
Hierarchical Models for
Environmental Extremes

Lee Fawcett, Dave Walshaw
and Jonathan Atyeo

Newcastle University, Newcastle upon Tyne, U.K.

NBBC11: Turku, Finland, June 2011

Lee Fawcett, Dave Walshaw and Jonathan Atyeo Hierarchical Models for Environmental Extremes



Structure of this talk

1. Background and motivating examples

� Example: Extreme wind speeds in the U.K.

� Example: Extreme rainfall in the U.K.

� Statistical modelling of extremes

2. A hierarchical model for extreme wind speeds

� Site and seasonal variation

� Temporal dependence

� Model structure and inference

3. A Hierarchical model for extreme rainfall

� Spatial dependence

� Regional variation and temporal trends

� Model structure and inference
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1.1 Background and motivation: extreme wind speeds

In the U.K., the British Standards Institution produce contour
maps displaying strength requirements for structures based on
“once–in–50–year gust speeds”.

This is known as the 50–year return level gust.

The maps themselves are the result of simple extreme value
analyses carried out on medium to long term records collected
at stations in the U.K.
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1.1 Background and motivation: extreme wind speeds

During storms in 1987, 2002 and 2005, gust speeds exceeded
the 200–year return level.

Perhaps building codes should be revised?

Or maybe the estimation procedure is inappropriate...
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1.1 Background and motivation: extreme wind speeds

Wind speed stations: Central/Northern England
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1.1 Background and motivation: extreme wind speeds
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1.2 Background and motivation: extreme rainfall
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Cyan: Southern Scotland (SS)
Blue: Northern Ireland (NI)
Magenta: North West England (NWE)
Orange: North East England (NEE)
Grey: Central East England (CEE)
Purple: South West England (SWE)
Brown: South East England (SEE)

Rainfall stations: UK
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1.2 Background and motivation: extreme rainfall

Oxford daily aggregate rainfall: 1961 – 1995
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1.2 Background and motivation: extreme rainfall

Oxford annual maximum daily rainfall: 1961 – 1995
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1.3 Background and motivation: modelling extremes

Let X1,X2, . . . ,Xn be a stationary sequence of random
variables with common distribution function F , and let

Mn = max {X1, . . . ,Xn} .

Then, as n → ∞,

Pr(Mn ≤ x) ≈ F nθ(x),

where θ ∈ (0, 1) is the extremal index.

As θ → 0: increasing dependence in the extremes

For θ = 1: we have an independent process.
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1.3.1 The “block maxima” approach

Idea: Find approximate families of models for G = F n as
n → ∞ .

For independent extremes, i.e. where θ = 1, this leads to the
Generalised Extreme Value (GEV) distribution, where

G(y ;µ, σ, ξ) = exp

{

−

[

1 + ξ

(

y − µ

σ

)]−1/ξ

+

}

,

where a+ = max(0, a) and µ, σ > 0 and ξ are location, scale
and shape parameters (respectively).

Allowing for dependence has the effect of powering the limit
distribution G by θ – again giving a GEV, albeit with different
location and scale parameters.
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1.3.2 A threshold–based approach

Leadbetter et al. (1983) show that for large u and for θ = 1, the
distribution of (X − u), conditional on X > u, is approximately
Generalised Pareto (GP), with distribution function

G(y ; σ̄, ξ) = 1 −

(

1 +
ξy
σ̄

)−1/ξ

+

,

where σ̄ = σ + ξ(u − µ).

Graphical procedures can be used to select the threshold u; the
GP distribution is then used to model excesses over u.

This approach is often preferred over the block maxima
approach owing to the inclusion of more extremes.
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1.3.3 Modelling issues

Temporal dependence

Not an issue for the GEV, provided long–range
dependence is negligible

Workaround in the threshold approach: filter out a set of
independent extremes and fit the GP to these

Seasonal variability – workaround: use data from seasons
giving the largest extremes, and within which we can assume
stationarity – ignore all other seasons

Site–by–site variability – workaround: independent
site–by–site analyses

The aim of our work is to exploit such meteorological structure
– not use “workarounds” – to give more informed inferences!
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2. Extreme wind speeds in the U.K.

