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Structure of this talk

1. Background and motivation
@ Why extreme value theory?
@ Threshold methods

2. Example: Oceanographic data
@ The data
@ Temporal dependence

@ Return levels

3. Simulation study
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Background and motivation Why extreme value theory?

Threshold methods

Why extreme value theory?

@ As an abstract study of random phenomena, the subject can
be traced back to the early 20th century

@ It was not until the 1950s that the methodology was
proposed for modelling genuine physical phenomena

e FEarly applications: Civil engineering — e.g. structural design —
extreme value theory provided a framework in which an
estimate of anticipated forces could be made using historical
data
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Background and motivation Why extreme value theory?

Threshold methods

Why extreme value theory?

@ Extremes are scarce — thus, estimates are often required for
levels of a process that are much greater than have already
been observed

@ This implies an extrapolation from observed to unobserved
levels ...

@ ... extreme value theory provides a class of models to enable
such extrapolation

@ With no empirical or physical basis, asymptotic argument is
used to develop extreme value models ...

@ ... however, we are better—off using techniques that at least
have some sort of rationale!
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Threshold methods

“Block maxima” approach

@ e.g. annual maximum wind speeds might be modelled by an
appropriate limiting distribution, such as the generalised
extreme value distribution

@ Highly inefficient!
Threshold methods

@ An observation is extreme if it exceeds some high cut—off
point (threshold)
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Background and motivation Why extreme value theory?

Threshold methods

Threshold methods

“Block maxima” approach

@ e.g. annual maximum wind speeds might be modelled by an
appropriate limiting distribution, such as the generalised
extreme value distribution

@ Highly inefficient!

Threshold methods

@ An observation is extreme if it exceeds some high cut—off
point (threshold)

@ Use all observations which exceed this cut—off point — i.e. use
all extremes!
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Background and motivation Why extreme value theory?

Threshold methods

Threshold methods

The generalised Pareto distribution (GPD)

Under very broad conditions, if it exists, any limiting distribution as
u— oo of (X — u)|X > uis of GPD form, where

~1/¢
G(y;0,8) = 1—<1+%y> ,

_l’_

where a; = max(0,a) and o (0 > 0) and { (—o0 < £ < ) are
scale and shape parameters (respectively).
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Practical implementation

© Choose some threshold u which is high enough so that the
GPD is a good model for (X — u|X > u)

© Fit the GPD to the observed excesses x — u
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Background and motivation Why extreme value theory?

Threshold methods

Threshold methods

Practical implementation

© Choose some threshold u which is high enough so that the
GPD is a good model for (X — u|X > u)

© Fit the GPD to the observed excesses x — u

© Use the fitted GPD to provide estimates of extreme quantiles,
or return levels (see later)
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Problems?

@ Short—range serial correlation, almost always present in
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@ What do we do about this?

‘remove’ it? ignore it? model it?
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Background and motivation Why extreme value theory?

Threshold methods

Threshold methods

Problems?

@ Short—range serial correlation, almost always present in
environmental time series, can no longer be ignored

@ What do we do about this?

‘remove’ it? ignore it? model it?

@ How do we choose to ‘remove’ it? Can we simply ignore it?
How do we model it?
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

The data

@ A series of 3—hourly measurements on sea—surge were
obtained from Newlyn, southwest England, collected over a
three year period
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Example: Oceanographic data

The data

@ A series of 3—hourly measurements on sea—surge were
obtained from Newlyn, southwest England, collected over a
three year period

@ Sea—surge is the meteorologically—induced non—tidal
component of the still-water level of the sea
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

The data

@ A series of 3—hourly measurements on sea—surge were
obtained from Newlyn, southwest England, collected over a
three year period

@ Sea—surge is the meteorologically—induced non—tidal
component of the still-water level of the sea

@ Practical motivation: structural failure — probably a sea—wall
in this case — is likely under the condition of extreme surges
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

The data

Surge (m)

Time (hours)

Frequency
"

Xtt1
.
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The data
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Example: Oceanographic data

The data
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The data

‘Removing’ dependence
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Example: Oceanographic data

The data

The main problem with implementing the GPD for excesses above
a high threshold is the presence of substantial serial correlation in
the sequence of 3-hourly surges.
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Example: Oceanographic data

The data

The main problem with implementing the GPD for excesses above
a high threshold is the presence of substantial serial correlation in
the sequence of 3-hourly surges.

