices of dimenspor®, p x ¢, ¢ X p
andq x ¢ respectively, then we partition the inversefdfas

B Hll H12
H b= ( H2l 22 )7
where each sub—matri{ - has the same dimensionsAs. Now let

o - <H11 H12 )
H21 H22 o H2—21 .

Then Smith (1991) shows that the approximate distributfaexpression (9) is given by

p
> Nz (10)
i=1

where thez;, i = 1, ..., p, are standard normal variates and Mare the non—zero eigenvalues
of VI/2C'VY/2. This replaces the usugf—distribution, which is valid in the case of indepen-
dence, and which would be recovered if all thevere set equal to 1. Itis then easy to simulate
from the modified distribution (10) to estimate any requigentile of the test statistic. Profile
likelihood confidence intervals then arise as the set ofesbfi); such that the test statistic (9)
is smaller than the quantile which represents the desixed ¢ significance.

Table 2 reports maximum likelihood estimates for the GPDesaad shape parameters, along
with their 95% confidence intervals, for analyses usatigexcessesnd justcluster peak ex-
cessegqas before); in the analysis using information on all exesnthough, standard errors
have now been inflated to account for temporal dependencemitn’s method (1991).

Table 3 shows maximum likelihood estimates for return Ie¥@l four return periods — = 10,
50, 200 and1000 years. The corresponding 95% confidence intervals havedig#amed using
the method of profile likelihood, where the appropriate offtfor the test statistic (9) has been
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obtained using the modified distribution (10). In this wag firofile likelihood confidence in-
tervals have been inflated to account for the dependence ayawhich is consistent with the
modifications proposed by Smith (1991). Figure 10 shows agdlthe profile likelihood for
one of these return levels =5, — illustrating the severe asymmetry which is commonly ob-
served for return levels. This plot is for the analysis usfighreshold exceedances. The 95%
profile likelihood confidence interval fak,, after adjusting for dependence, is identified on the
plot. Also shown is the much narrower interval which woulddaeen obtained if dependence
had been ignored.

Table 2 shows that, when the analysis is restricted to a selusfer peak exceedances, the
GPD scale parameteris overestimated, and the shape paramgterderestimated, relative to
the approach which uses all exceedances. However, whenowargdor sampling variability,
we see that these differences are not significant.

Of greater practical interest are the estimated returddeVable 3 shows that estimates barely
differ for the ten year return period, but are consistemntiaber in the cluster peaks analysis for
the other three periods studied — in fact, quite substaysalfor the 200 and 1000 year return
periods. Since estimates of such long—-range return lexelsfien used as a design requirement
in oceanographic situations (e.g. for the height of seasjallesigning to a level specified by
an analysis based on cluster peak excesses could resulttstastial under—protection.

o £
Cluster peaks 0.187 —0.259

95% Confidence Interval (0.109, 0.265) (—0.545, 0.027)
All excesses 0.104 —-0.090

95% Confidence Interval (0.082, 0.126) (-0.217,0.037)

Table 2: Maximum likelihood estimates, and associated \@&a#d confidence intervals, for the
GPD scale and shape parameters and the threshold exceedsnugen using all excesses,
and just cluster peak excesses.

210 250 2200 21000
Cluster peaks 0.868 0.920 0.951 0.975

95% Confidence Intervdl (0.770, 1.031) (0.813,1.099) (0.838,1.008) (0.858, 1.063
All excesses 0.867 0.947 1.007 1.068

95% Confidence Intervdl (0.736, 1.067) (0.790, 1.193) (0.844, 1.257) (0.891, 1.335

Table 3: Maximum likelihood estimates, and associated 988file likelihood confidence in-
tervals, for four return levels (units are in metres).
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160 180 200 220

Profile log—likelihood

140

120

10 15 2.0
250

Figure 10: Profile log—likelihood surface, with correspmgi95% confidence intervals, for the

50 year return levets,. The dashed lines show the construction of the interval whas been

inflated to account for temporal dependence in the sea—slatge(since in this example all

threshold excesses were used). The dotted lines show hamtéineal would be constructed if
dependence had been ignored.

Simulation study
So we know there are differences — some significant — in rdawel estimation when we use
() cluster peak excesses and (ii) all threshold excessbscWapproach are we to trust?

— The usual approach is to use cluster peaks, then we hawtietfg removed temporal
dependence

— However, return levels using this approach are underestidirelative to the procedure
which uses all threshold excesses

— Using cluster peak excesses could result in substantiprotection (i.e. not building
a sea—wall high enough to protect against the 1 in 1000 yegesu

Figure 11 below shows some results of a simulation study makien by Fawcett and Walshaw
(2007), in which the GPD was fitted to a simulated dataset fackwthe true values af, £ and
various return levels werenown and the strength of temporal dependence was similar to that
of which is often observed in real-life environmental tinegigs. The bold lines correspond
to sampling distributions for the GPD parameters (and tworrelevels) using all threshold
excesses, the thin lines correspond to the equivalent whielg just cluster peak excesses.
Clearly, for all parameters, the analysis using all thré$lexcesses outperforms that which
uses just cluster peak excesses. Of most concern are thiestesun for the two return levels;
Fawcett and Walshaw (2007) found systematic underestomati return levels when using
cluster peak excesses (remember, this is the approach prost@nly adopted to circumvent
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the problem of temporal dependence), whereas estimatkssd teturn levels were much more
accurate under the approach using all threshold excesses.