Main aim:

Provide accurate, precise estimates of return levels, by...

...getting as much out of our data as possible!

This means:

Using a threshold approach to minimise data wastage
– Avoid filtering – also wasteful
– Will need to think about temporal dependence

Using extremes from all seasons – perhaps by quantifying
seasonal effects

Pooling extremes from all sites into a single analysis to
allow information–sharing

Being Bayesian – enabling us to augment our analysis with
prior information, as well as obtain predictive return level
estimates
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2.1 Site and seasonal variation

We use a site– and seasonally–varying GP distribution for
threshold excesses above um,j , yielding

(σ̃m,j , ξm,j), m, j = 1, . . . , 12,

where m and j are indices of season and site (respectively).

The GP scale parameter σ̄ is threshold–dependent ; to allow
comparisons across different sites and seasons, we work with

σ̃m,j = σ̄m,j − ξm,jum,j .

The scale parameter is now threshold–independent

In a Bayesian setting, this is desirable: this allows us to
specify prior information about (σ̃m,j , ξm,j) without having to
worry about threshold–dependency
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2.2 Temporal dependence

Previous work in Fawcett and Walshaw (2006) indicates the
suitability of a first–order Markov assumption for consecutive
extreme wind speeds.

Thus, the likelihood for our series of extremes in season m at
site j is given by

L(ψ; y1, . . . , yn) =
n−1
∏

i=1

f (yi , yi+1;ψ)

/

n−1
∏

i=2

f (yi ;ψ).

Contributions to the denominator, for the region (um,j ,∞),
are given by the GP density

For contributions to the numerator we need an appropriate
bivariate extreme value model
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2.2 Temporal dependence

Fawcett and Walshaw (2006) try several bivariate extreme
value models for the wind speed extremes.

Allowing for asymmetry in the dependence structure
between (yi , yi+1) is unnecessary

Of the symmetric models tried, the logistic model gave the
best fit:

F (yi , yi+1) = 1−
(

Z (yi)
−1/r + Z (yi+1)

−1/r
)r

, yi , yi+1 > um,j ,

– The transformation Z ensures the margins are of GP form

– r is a dependence parameter – independence and
complete dependence are obtained when r = 1 and r ց 0
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2.3 Hierarchical structure

We specify the following hierarchical model for our wind speed
data:

ηm,j = log(σ̃m,j) = γ(m)
η + κ(j)η

ξm,j = γ
(m)
ξ + κ

(j)
ξ and

rj = κ
(j)
r ,

where γ and κ represent seasonal and site effects respectively.

Previous studies in Fawcett and Walshaw (2008) show little
variation in r from month to month, but variations between sites.
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2.3 Hierarchical structure

Notation: ǫω used generically for any of γη, γξ, κη, or κξ.

Random effects distributions for ηm,j and ξm,j :

ǫω ∼ N0(αω, τω).

A conditional autoregressive model structure is used for all
seasonal effects:

α(m)
ω =

1
2

(

α(m−1)
ω + α(m+1)

ω

)

, m = 1, . . . 12.

For site effects, we use:

α(j)
ω ∼ N0(bω, cω), and

κ
(j)
r ∼ U(0, 1), j = 1, . . . , 12.

To retain conjugacy, we also use:

τω ∼ Ga(dω, fω).

Lee Fawcett, Dave Walshaw and Jonathan Atyeo Hierarchical Models for Environmental Extremes



2.4 Inference

Estimation of the random effects model is made via a
Metropolis–within–Gibbs MCMC algorithm

We sample from the full conditionals of the random effects
means and precisions αω and τω

The complexity of the GP likelihood requires a Metropolis
step for the random effects themselves

The sampler yields approximate draws from the posteriors for

the 12 site effects parameters for each of log(σ̃m,j), ξm,j

and the logistic dependence parameter rj ;

the 12 seasonal effects for each of log(σ̃m,j) and ξm,j .