So what do we do?
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The data
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Example: Oceanographic data

The data

The main problem with implementing the GPD for excesses above
a high threshold is the presence of substantial serial correlation in
the sequence of 3-hourly surges.

So what do we do?

‘remove’ it? ignore it?
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The data

‘Removing’ dependence
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Results

Example: Oceanographic data

The data

The main problem with implementing the GPD for excesses above
a high threshold is the presence of substantial serial correlation in
the sequence of 3-hourly surges.

So what do we do?

‘remove’ it? ignore it? model it?
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Runs declustering

© Choose a value for the declustering parameter
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Runs declustering

© Choose a value for the declustering parameter

Q A ‘cluster’ of threshold excesses is then deemed to have
terminated as soon as at least x consecutive observations fall

below the threshold
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Runs declustering

© Choose a value for the declustering parameter

Q A ‘cluster’ of threshold excesses is then deemed to have
terminated as soon as at least x consecutive observations fall
below the threshold

© Select a single observation from each cluster to represent that
cluster, and model the set of selected cluster inhabitants
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The data

‘Removing

‘Ignoring’ dependence
Results

Example: Oceanographic data

Runs declustering

@ But how do we choose k7
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The data
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Example: Oceanographic data

Runs declustering

@ But how do we choose k7

@ Which observation should be used to ‘represent’ each cluster?
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The data

‘Removing’ dependence
‘Ignoring’ dependence
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Example: Oceanographic data

Runs declustering

@ But how do we choose k7

@ Which observation should be used to ‘represent’ each cluster?
— “Peaks Over Thresholds” (Davison and Smith, 1990)
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Example: Oceanographic data

Runs declustering

@ But how do we choose k7

@ Which observation should be used to ‘represent’ each cluster?

— “Peaks Over Thresholds” (Davison and Smith, 1990)
— Some other cluster inhabitant?
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The data
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Example: Oceanographic data

Runs declustering

@ But how do we choose k7

@ Which observation should be used to ‘represent’ each cluster?

— “Peaks Over Thresholds” (Davison and Smith, 1990)
— Some other cluster inhabitant?

o Still wasteful of precious extremes!
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Runs declustering

@ But how do we choose k7

@ Which observation should be used to ‘represent’ each cluster?

— “Peaks Over Thresholds” (Davison and Smith, 1990)
— Some other cluster inhabitant?

o Still wasteful of precious extremes!

@ And why runs declustering anyway?
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Ignoring temporal dependence

Declustering seems like such a hassle... what's wrong with ignoring
temporal dependence and just using all threshold excesses anyway?
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Example: Oceanographic data

Ignoring temporal dependence

Declustering seems like such a hassle... what's wrong with ignoring
temporal dependence and just using all threshold excesses anyway?

@ Maximum likelihood estimators will be unbiased
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The data
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Results

Example: Oceanographic data

Ignoring temporal dependence

Declustering seems like such a hassle... what's wrong with ignoring
temporal dependence and just using all threshold excesses anyway?

@ Maximum likelihood estimators will be unbiased

@ However, standard errors will be underestimated
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Ignoring temporal dependence

Declustering seems like such a hassle... what's wrong with ignoring
temporal dependence and just using all threshold excesses anyway?