&* 13

Density
0 2 4 6 8 10 12 14

Density
01 2 3 4 5 6

£200

Density
Density

Figure 11: Sampling distributions 6f, &, 25, and 2,90 whena = 0.2, and using all threshold
excesses (heavy line) and cluster peak excesses (thinTihe}rue values for each parameter
are shown by the vertical lines.

2.2 Non-stationarity: trend

In Section 2.1 we demonstrated that, subject to specifiettidiions, the usual extreme value
limit models are still applicable in the presence of shenrtemporal dependence. In fact, we
can use the results for block maxima directly as they starajgh some thought is required
when considering threshold models. The general theoryatdrenextended for non—stationary
series; instead, it is usual to adopt a pragmatic approacisiofy the standard extreme value
models as basic templates that can be augmented by stdtistidelling.

Figure 12 (over-leaf) below shows a time series plot of ahmaximum sea levels observed
at Fremantle, Western Australia, between 1900 and 1986ighte-hand—side plot shows these
sea—levels plotted against the annual mean value @alghern Oscillation Inde§SOI), which

is a proxy for meteorological volatility. There appears @dn increase in annual maximum
sea levels through time, as well as an association betwearrabmaximum sea levels and the
mean SOI.

We can accommodate the time—trend shown in the plot on thehlfid—side of Figure 12 by
fitting the GEV distribution (as we have annual maxima), Blavang for a linear trend in the
underlying level of extreme behaviour. For example, if wlrdeZ; to be the annual maximum
sea level at Fremantle in yegrthen we might use

Zy ~ GEV(u(t),0,8)
where
u(t) = Bo+ pit. (11)
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Figure 12: Time series plot of annual maximum sea levelsrobgeat Fremantle (left), and a
plot of the mean SOI against annual maximum sea level (right)

In this way, variations through time in the observed proegesnodelled as a linear trend in the
location parameter of the appropriate extreme value makdelGEYV in this case). We might
choose to adopt the following model fp(t):

u(t) = Bo+ 4iSOIR)

to allow for a linear association between the maximum sea laweart and the SOI in yeat.
Or perhaps a textitmultiple linear regression model.f0r), whereby

u(t) = fo+ bit + 5,S0I(2); (12)

we can then assess our preferences between the stationdst (@) = /), the models
which allow for a dependence in time (alone), a dependenc&Qirthrough time (alone), and
the model which allows the underlying extremal behaviouseéaletermined bppotha change
in time and SOI, by referring to the usual likelihood ratio tests (sitltese models are nested).
For example, fitting a stationary GEV distribution to thea¢ad we get:

f=1482(0.017) & =0.141(0.011) &= —0.217(0.064),

with a maximised log—likelihood of 43.6. Fitting the modehiah allows for a trend in time
(the model shown in 11), we get:

By = 1.387(0.027) 3, = 0.002(0.0005) & = 0.124(0.010) £ = —0.128(0.068)
with a maximised log—likelihood of 49.79. Referring

D = 2{49.79 — 43.6}
= 12.38

to x2 tables, we have a significant result, suggesting that theehvduich includes a linear trend
in time for i explains substantially more of the variation in the datantthee stationary model.
Figure 13 shows the time series plot of the Fremantle se# diata with fitted estimates for
i superimposed. Also shown, for comparison, is the fittedrede fory under the stationary
model.
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Figure 13: Time series plot of annual maximum sea levelsrobgeat Fremantle, with fitted
estimates fop, based on the stationary GEV model and the model which allows finear
trend in time.

Similar methodology actually suggests that the model irm&@qo 12 is the best model to use
here, i.e. that which allows for a trend gndepending on both time and SOI. In fact, we get:

Bo =1.389(0.027) B = 0.002(0.0005) 3> = 0.055(0.020)
& =0.121(0.010) €= —0.154(0.064)
giving
[ = 1.389+ 0.002¢ 4 0.055S0I(¢).

Of course, more exotic model structures can be incorporatedthis framework, including
guadratic models, higher—order polynomial models, andeatsoghich allow for non—normal
error structures. Trend can also be incorporated into ther&EV/GPD model parameters.

2.3 Non-stationarity: seasonality

The most widely adopted technique to deal with data whicly gaasonally is to partition the
data into seasons (within which we can assume the data torhedemeous), and perform a
separate extremal analysis on each season. Examples ohsuambproach can be found in
Smith (1989) and Walshaw (1994). These seasons might bex&mple, ‘winter’ and ‘sum-
mer’, or ‘dry’ and ‘wet’, where the seasonal variation isarlg understood. However, for data
which exhibit less defined seasons, we can fit to separatehsiontyears. Disadvantages of
this approach are that a separate set of extremal parametelise estimating for each season,
and that recombining these estimates is often non—triVaabvercome these disadvantages, an-
other approach is to allow the extremal parameters to vamjirnaously throughout the period
of seasonality — for example, within the year. Fourier fogas be fitted to the parameters, and
a model selected based on likelihood ratio tests. Howevalshaw (1991) suggests that infer-
ences are barely altered in relation to a piecewise seagoagproach (for extreme wind gusts,
anyway), and that the significant increase in computatime incurred by fitting continuously
varying parameters is therefore not worthwhile.
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