Lee Fawcett, Dave Walshaw and Jonathan Atyeo Hierarchical Models for Environmental Extremes



2.5 Results: Random effects and GPD parameters

Bradfield, January Nottingham, July
Mean (st. dev.) MLE (s.e.) Mean (st. dev.) MLE (s.e.)

γ
(m)
η 1.891 (0.042) 1.294 (0.042)

γ
(m)
ξ 0.021 (0.018) 0.002 (0.018)

κ
(j)
η 0.367 (0.044) –0.121 (0.041)

κ
(j)
ξ –0.105 (0.020) –0.059 (0.017)

κ
(j)
r 0.385 (0.009) 0.400 (0.011)

σ̃m,j 7.267 (0.211) 8.149 (0.633) 3.234 (0.061) 2.914 (0.163)
ξm,j –0.084 (0.015) –0.102 (0.055) –0.057 (0.013) 0.018 (0.044)
αj 0.385 (0.009) 0.368 (0.012) 0.400 (0.011) 0.412 (0.020)

Bayesian random effects analysis
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2.5 Results: Return level inference

For each site j the annual exceedance rate of qr is given by:

12
∑

m=1

{

1 − Fm,j (qr )
hm,jθj

}

, m = 1, . . . , 12,

where

{1 − Fm,j (qr )
hm,jθj} is the annual exceedance rate of qr in

month m;

Fm,j is the GPD distribution function in month m with
parameters σ̃m,j and ξm,j ;

hm,j is the number of hours in month m, and

the extremal index θj is implicitly defined through the value
of the logistic dependence parameter αj at site j .
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2.5 Results: Return level inference

Return Period (years)
10 50 200 1000

Hierarchical 96.887 103.463 112.518 128.128
model (0.982) (1.333) (2.023) (2.691)

Maximum 96.745 103.236 108.152 113.306
likelihood (2.864) (5.930) (8.786) (12.219)
Predictive 104.392 113.089 119.957 127.338

Return levels for Bradfield (knots)
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2.5 Results: Return level inference
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2.5 Results: “Shrinkage”
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3. Extreme rainfall in the U.K.
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3. Extreme rainfall in the U.K.
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3. Extreme rainfall in the U.K.
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3.1 Contrasts with the wind speeds problem

Data are daily aggregate rainfalls for 204 locations over 9
regions, 1961 - 2000. We focus on annual maxima.

Modelling issues:

multiple geographic regions with differing climates;

significant dependence across sites within regions;

annual maxima - no seasonal effects;

annual maxima - no temporal dependence;

data range 1961 - 2000: climate change?
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3.2 Modelling inter-site dependence within a region

Example
Suppose we want to study the joint extremes of daily rainfall
accumulations at the network of 8 sites shown below.

GMT 2008 Jun  3 11:59:13 OMC - Martin Weinelt
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3.2 Modelling inter-site dependence within a region

We have already seen that the GEV is the class of limit
distributions for maxima at a single location.

It is natural to consider a multivariate analogue for the
multivariate annual maxima.

However detailed investigation of the multivariate
behaviour of the extreme rainfall suggests asymptotic
independence.

However, significant dependence persists to the levels of
the annual maxima.

We employ a pragmatic solution, which is a departure from
asymptotic theory . . .
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3.3 The multivariate Gaussian tail model

We use a multivariate Gaussian tail model, as suggested by
Bortot et al. (2000):—

We model the annual maxima for each of the p sites within a
region using a GEV distribution, and transform these margins to
standard Gaussian.

We then model the joint distribution of these transformed
maxima using a p–dimensional Normal distribution with
standard margins.

The dependence structure now has the property of asymptotic
independence, which appears to be appropriate.
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3.3 The multivariate Gaussian tail model

Consider a p dimensional random variable Xi =
(

Xi,1, ...,Xi,p
)

and let Mn =
(

Mn,1, . . . ,Mn,p
)

, where Mn,j = max1≤i≤n
{

Xi,j
}

.