@ Maximum likelihood estimators will be unbiased

@ However, standard errors will be underestimated

Idea: Initially ignore dependence, but then adjust the standard
errors?
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

@ Assuming independence, denote the observed information
matrix by H
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

@ Assuming independence, denote the observed information
matrix by H

o If independence were a valid assumption, then the
variance—covariance matrix would be (approximately) H!
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

@ Assuming independence, denote the observed information
matrix by H

o If independence were a valid assumption, then the
variance—covariance matrix would be (approximately) H!

@ To account for dependence, replace H~! with H'VH !,
where V is the variance—covariance matrix of the likelihood
gradient vector
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

@ Assuming independence, denote the observed information
matrix by H

o If independence were a valid assumption, then the
variance—covariance matrix would be (approximately) H!

@ To account for dependence, replace H~! with H'VH !,
where V is the variance—covariance matrix of the likelihood
gradient vector

@ V can be estimated by decomposing the log—likelihood sum
into its contributions by year, say, which are independent
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.
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Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.

Technique:
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.

Technique:

@ Replace the critical value used to carry out a likelihood ratio
test by a larger value
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.

Technique:

@ Replace the critical value used to carry out a likelihood ratio
test by a larger value

@ The significance levels are then adjusted to take the
dependence into account
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.
Technique:

@ Replace the critical value used to carry out a likelihood ratio
test by a larger value

@ The significance levels are then adjusted to take the
dependence into account

Overall effect:
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.
Technique:

@ Replace the critical value used to carry out a likelihood ratio
test by a larger value

@ The significance levels are then adjusted to take the
dependence into account

Overall effect:

@ Inflate the standard errors associated with MLEs
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Adjusting to account for dependence (Smith, 1991)

Similar arguments (not given here) can be applied to modify the
procedure for testing hypotheses.

Technique:

@ Replace the critical value used to carry out a likelihood ratio
test by a larger value

@ The significance levels are then adjusted to take the
dependence into account

Overall effect:
@ Inflate the standard errors associated with MLEs

@ Increase the width of confidence intervals (obtained directly or
via profile likelihood)
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

So which is best?

So let's compare these two methods of dealing with temporal
dependence:
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Example: Oceanographic data

So which is best?

So let's compare these two methods of dealing with temporal
dependence:

@ 'Removing’ dependence, and
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

So which is best?

So let's compare these two methods of dealing with temporal
dependence:

@ 'Removing’ dependence, and

© ‘lgnoring’ dependence, but then adjusting inferences
accordingly
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

So which is best?

So let's compare these two methods of dealing with temporal
dependence:

@ 'Removing’ dependence, and

© ‘lgnoring’ dependence, but then adjusting inferences
accordingly

For modelling this dependence, see, for example, Fawcett and
Walshaw (2006).
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The data
Example: Oceanographic data ‘R‘enufvn}g SepEE e
Ignoring’ dependence

Results

Results

For a suitable high threshold u, and — in the case of peaks over
thresholds — using a value of x which allows for wave propagation
time (see Coles and Tawn, 1991), the following results for the

GPD were obtained:
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The data
Example: Oceanographic data ‘R‘emqvnlg SepEE e
Ignoring’ dependence

Results

Results

For a suitable high threshold u, and — in the case of peaks over
thresholds — using a value of x which allows for wave propagation
time (see Coles and Tawn, 1991), the following results for the

GPD were obtained:

6 I3 Au
All excesses 0.104 —-0.090 0.059
95% ClI (0.082, 0.126) (-0.217, 0.037) | (0.058, 0.060)
Cluster peaks 0.187 —0.259 0.013
95% Cl (0.109, 0.265) (-0.545, 0.027) | (0.012, 0.014)
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

A return level z;, with associated return period s, can be
thought of as the level which we can expect to be exceeded once
every s observations.
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

A return level z;, with associated return period s, can be
thought of as the level which we can expect to be exceeded once
every s observations.

Now,

Pr(X > z) = Pr(X > zX > u)Pr(X > u)
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

A return level z;, with associated return period s, can be
thought of as the level which we can expect to be exceeded once
every s observations.

