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Structure of this talk

1. Motivation and background

2. Inference for the extremal index
@ Review of existing methods
o Limitations/difficulties

@ A Bayesian sampling scheme

3. Implementation
o Simulated data — just to check!

o Extreme wind speeds observed at High Bradfield
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Motivation and background Motivation

The extremal index

Motivation

Extremes of many observed environmental processes often occur in
clusters due to short—term temporal dependence.

Such clusters of extremes often correspond to storms.

Being able to quantify this extremal dependence, and any other
storm characteristics induced by this, can be of interest to
meteorologists and/or engineers.
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Examples

Motivation and background

Newlyn sea surges
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Bradfield wind gusts
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Motivation and background Motivation

The extremal index

The extremal index

Let X1, X>,..., X, be the first n observations of a stationary series
satisfying Leadbetter's D(uj,) condition (Leadbetter et al., 1983),
and let M, = max{ Xy, Xa,... X, }.

Now let X1, X3, ..., X, be an independent series, with X having
the same distribution as X, and let M, = max{X1, Xa,..., X,}.

Then if M, has a non—degenerate limit law given by
Pr{(M, — b,)/an < x} — G(x), it follows that

Pr{(Mn - b,,) Jan < x} — G(x) (1)
for some 0 < 0 <1 (Leadbetter et al., 1983).

The parameter 6 is known as the extremal index and is a key
parameter which quantifies the extent of extremal clustering.

Lee Fawcett and Dave Walshaw Bayesian Inference for Clustered Extremes



Motivation and background Motivation

The extremal index

The extremal index

A more convenient way of interpreting the extremal index, due to
Hsing et al. (1988), is in terms of the propensity of the series to
cluster at extreme levels.

Loosely,
® = (limiting mean cluster size) ™ .

@ For independent series, §# = 1 (though the converse is not
necessarily true)

@ As 0 — 0 we have increasing levels of extremal dependence

Thus, identifying clusters can be important in estimating 6.
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The extremal index

Inference for the extremal index

We consider the following methods for estimating the extremal
index:

@ Cluster size methods:

@ Maxima methods;

@ Simulation—based methods;

@ A method based on arrival times of extremes,

as well as a hybrid of two of these in a Bayesian setting.

We will also consider the viability of these approaches for
estimating other cluster characteristics, often referred to as cluster
functionals.
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The extremal index

Simulating a dependent series

We generate a sequence of artificial data X;, i = 1,...,n, where
the joint distribution of consecutive observations is given by

G(xi, xit1ie) = exp[—{exp(—xi/@) + exp(—xit1/a)}"] (2)
fori=1,...n—1, xj,xi+1 > 0 and « € (0, 1].

@ This is the (symmetric) logistic model

@ Independence corresponds to o =1

@ We have complete dependence as oo — 0

@ The margins are of Gumbel form, i.e. F(x) = exp {exp(—x)}
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The extremal index

Simulating a dependent series

Work by Smith (1992) shows the following:

1 1 1
- 5 3 >
0 0.0616 0.158 0.328

n(=1-a%) | 096 089 0.75

Thus, if we can simulate successive values from the logistic model
in (2), then we can compare methods for estimating 6.

Lee Fawcett and Dave Walshaw Bayesian Inference for Clustered Extremes



Motivation and background

Motivation
The extremal index

Simulating a dependent series
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Cluster size methods

Maxima methods
Inference for the extremal index Simulation methods

Automatic declustering

Bayesian inference

Cluster size methods

Cluster size methods are based on estimating 6 as the reciprocal
of the mean cluster size... but how do we identify clusters?

Runs declustering (separation interval = k)
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Cluster size methods

Then

0 = (mean cluster size)

Problems
@ What value of /7 do we use?
@ The choice of /7 will influence cluster size

@ This will mean estimates of # are sensitive to the choice of
declustering scheme/choice of “declustering parameter”

@ We get a point estimate of 6 without any natural way of
quantifying its uncertainty

@ Other cluster functionals also sensitive to the choice of x/7!
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Maxima methods
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Cluster size methods
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Maxima methods

Recall that if M,, has a non—degenerate limit law given by
Pr{(M, — b,)/an < x} — G(x), it follows that

Pr { </\~ﬂn — b,,) /an < X} — Go(x).

Denote the maximum of the ith “block” M, ;.

It follows that, for large enough 7, the M, ; are approximately
independent observations from a generalised extreme value
distribution (GEV), where

X — pu -1/¢
G(x;pu,0,8) = exp —[1+§<0_>}

+
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Maxima methods

What about the dependent series I\N/IT,,-?

This is also GEV, but with d.f. G%(x) = G(x; ug, o9, &), where

po = n—o(l-69/¢

og = obf and

& = &
Ancona—Navarrete and Tawn (2000) suggest simultaneous
estimation of the parameter vector (u,0,&,6) by treating

components of the vector (M, M;) as independent GEV random
variables.
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Maxima methods

Results
Using maximum likelihood estimation, we obtain the following
results for the simulated datasets:

o 0 =0.328: § =0.297 (0.047)
e 0 =0.0616: § = 0.063 (0.052)

Limitations

@ Joint vector not independent, though Ancona—Navarrete and
Tawn (2000) show that the impact of this approximation is
asymptotically zero

@ No clusters are identified! And so we cannot estimate cluster
characteristics that are not direct functions of 6
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Simulation methods

Smith et al. (1997) propose a simulation framework for estimating
the extremal index and other cluster functionals.