Note that Mn is not necessarily one of the original Xi vectors.

We assume the p-dimensional block maxima random variable
Mn to have marginal distribution Gj , j = 1, . . . , p, where the Gj

have the GEV distribution.
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3.3 The multivariate Gaussian tail model

Denoting by Φ(.) and Φp (.; Σ) the standard Normal distribution
function and the standard p-dimensional Normal distribution
function with correlation matrix Σ respectively, we define the
distribution function for Mn as

G(x1, . . . , xp) = Φp {Υ1(x1), ...,Υp(xp); Σ}

where
Υj(x) = Φ−1 {Gj(x)

}

, j = 1, . . . , p.

The dependence within this model is determined by the
correlation matrix

Σ =











1 ρ1,2 . . . ρp,1

ρ1,2 1 . . . ρp,2
...

...
. . .

...
ρp,1 ρp,2 . . . 1











.
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3.3 The multivariate Gaussian tail model

Inference for the multivariate Gaussian tail model for annual
maxima data is based on the estimation of

1 the marginal distribution Gj parameters µj , σj and ξj , for
each j = 1, ..., p;

2 the correlation matrix Σ.

For modelling the dependence for all sites within one of our
regions, we would need a Gaussian tail model with up to 25
dimensions.

It would be too expensive computationally to estimate all
p(p − 1)/2 correlation parameters, so we look for a
simplification based on the distances between sites.
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3.3 The multivariate Gaussian tail model

We model the dependence between sites i and j as

ρi,j = exp
{

−λ [d(i , j)]δ
}

for parameters λ ∈ R+ and 0 < δ < 2, and where d(i , j)
denotes the Euclidean distance between sites i and j .

This method was motivated by Diggle et. al. (1998), and was
also used in a different context by Smith and Walshaw (2003).

The Gaussian tail model in this form can feasibly be employed
for high–dimensional problems, and we are able to use it for
each of our 9 regions, adopting a Bayesian approach to
inference.
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3.4 Hierarchical model for the UK

The nine regions were originally defined by Wrigley et al.
(1984) and represent regions of different physiographic
character, within which the rainfall climate is regarded as being
fairly coherent (Fowler and Kilsby, 2003).

Here we use random effects for the regional parameters. For a
specific location and time, the GEV location and scale
parameters vary as a function of space and time covariates.

Conditional on the model parameters, observations are
independent between regions.
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3.4 Hierarchical model for the UK

Our parameter vector is
(

µi,j,k , σi,j,k , ξk , λk , δk
)

where i ; i = 1, . . . , 40, indexes time (year); j ; j = 1 . . . , 204,
indexes site, and k ; k = 1, . . . , 9 indexes region.

Note that the GEV location and scale parameters µi,j,k and σi,j,k

are only defined where site j falls in region k . The GEV shape
parameters ξk are region–specific, as are the parameters λk

and δk , which determine the correlation structure within region
k .
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3.4 Hierarchical model for the UK

For year i , site j and region k , we model the GEV parameters
as follows:

µi,j,k = ǫ(k)µ0
+ ǫ(k)µ1

x (j) + β(k)
µ i ,

ηi,j,k = log(σi,j,k ) = ǫ(k)σ0
+ ǫ(k)σ1

x (j) + β(k)
σ i

and
ξk = ǫ

(k)
ξ0

.

Here x (j) is a site–specific covariate corresponding to the Daily
Mean Rainfall. The location and log(scale) are thus varying as
linear functions of this covariate, and time.
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3.4 Hierarchical model for the UK

For two sites j1 and j2, we have

ρ
(k)
j1, j2

= exp
[

−
{

λ(k)d(j1, j2)
}δ(k)

]

,

where
log(λ(k)) = ǫ

(k)
λ

and,

log
(

2
δ(k)

− 1
)

= ǫ
(k)
δ .