Now,

Pr(X >2z) = Pr(X >z X > u)Pr(X > u)
= Pr(X>u)[l—- G(zs — u;0,¢)]
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

A return level z;, with associated return period s, can be
thought of as the level which we can expect to be exceeded once
every s observations.

Now,

Pr(X >2z) = Pr(X >z X > u)Pr(X > u)
= Pr(X>u)[l—- G(zs — u;0,¢)]

_ -1/
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+
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

A return level z;, with associated return period s, can be
thought of as the level which we can expect to be exceeded once
every s observations.

Now,

Pr(X >2z) = Pr(X >z X > u)Pr(X > u)
= Pr(X>u)[l—- G(zs — u;0,¢)]

_ -1/
e "
+

where A\, = Pr(X > u).
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

@ An appropriate return level can then be estimated by equating
the above to s~! and solving for z
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Example: Oceanographic data

Return levels

@ An appropriate return level can then be estimated by equating
the above to s~! and solving for z

@ For confidence intervals for zs we use profile likelihood
(Venzon and Moolgavkar, 1988) due to the severe
asymmetry often encountered in the likelihood surface ...
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

@ An appropriate return level can then be estimated by equating
the above to s~! and solving for z

@ For confidence intervals for zs we use profile likelihood
(Venzon and Moolgavkar, 1988) due to the severe
asymmetry often encountered in the likelihood surface ...

@ ... a modified version of Smith’s adjustment is then used on
the profile likelihood surface to account for serial dependence
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

Profile log—likelihood for 50—year return level (all excesses)
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Example: Oceanographic data

Return levels

Profile log—likelihood for 50—year return level (all excesses)
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Example: Oceanographic data

Return levels

Profile log—likelihood for 50—year return level (all excesses)

v v
' '
' '
< P '
IS\ f h
' '
' '
' '
' '
' '
=} ' '
S ' '
' '
< ' '
g H H
£ H H
< 8 ' '
— ' '
= — ' '
T ' '
' '
E4 ' '
L ' '
' '
2 =3 ' '
= © ' '
o =~ ' '
= ' '
[N ' Il
' '
' '
o H H
I - ' '
- ' '
' '
' '
' '
' '
o H H
I ' '
— ' '
' '

10 15 20
Sea-surge (metres)

Lee Fawcett and Dave Walshaw Improved Estimation for Temporally Clustered Extremes



The data
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Example: Oceanographic data

Return levels

The table below shows return level estimates for the 50, 200 and
1000—year return periods.
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

The table below shows return level estimates for the 50, 200 and
1000-year return periods.

Z50 2200 21000

All excesses 0.947 1.007 1.068
95% ClI (0.790, 1.193) (0.844, 1.257) (0.891, 1.335)

Cluster peaks 0.920 0.951 0.975
95% ClI (0.813, 1.099) (0.838, 1.008) (0.858, 1.063)
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The data

‘Removing’ dependence
‘Ignoring’ dependence
Results

Example: Oceanographic data

Return levels

The table below shows return level estimates for the 50, 200 and
1000-year return periods.

Z50 2500 21000

All excesses 0.947 1.007 1.068
95% ClI (0.790, 1.193) (0.844, 1.257) (0.891, 1.335)

Cluster peaks 0.920 0.951 0.975
95% ClI (0.813, 1.099) (0.838, 1.008) (0.858, 1.063)

There are clear discrepancies between the two approaches... but which
estimates should we trust?
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Simulating data
Study design
Simulation study Results

Simulated data with extremal dependence

We assume that our series of observations forms a stationary
first—order Markov chain.
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Simulating data
Study design
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Simulated data with extremal dependence

We assume that our series of observations forms a stationary
first—order Markov chain.

