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Structure of this talk

1. Motivation and background

2. Inference for the extremal index

Review of existing methods

Limitations/difficulties

A Bayesian sampling scheme

3. Implementation

Simulated data – just to check!

Extreme wind speeds observed at High Bradfield
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Motivation
The extremal index

Motivation

Extremes of many observed environmental processes often occur in
clusters due to short–term temporal dependence.

Such clusters of extremes often correspond to storms.

Being able to quantify this extremal dependence, and any other
storm characteristics induced by this, can be of interest to
meteorologists and/or engineers.
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Motivation
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Examples

Newlyn sea surges
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The extremal index

Let X̃1, X̃2, . . . , X̃n be the first n observations of a stationary series
satisfying Leadbetter’s D(un) condition (Leadbetter et al., 1983),
and let M̃n = max{X̃1, X̃2, . . . X̃n}.

Now let X1, X2, . . . ,Xn be an independent series, with X having
the same distribution as X̃ , and let Mn = max {X1, X2, . . . ,Xn}.

Then if Mn has a non–degenerate limit law given by
Pr {(Mn − bn)/an ≤ x} → G (x), it follows that

Pr
{(

M̃n − bn

)

/an ≤ x
}

→ G θ(x) (1)

for some 0 ≤ θ ≤ 1 (Leadbetter et al., 1983).

The parameter θ is known as the extremal index and is a key
parameter which quantifies the extent of extremal clustering.
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The extremal index

A more convenient way of interpreting the extremal index, due to
Hsing et al. (1988), is in terms of the propensity of the series to
cluster at extreme levels.

Loosely,

θ = (limiting mean cluster size)−1.

For independent series, θ = 1 (though the converse is not
necessarily true)

As θ → 0 we have increasing levels of extremal dependence

Thus, identifying clusters can be important in estimating θ.
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Inference for the extremal index

We consider the following methods for estimating the extremal
index:

Cluster size methods;

Maxima methods;

Simulation–based methods;

A method based on arrival times of extremes,

as well as a hybrid of two of these in a Bayesian setting.

We will also consider the viability of these approaches for
estimating other cluster characteristics, often referred to as cluster
functionals.
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Simulating a dependent series

We generate a sequence of artificial data Xi , i = 1, . . . , n, where
the joint distribution of consecutive observations is given by

G (xi , xi+1; α) = exp [−{exp(−xi/α) + exp(−xi+1/α)}α] (2)

for i = 1, . . . n − 1, xi , xi+1 > 0 and α ∈ (0, 1].

This is the (symmetric) logistic model

Independence corresponds to α = 1

We have complete dependence as α → 0

The margins are of Gumbel form, i.e. F (x) = exp {exp(−x)}
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Simulating a dependent series

Work by Smith (1992) shows the following:

α 1
5

1
3

1
2

θ 0.0616 0.158 0.328
r1 (= 1 − α2) 0.96 0.89 0.75

Thus, if we can simulate successive values from the logistic model
in (2), then we can compare methods for estimating θ.
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Simulating a dependent series
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Cluster size methods

Cluster size methods are based on estimating θ as the reciprocal
of the mean cluster size... but how do we identify clusters?

Runs declustering (separation interval = κ)

Blocks declustering (block length = τ)
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Cluster size methods

Then

θ̂ = (mean cluster size)−1

Problems

What value of κ/τ do we use?

The choice of κ/τ will influence cluster size

This will mean estimates of θ are sensitive to the choice of
declustering scheme/choice of “declustering parameter”

We get a point estimate of θ without any natural way of
quantifying its uncertainty

Other cluster functionals also sensitive to the choice of κ/τ !
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Cluster size methods
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Maxima methods

Recall that if Mn has a non–degenerate limit law given by
Pr {(Mn − bn)/an ≤ x} → G (x), it follows that

Pr
{(

M̃n − bn

)

/an ≤ x
}

→ G θ(x).

Denote the maximum of the ith “block” Mτ,i .

It follows that, for large enough τ , the Mτ,i are approximately
independent observations from a generalised extreme value
distribution (GEV), where

G (x ; µ, σ, ξ) = exp

{

−

[

1 + ξ

(

x − µ

σ

)]

−1/ξ

+

}

.
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Maxima methods

What about the dependent series M̃τ,i?

This is also GEV, but with d.f. G θ(x) = G (x ; µθ, σθ, ξθ), where

µθ = µ − σ(1 − θξ)/ξ,

σθ = σθξ and

ξθ = ξ.