All of the terms

(ǫ(k)µ0
, ǫ(k)µ1

, ǫ(k)σ0
, ǫ(k)σ1

, ǫ
(k)
ξ , ǫ

(k)
λ , ǫ

(k)
δ )

are random effects, and the next layer of our model is to specify
distributions for these.
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3.4 Hierarchical model for the UK: random effects

We follow Coles (1999) by specifying each ǫω term to be
Normally and independently distributed

ǫ(k)ω ∼ N (aω, τω) , k = 1, ..., 9

where, for convenience, we have specified the Normal
distribution by its mean and precision.

The transformations on σi,j,k , λ(k) and δ(k) ensure the correct
ranges for these parameters.
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3.4 Hierarchical model for the UK: priors

The bottom layer of the model is the specification of priors for
the random effect distribution parameters. These are conjugate:

aω ∼ N(bω, cω), τω ∼ Γ(dω, fω)

with suitable choices for the hyperparameters bω, cω, dω and fω.

Here we treat the linear parameters as fixed effects (no relation
between regions), and specify the following (non-conjugate)
priors.

β(k)
ω ∼ N(gω, hω), k = 1, ..., 9,

again for a suitable choice of hyperparameters gω and hω.
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3.5 Inference and results

Inference is carried out via MCMC, where all random effects
distribution parameters αω and τω can be directly sampled from
their posterior densities, while a Metropolis step is used for all
other parameters.

Choices of the prior parameters were made to give rather
un–informative, near flat prior distributions. Specifically we
chose

bω = 0, cω = 10−6, dω = 10−1, fω = 10−3, gω = 0 and hω = 10−6.

The following results are based on 100,000 simulations based
on 4 runs of length 35,000, with a burn-in discard of 10,000
each time. Units are 0.1mm.
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3.5 Inference and results

Region ξ0 λ∗ δ∗

CEE -0.00896 (0.00324) 1.624 (0.083) 0.4906 (0.0859)
ES -0.0201 (0.0046) 2.144 (0.105) 0.5712 (0.0405)

NEE -0.00168 (0.00494) 1.497 (0.059) 0.5372 (0.0311)
NI -0.00312 (0.00318) 2.792 (0.194) 0.6856 (0.0425)
NS -0.0325 (0.0039) 2.087 (0.126) 1.015 (0.0627)

NWE -0.00399 (0.00513) 2.370 (0.151) 0.7290 (0.0498)
SEE -0.00612 (0.00316) 1.701 (0.097) 0.2470 (0.0643)
SS -0.0345 (0.0023) 1.987 (0.090) 0.5939 (0.0440)

SWE 0.0155 (0.0043) 2.619 (0.269) 0.8476 (0.100)
Posterior means and standard deviations for the regional

parameters
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3.5 Inference and results

Region βµ s.d. βσ s.d.
CEE 1.404 (0.068) 0.02745 (0.00080)
ES 2.073 (0.075) 0.003762 (0.00066)

NEE 0.4632 (0.0738) 0.001036 (0.000767)
NI 0.2343 (0.0578) 0.01656 (0.00075)
NS 0.07580 (0.09294) 0.01069 (0.00077)

NWE -0.1927 (0.0809) 0.01265 (0.00090)
SEE -3.927 (0.136) 0.007268 (0.000950)
SS -0.1097 (0.0665) 0.01829 (0.00067)

SWE 0.9108 (0.0739) 0.0003564 (0.0007531)
Posterior means and standard deviations for the linear trend

parameters
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3.5 Inference and results

Site µ log(σ) ξ 50 year return level
Cambridge Niab 298.19 (1.90) 4.4834 (0.0211) -0.00896 (0.00324) 637.76 (8.66)

Thirlmere, The Nook 800.98 (7.03) 5.5071 (0.0382) -0.00399 (0.00513) 1755.9 (43.2)

Year 2000 parameters and 50 year return levels for two
contrasting sites
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3.5 Inference and results

Posterior mean of 50 year return level for Thirlmere, The Nook
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3.5 Inference and results

Marginal GEV fit: Central Eastern England
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3.5 Inference and results

Central Eastern England correlations
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Gaussian margins using marginal fits), plotted against distance
separation. Solid line is model for dependence
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