Given a model f(x,-,x,-+1;g), i=1,...,n—1, it follows that the
joint density function for xi, ..., x, is given by

n—1 n—1
F(x1,...,%n) = Hf(Xi,Xi+1;@ Hf(xi?@'
i—1 i=2
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Simulation study Results

Bivariate threshold excess model

We generate (Xj, Xj11) from a subclass of the complete class of
limiting bivariate extreme value distributions (various
subclasses were tried).
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Bivariate threshold excess model

We generate (Xj, Xj11) from a subclass of the complete class of
limiting bivariate extreme value distributions (various
subclasses were tried).

Here, we present the results based on the logistic model (Tawn,
1988) with dependence parameter a.
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Bivariate threshold excess model

We generate (Xj, Xj11) from a subclass of the complete class of
limiting bivariate extreme value distributions (various
subclasses were tried).

Here, we present the results based on the logistic model (Tawn,
1988) with dependence parameter a.

@ When o = 1 we have independence
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Bivariate threshold excess model

We generate (Xj, Xj11) from a subclass of the complete class of
limiting bivariate extreme value distributions (various
subclasses were tried).

Here, we present the results based on the logistic model (Tawn,
1988) with dependence parameter a.

@ When o = 1 we have independence

o Perfect dependence arises from the limit as o — 0
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Bivariate threshold excess model

We generate (Xj, Xj11) from a subclass of the complete class of
limiting bivariate extreme value distributions (various
subclasses were tried).

Here, we present the results based on the logistic model (Tawn,
1988) with dependence parameter a.

@ When o = 1 we have independence

o Perfect dependence arises from the limit as o — 0

For simulation details, see Fawcett (2005).
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Study design

1. Set a = (0.01,0.02,...,1.00)

Lee Fawcett and Dave Walshaw Improved Estimation for Temporally Clustered Extremes



Simulating data
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Study design

1. Set a = (0.01,0.02,...,1.00)

2. For alll = 0.01, simulate a first—order Markov chain (of length
n) and GPD marginal distribution with known ¢ and &
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Study design

1. Set a = (0.01,0.02,...,1.00)

2. For alll = 0.01, simulate a first—order Markov chain (of length
n) and GPD marginal distribution with known ¢ and &

Then ...

Lee Fawcett and Dave Walshaw Improved Estimation for Temporally Clustered Extremes



Simulating data
Study design
Simulation study Results

Study design

3. Use maximum likelihood estimation to fit the GPD to all
threshold excesses, adjusting for temporal dependence
accordingly; use the MLEs for ¢ and £ to obtain the MLE for

various return levels
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Study design

3. Use maximum likelihood estimation to fit the GPD to all
threshold excesses, adjusting for temporal dependence
accordingly; use the MLEs for ¢ and £ to obtain the MLE for
various return levels

4. Implement runs declustering and fit the GPD to the set of
cluster peak excesses; again, use the MLEs for o and £ to
obtain the MLE for various return levels
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Study design

3. Use maximum likelihood estimation to fit the GPD to all
threshold excesses, adjusting for temporal dependence
accordingly; use the MLEs for ¢ and £ to obtain the MLE for
various return levels

4. Implement runs declustering and fit the GPD to the set of
cluster peak excesses; again, use the MLEs for o and £ to
obtain the MLE for various return levels

5. Repeat steps (2 — 4) N times to obtain the sampling
distributions for o, £ and z, and compare these to the known
values for these parameters
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Study design

3. Use maximum likelihood estimation to fit the GPD to all
threshold excesses, adjusting for temporal dependence
accordingly; use the MLEs for ¢ and £ to obtain the MLE for
various return levels

4. Implement runs declustering and fit the GPD to the set of
cluster peak excesses; again, use the MLEs for o and £ to
obtain the MLE for various return levels

5. Repeat steps (2 — 4) N times to obtain the sampling
distributions for o, £ and z, and compare these to the known
values for these parameters

6. Repeat steps (2 - 5) for ol = 0.02, a3l = 0.03, ...
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Simulating data
Study design
Simulation study Results