Ancona–Navarrete and Tawn (2000) suggest simultaneous
estimation of the parameter vector (µ, σ, ξ, θ) by treating
components of the vector (Mτ , M̃τ ) as independent GEV random
variables.
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Maxima methods

Results
Using maximum likelihood estimation, we obtain the following
results for the simulated datasets:

θ = 0.328: θ̂ = 0.297 (0.047)

θ = 0.0616: θ̂ = 0.063 (0.052)

Limitations

Joint vector not independent, though Ancona–Navarrete and
Tawn (2000) show that the impact of this approximation is
asymptotically zero

No clusters are identified! And so we cannot estimate cluster
characteristics that are not direct functions of θ
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Simulation methods

Smith et al. (1997) propose a simulation framework for estimating
the extremal index and other cluster functionals.

Assume a first–order Markov structure for extremes

Model the distribution of consecutive pairs using a bivariate
extreme value distribution (such as the logistic model),
estimating an appropriate dependence parameter (such as α)

Repeatedly simulate clusters of extremes using the fitted
model, and observe what happens!
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Simulation methods

Limitations

Is a first–order Markov assumption appropriate?

Which bivariate extreme value model for consecutive pairs?

How can we check the above two points? Ad–hoc procedures?
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Simulation methods
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Automatic declustering (Ferro and Segers, 2003)

Let Ti , i = 1, . . . ,N − 1 be the inter–arrival times between
threshold exceedances S1, . . . ,SN ;

Assume that the largest C − 1 = ⌊θN⌋ inter–arrival times are
approximately independent inter–cluster times that divide the
series into independent sets of intra–cluster times;

Equivalent to runs declustering with κ = T(C), where T(C) is
the C–th largest inter–arrival time;

No need to specify an arbitrary value for κ now – let this be
governed by the level of extremal dependence in the process
(via θ);

What about θ? Likelihood based on inter–arrival times
performs poorly, so they use a non–parametric approach.
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Automatic declustering (Ferro and Segers, 2003)

Bradfield wind gusts
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Bayesian inference

We now combine the likelihood from the maxima method
(Ancona–Navarrete and Tawn, 2000), with the ‘automatic’
declustering procedure (Ferro and Segers, 2003), to implement a
Bayesian sampling scheme for θ and any other cluster functional of
interest:

1. Obtain a posterior sample ψ(1), . . . ,ψ(R), where
ψ = (µ, σ, ξ, θ), using the log–likelihood ℓ from the maxima
method;

2. calculate C (r) = ⌊θ(r)N⌋ + 1, r = 1, . . . ,R;

3. find κ(r), the C (r)–th largest inter–exceedance time;
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Bayesian inference

4. use each κ(r), r = 1, . . . ,R, as the declustering interval to
implement a full cluster identification procedure based on runs
declustering;

5. use each set of identified clusters found using κ(r),
r = 1, . . . ,R, to estimate any other cluster characteristic, say
H(r), and so obtain draws from the (approximate) posterior
distribution for that functional also.
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Implementation

We specify independent, highly uninformative prior distributions for
the GEV parameters; specifically, we use

µ ∼ N
(

0, 104
)

,

log(σ) ∼ N
(

0, 104
)

and

ξ ∼ N
(

0, 102
)

.

In the absence of any useful prior information about the extremal
index, we use:

θ ∼ U(0, 1).

We use each posterior draw for θ to obtain a corresponding draw
for κ; each κ implements a full declustering procedure from which
we can observe the (posterior) distribution for any cluster
characteristic!
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Simulated data

Some numerical summaries (after burn–in)

θ ( = 0.062) κ ρ ω

Posterior mean (s.d.) 0.065 (0.050) 14.035 (4.002) 14.648 (0.707) 53.343 (10.546)
95% credible interval (0.031, 0.165) (6, 23) (12.203, 18.321) (32.222, 77.372)
m.l.e. (asymp. s.e.) 0.058 (0.052) — 13.317 (1.193) —

θ ( = 0.328) κ ρ ω

Posterior mean (s.d.) 0.319 (0.048) 5.974 (3.678) 3.048 (0.237) 39.662 (5.440)
95% credible interval (0.225, 0.416) (2, 16) (2.618, 3.420) (29.715, 50.867)
m.l.e. (asymp. s.e.) 0.297 (0.047) — 3.361 (0.233) —
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Bradfield wind speed data

Some numerical summaries for January (after burn–in)

θ κ Mean storm length Mean time between storms
Posterior mean (s.d.) 0.243 (0.047) 5.266 (5.840) 4.924 (0.637) 82.747 (15.271)
95% credible interval (0.162, 0.347) (2, 24) (4.289, 6.246) (56.435, 117.259)
m.l.e. (asymp. s.e.) 0.207 (0.042) — 4.833 (0.578) —
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Bradfield wind speed data

Return level inference

Predictive return level plot
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