@ Assume a first—order Markov structure for extremes

@ Model the distribution of consecutive pairs using a bivariate
extreme value distribution (such as the logistic model),
estimating an appropriate dependence parameter (such as «)

@ Repeatedly simulate clusters of extremes using the fitted
model, and observe what happens!
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Simulation methods

Limitations
o |s a first—order Markov assumption appropriate?
@ Which bivariate extreme value model for consecutive pairs?

@ How can we check the above two points? Ad-hoc procedures?
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Simulation methods

Distribution of storm length (hours) Distribution of time between storms (hours)

Density
0.000 0.004 0.008 0.012

ian Inference for Clustered Extremes
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Automatic declustering (Ferro and Segers, 2003)

@ Let T;,i=1,..., N —1 be the inter—arrival times between
threshold exceedances 51, ..., Sy;

@ Assume that the largest C — 1 = |AN| inter—arrival times are
approximately independent inter—cluster times that divide the
series into independent sets of intra—cluster times;

@ Equivalent to runs declustering with x = T¢), where T(c) is
the C—th largest inter—arrival time;

@ No need to specify an arbitrary value for K now — let this be
governed by the level of extremal dependence in the process
(via 6);

@ What about 67 Likelihood based on inter—arrival times
performs poorly, so they use a non—parametric approach.
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Automatic declustering (Ferro and Segers, 2003)

Bradfield wind gusts
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Automatic declustering (Ferro and Segers, 2003)
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Automatic declustering (Ferro and Segers, 2003)

Bradfield wind gusts

\VAV4 \/ c\/ ° \

40

Wind gust (knots)
60

R

™
Ll
0
0
b
1
'
Ll
'
'
1
'
Ll
'
'

i
|
1

T
'
Ll
|
1
'
1
'
T
1
1
'
Ll

20
0

30
|

30 35 100 45 50 55 60
Hour

Lee Fawcett and Dave Walshaw Bayesian Inference for Clustered Extremes



Cluster size methods

Maxima methods
Inference for the extremal index Simulation methods

Automatic declustering

Bayesian inference

Automatic declustering (Ferro and Segers, 2003)

Bradfield wind gusts

Wind gust (knots)

30
|

Lee Fawcett and Dave Walshaw Bayesian Inference for Clustered Extremes



Cluster size methods

Maxima methods
Inference for the extremal index Simulation methods

Automatic declustering

Bayesian inference
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Automatic declustering (Ferro and Segers, 2003)
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Bayesian inference

We now combine the likelihood from the maxima method
(Ancona—Navarrete and Tawn, 2000), with the ‘automatic’
declustering procedure (Ferro and Segers, 2003), to implement a
Bayesian sampling scheme for 6 and any other cluster functional of
interest:

1. Obtain a posterior sample 1/)(1), .. .,1/)(R), where
P = (p,0,&,0), using the log—likelihood ¢ from the maxima
method;

2. caleulate ) = [00ON] +1, r=1,...,R;

3. find ("), the C()—th largest inter—exceedance time;
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Bayesian inference

4. use each k(7, r=1,... R, as the declustering interval to
implement a full cluster identification procedure based on runs
declustering;

5. use each set of identified clusters found using ("),
r=1,..., R, to estimate any other cluster characteristic, say
H() and so obtain draws from the (approximate) posterior
distribution for that functional also.
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N Bradfield wind speed data
Implementation

Implementation

We specify independent, highly uninformative prior distributions for
the GEV parameters; specifically, we use

p o~ N(0,10%),
log(c) ~ N(0,10%)  and
¢ ~ N(0,10%).

In the absence of any useful prior information about the extremal
index, we use:

0 ~ U(,1).

We use each posterior draw for 8 to obtain a corresponding draw
for k; each k implements a full declustering procedure from which
we can observe the (posterior) distribution for any cluster
characteristic!
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Bradfield wind speed data

Implementation

Simulated data

Extremal index Declustering interval Mean cluster size Mean inter—cluster duration
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Simulated data

N Bradfield wind speed data
Implementation

Simulated data

Some numerical summaries (after burn—in)

6 (= 0.062) K P w
Posterior mean (s.d.) 0.065 (0.050) 14.035 (4.002) 14.648 (0.707) 53.343 (10.546)
095% credible interval | (0.031, 0.165) (6, 23) (12.203, 18.321)  (32.222, 77.372)
m.l.e. (asymp. s.e.) 0.058 (0.052) — 13.317 (1.193) —

6 (= 0.328) K P w
Posterior mean (s.d.) | 0.310 (0.048) | 5.974 (3.678) 3.048 (0.237) 39.662 (5.440)
05% credible interval | (0.225, 0.416) (2, 16) (2.618, 3.420)  (29.715, 50.867)
m.l.e. (asymp. s.e.) 0.297 (0.047) — 3.361 (0.233) —
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| N Bradfield wind speed data
mplementation

Bradfield wind speed data

Some numerical summaries for January (after burn—in)

6 K Mean storm length Mean time between storms
Posterior mean (s.d.) 0.243 (0.047) 5.266 (5.840) 4.924 (0.637) 82.747 (15.271)
95% credible interval | (0.162, 0.347) (2, 24) (4.289, 6.246) (56.435, 117.259)
m.le. (asymp. se) | 0.207 (0.042) — 4.833 (0.578) —
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Bradfield wind speed data

Return level inference

Predictive return level plot
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