Study design

o Five different values of £ were used: —0.4, 0.1, 0, 0.3 and 0.8
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Study design

o Five different values of £ were used: —0.4, 0.1, 0, 0.3 and 0.8

@ The scale parameter o was held unit constant. However:
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Study design

o Five different values of £ were used: —0.4, 0.1, 0, 0.3 and 0.8
@ The scale parameter o was held unit constant. However:

— By construction, all observations follow a GPD(o, &)
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Study design

o Five different values of £ were used: —0.4, 0.1, 0, 0.3 and 0.8
@ The scale parameter o was held unit constant. However:

— By construction, all observations follow a GPD(o, &)
— Excesses above a threshold u will follow a GPD(c*,§), where

o = o+&u

(threshold stability property of the GPD)
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Study design

o Five different values of £ were used: —0.4, 0.1, 0, 0.3 and 0.8
@ The scale parameter o was held unit constant. However:

— By construction, all observations follow a GPD(o, &)
— Excesses above a threshold u will follow a GPD(c*,§), where

o = o+&u
(threshold stability property of the GPD)

@ The threshold u was set at a level such that G(u) = 0.95
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Study design

o Five different values of £ were used: —0.4, 0.1, 0, 0.3 and 0.8
@ The scale parameter o was held unit constant. However:

— By construction, all observations follow a GPD(o, &)
— Excesses above a threshold u will follow a GPD(c*,§), where

o = o+&u

(threshold stability property of the GPD)

@ The threshold u was set at a level such that G(u) = 0.95

o For declustering, k was set at 20 observations, in line with the
Newlyn analysis
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Results: o« = 0.2

The following table shows results for a = 0.2, which reflects the
type of strong (extremal) dependence often encountered in
environmental time series.
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Results: o« = 0.2

The following table shows results for a = 0.2, which reflects the
type of strong (extremal) dependence often encountered in
environmental time series.

True value: o* = 0.302 £ =-0.4 z50 = 2.479 2900 = 2.488
Estimate using 0.301 —0.413 2.459 2.568
all excesses (0.251, 0.351) (-0.507, -0.323) (2.378, 2.544) (2.382, 2.561)
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Results: o« = 0.2

The following table shows results for a = 0.2, which reflects the
type of strong (extremal) dependence often encountered in
environmental time series.

True value: o* = 0.302 £ =-0.4 z50 = 2.479 2900 = 2.488
Estimate using 0.301 —0.413 2.459 2.568

all excesses (0.251, 0.351) (-0.507, -0.323) (2.378, 2.544) (2.382, 2.561)
Estimate using 0.464 —0.665 2.404 2.413
cluster peaks | (0.358, 0.583)  (-0.868, -0.480) | (2.331, 2.466) (2.344, 2.472)
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Results: o« = 0.2

The following table shows results for a = 0.2, which reflects the

type of strong (extremal) dependence often encountered in
environmental time series.

True value: o* = 0.302 £ =-0.4 z50 = 2.479 2900 = 2.488
Estimate using 0.301 —0.413 2.459 2.568
all excesses (0.251, 0.351) (-0.507, -0.323) (2.378, 2.544) (2.382, 2.561)
Estimate using 0.464 —0.665 2.404 2.413
cluster peaks | (0.358, 0.583)  (-0.868, -0.480) | (2.331, 2.466) (2.344, 2.472)
Estimated bias | 0.000 (0.162) _ —0.013 (-0.265) | —0.020 (-0.066) _ —0.020 (—0.084)
MSE 0.001 (0.030) 0.003 (0.080) 0.002 (0.006) 0.002 (0.008)
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Results:
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Results: other levels of dependence
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Assessing the adjustment for dependence

a ¢ 250 2200

St. dev. 0.039 0.075 | 0.041 0.047

a=0.2 mean(e.s.e.) 0.024 0.053 | 0.019 0.026
mean(adjusted e.s.e.) | 0.038 0.076 | 0.040 0.045

