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MOTIVATION

•A typical extreme value analysis is often carried out on the basis of over–simplistic
inferential procedures, though the data being analysed may be structurally complex.

•We construct a hierarchical model which exploits such meteorological structure,
enabling increased precision for inferences at individual sites; the Bayesian
paradigm provides the most natural setting for this.

•There are other reasons for working within the Bayesian framework when analysing
extremes: increased precision and a natural extension to prediction, for example.

WIND SPEED DATA

We develop a hierarchical model for extreme wind speeds observed over a region of
central and northern England.

•Data were collected hourly, over a period of 18 years (1974–1991 inclusive).

•Figure 1 shows the location of the 12 wind speed stations, as well as exploratory
analyses for two contrasting sites — Bradfield and Nottingham.

•Notice the site and seasonal variation present, as well as substantial short–term
temporal dependence.
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Figure 1 : Location of wind speed stations and exploratory analyses

A HIERARCHICAL MODEL

A model for extremes
Let X1, X2, . . . be a sequence of IID random variables with common distribution
function F . For some high threshold u, the distribution of (X − u|X > u) will be
approximately of Generalised Pareto Distribution (GPD) form:

H(y) = 1 −

(

1 +
ξy

σ

)−1/ξ

+

, (1)

where σ and ξ are scale and shape parameters (respectively). We reparameterise the
scale parameter to σ̃ = σ − ξu to avoid problems of threshold–dependency (Fawcett,
2005).

Site and seasonal variation
We take a pragmatic approach to site and seasonal variation, fitting a separate GPD to
each season within each site. We use calendar months to define seasons, giving

(σ̃m,j, ξm,j), m, j = 1, . . . , 12,

where m and j are indices of season and site (respectively).

Temporal dependence
Preliminary analyses in Fawcett & Walshaw (2006a) suggest a first–order Markov
structure for the serial dependence present in the wind speed extremes.

•Given a model f(xi, xi+1;ψ) specified by parameter vector ψ, the likelihood for ψ is:

L(ψ) = f(x1;ψ)
n−1
∏

i=1

f(xi, xi+1;ψ)

/

n−1
∏

i=1

f(xi;ψ). (2)

•A bivariate extreme value distribution for contributions to the numerator in (2) is the
logistic model , with:

F (xi, xi+1) = 1 −
(

Z(xi)
−1/α + Z(xi+1)

−1/α
)α

, xi, xi+1 > u,

where the transformation Z ensures that the margins are of GPD form (1).
Independence and complete dependence are obtained when α = 1 and α ց 0.

Model specification

•We now build the following random effects model:

log(σ̃m,j) = γ
(m)
σ̃ + ǫ

(j)
σ̃ , ξm,j = γ

(m)
ξ + ǫ

(j)
ξ and αj = ǫ(j)

α ,

where γ
(m)
• and ǫ

(j)
• represent seasonal and site effects respectively.

•All random effects for log(σ̃m,j) and ξm,j are taken to be Normally distributed. We
adopt a conditional autoregressive structure for the seasonal effects, giving:

γ(m)
• |

(

γ(m−1)
• , γ(m+1)

•

)

∼ N
(

1

2

{

γ(m−1)
• + γ(m+1)

•

}

, τ−1
•

)

,

ǫ(j)
• ∼ N

(

a•, ζ
−1
•

)

and ǫ(j)
α ∼ U(0, 1).

•To attain conjugacy, the final layer of the model becomes:

a• ∼ N
(

b•, c
−1
•

)

, τ• ∼ Ga(d•, e•), and ζ• ∼ Ga(f•, g•).

MCMC SIMULATIONS AND RETURN LEVELS

Each component in the hierarchical model is updated singly using a Gibbs sampler
where conjugacy allows; elsewhere, we adopt a Metropolis step.

Some results: Bradfield in January
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Figure 2 : Markov chain Monte Carlo output for Bradfield in January

Return level inference
From a practical viewpoint, estimates of extreme quantiles – or return levels – are of
greater interest. Such estimates are used as design specifications for buildings.

•For each site j, we consider the overall annual exceedance rate of some level qr

across all months using a GPD(σ̃m,j, ξm,j) and serial dependence parameter αj.

•We set this equal to 1/r and solve numerically for qr.

• qr is then an estimate of the level which is exceeded once every r years at site j.

•Estimates of qr are shown in Table 1, along with predictive return level estimates.

Bradfield Nottingham
q10 q50 q200 q1000 q10 q50 q200 q1000

Hierarchical 96.9 103.5 112.5 128.1 66.5 73.5 79.5 86.3
model (1.0) (1.3) (2.0) (2.7) (0.9) (1.5) (2.0) (2.7)

Maximum 96.7 103.2 108.2 113.3 66.4 73.1 74.0 117.7
likelihood (2.9) (5.9) (8.8) (12.2) (2.6) (4.9) (11.2) (14.6)
Predictive 104.4 113.1 120.0 127.3 68.4 85.5 101.2 108.8

Table 1 : Return level estimates (knots) from the Bayesian hierarchical model (posterior
mean and st. dev.) and a corresponding maximum likelihood fit (MLE and e.s.e.)

SUMMARY AND REFERENCES

•Note a reduction in sampling variation under the Bayesian hierarchical model due to
the pooling of information across sites and seasons.

•Maximum likelihood estimates of return levels can be very unstable, particularly for
long–range return levels (see MLE of q1000 for Nottingham in Table 1).

•The Bayesian paradigm extends naturally to predictive return levels, wherein
uncertainty in model estimation and future observations have been accounted for.

•Future work will investigate the assumption of spatial exchangeability and the
elicitation of expert prior information.
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