St. dev. 0.026 0.056 | 0.025 0.030

a=05 mean(e.s.e.) 0.023 0.051 | 0.019 0.026
mean(adjusted e.s.e.) | 0.026 0.056 | 0.024 0.030

St. dev. 0.024 0.051 | 0.021 0.025

a=20.8 mean(e.s.e.) 0.023 0.050 | 0.019 0.024
mean(adjusted e.s.e.) | 0.024 0.051 | 0.021 0.025

Lee Fawcett and Dave Walshaw Improved Estimation for Temporally Clustered Extremes



Simulating data
Study design
Simulation study Results

Robustness of results

Declustering scheme o™ = 0.302 £ =—0.4 z50 = 2.479 zo00 = 2.488

Runs, £ = 30 hours 0.476 —-0.668 2.389 2.397
(0.423, 0.511)  (-0.766, -0.593) | (2.353,2.438)  (2.342, 2.428)

Runs, £ = 90 hours 0.478 -0.680 2.394 2.456
(0.344, 0.608)  (-0.981, -0.353) | (2.314, 2.482)  (2.397, 2.516)
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Simulation study

Robustness of results

Simulating data
Study design

Results

Declustering scheme o™ = 0.302 £ =—0.4 z50 = 2.479 zo00 = 2.488
Runs, x = 30 hours 0.476 -0.668 2.389 2.397
(0.423, 0.511) (-0.766, —0.593) (2.353, 2.438) (2.342, 2.428)
Runs, x = 90 hours 0.478 -0.680 2.394 2.456
(0.344, 0.608) (-0.981, —0.353) (2.314, 2.482) (2.397, 2.516)
Runs, k = 60 hours 0.466 -0.621 2.408 2.414
(random excesses) (0.361, 0.587) (-0.863, —0.476) (2.336, 2.471) (2.345, 2.475)
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Robustness of results

Declustering scheme o™ = 0.302 £ =—0.4 z50 = 2.479 zo00 = 2.488
Runs, x = 30 hours 0.476 -0.668 2.389 2.397
(0.423, 0.511) (-0.766, —0.593) (2.353, 2.438) (2.342, 2.428)
Runs, x = 90 hours 0.478 -0.680 2.394 2.456
(0.344, 0.608) (-0.981, —0.353) (2.314, 2.482) (2.397, 2.516)
Runs, k = 60 hours 0.466 -0.621 2.408 2.414
(random excesses) (0.361, 0.587) (-0.863, —0.476) (2.336, 2.471) (2.345, 2.475)
Blocks 0.409 -0.610 2.365 2.391
(block length = 60 hours) (0.312, 0.506) (-0.833, —0.387) (2.328, 2.402) (2.354, 2.438)
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Robustness of results

Declustering scheme o™ = 0.302 £ =—0.4 z50 = 2.479 zo00 = 2.488
Runs, x = 30 hours 0.476 -0.668 2.389 2.397
(0.423, 0.511) (-0.766, —0.593) (2.353, 2.438) (2.342, 2.428)
Runs, x = 90 hours 0.478 -0.680 2.394 2.456
(0.344, 0.608) (-0.981, —0.353) (2.314, 2.482) (2.397, 2.516)
Runs, k = 60 hours 0.466 -0.621 2.408 2.414
(random excesses) (0.361, 0.587) (-0.863, —0.476) (2.336, 2.471) (2.345, 2.475)
Blocks 0.409 -0.610 2.365 2.391
(block length = 60 hours) (0.312, 0.506) (-0.833, —0.387) (2.328, 2.402) (2.354, 2.438)
Automatic 0.406 -0.602 2.364 2.389
(Ferro and Segers, 2003) (0.308, 0.500) (-0.824, —0.378) (2.326, 2.404) (2.350, 2.440)
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