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The data

In this talk we develop a hierarchical model for hourly maximum
wind speeds over a region of central and northern England.

The data consist of hourly gust maximum wind speeds recorded for
the British Meteorological Office at twelve locations (see Figure 1).

Data were collected hourly, over a period of eighteen years, giving
about 157,000 observations per site.
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The data

The sites used represent a variety of geographical locations:

Both urban and rural

Both high and low altitudes

Easterly/westerly positions

Figure 2 illustrates an exploratory analysis of data from two
contrasting sites, Nottingham and Bradfield.
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Figure: 1: Location of wind speed stations
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Figure: 2: Exploratory analysis of wind speed data
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The data

In this talk, we construct a model which is based on a standard
limiting extreme value distribution, but incorporates random effects
for:

variation across sites;

seasonal variation, and

the serial dependence

inherent in the time series of hourly maximum speed.
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The data

The aims of this work are:

To exploit the complex structure inherent in the data to
improve over simplistic inferential procedures

To build on the techniques used by Coles (2002) by

– using a threshold–based approach to modelling
– properly accounting for seasonal variation
– explicitly modelling any temporal dependence in extreme wind

speeds

To adopt a Bayesian approach to inference and obtain
predictive return level estimates
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Modelling extremes

“Block maxima” approach

e.g. annual maximum wind speeds might be modelled by an
appropriate limiting distribution, such as the generalised
extreme value distribution

Highly inefficient!

Threshold methods

An observation is extreme if it exceeds some high cut–off
point (threshold)

Use all observations which exceed this cut–off point – i.e. use
all extremes!
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Threshold methods

The generalised Pareto distribution (GPD)

Under very broad conditions, if it exists, any limiting distribution as
u → ∞ of (X − u)|X > u is of GPD form, where

G (y ;σ, ξ) = 1 −

(

1 +
ξy

σ

)

−1/ξ

+

,

where a+ = max(0, a) and σ (σ > 0) and ξ (−∞ < ξ < ∞) are
scale and shape parameters (respectively).
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Threshold methods

Practical implementation

1 Choose some threshold u which is high enough so that the
GPD is a good model for (X − u|X > u)

2 Fit the GPD to the observed excesses x − u

3 Use the fitted GPD to provide estimates of extreme quantiles,
or return levels (see later)
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Seasonal variation

Possible solution: Restrict an extreme value analysis to the
‘season’ which contains the ‘most extreme’ extremes (e.g. Coles
and Tawn, 1991)

We want our model to take account of seasonal variability and
identify all gusts which are large given the time of year as extreme!

Our solution: Fit a seasonally–varying GPD!

For wind speed data, there is no natural partition into
separate seasons (in the UK)

We partition the annual cycle into 12 ‘seasons’ (we use
calendar months)

– reflects well the continuous nature of seasonal climate changes
– still enough data within each season for analysis!
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Site and seasonal variation

We take the same approach to allow for site variation.

Thus, our model will yield parameter pairs

(σm,j , ξm,j), for m, j = 1, . . . , 12,

where m and j are indices of season and site (respectively).

We also need our threshold u to vary, since different criteria for
what constitutes an extreme will be in play for each combination of
season and site.

We denote by um,j the threshold for identifying extremes in month
m at site j .
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Temporal dependence

The plot of the time series against the version at lag 1, for each
site, shows the presence of substantial serial correlation between
successive extremes.

What can be done?

1 ‘Remove’ it – use “Peaks over threshold” (Davison and
Smith, 1990)

2 ‘Ignore’ it – initially, but then adjust standard errors
post–analysis (Smith, 1991)

3 Model it

Lee Fawcett and Dave Walshaw A Hierarchical Model for Extreme Wind Speeds



The data
Model formulation

Analysis of the wind speed data

A model for threshold exceedances
Site and seasonal variation
Temporal dependence
Model construction

Temporal dependence

The peaks over threshold (POT) approach is the most common
tool used here. However,

As with the block maxima approach, this is very wasteful of
(precious!) data

Fawcett and Walshaw (2007) make a strong case against
this:

– induces bias in GPD parameter estimation
– results in underestimated return levels for processes with

strong short–term temporal dependence
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Temporal dependence

That leaves us with:

(a) Adjust inference post–analysis to account for temporal
dependence

(b) Explicitly model the dependence present

We opt for (b), because:

Our intention in this work is to investigate complex structures
in the data, not ignore or remove them!

Exploratory analyses support a simple first–order Markov
model for the serial dependence (Fawcett and Walshaw,
2006)
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First–order Markov structure

The stochastic properties of a first–order Markov chain are
completely determined by the joint distribution of consecutive
pairs.

Given a model f (xi , xi+1;ψ) specified by parameter vector ψ, the
likelihood for ψ is given by

L(ψ) = f (x1;ψ)
n−1
∏

i=1

f (xi , xi+1;ψ)

/

n−1
∏

i=1

f (xi ;ψ).

Contributions to the numerator in the above can be modelled by
using an appropriate bivariate extreme value model.
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First–order Markov structure

The logistic model is one of the most flexible and accessible of
these models (for example, see Tawn, 1988).

For consecutive threshold exceedances, the appropriate form of this
model is given by:

F (xi , xi+1) = 1 −
(

Z (xi)
−1/α + Z (xi+1)

−1/α
)α

, xi , xi+1 > u,

where the transformation Z is given by

Z (x) = λ−1{1 + ξ(x − u)/σ}
1/ξ
+ ,

and ensures that the margins are of GPD form.

Independence and complete dependence are obtained when
α = 1 and α ց 0 respectively.
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First–order Markov structure

Inference is complicated by the fact that a bivariate pair may
exceed a specified threshold in just one of its components.

Let

R0,0 = (0, u) × (0, u) ,

R1,0 = [u,∞) × (0, u) ,

R0,1 = (0, u) × [u,∞) and

R1,1 = [u,∞) × [u,∞) .

For example, a point (xi , xi+1) ∈ R1,0 if xi exceeds the threshold
but xi+1 does not.

Lee Fawcett and Dave Walshaw A Hierarchical Model for Extreme Wind Speeds



The data
Model formulation

Analysis of the wind speed data

A model for threshold exceedances
Site and seasonal variation
Temporal dependence
Model construction

First–order Markov structure

Inference

The logistic model applies to points in R1,1

For points in R1,0 or R0,1, we use

∂F

∂xi

∥

∥

∥

∥

∥

(xi ,u)

or
∂F

∂xi+1

∥

∥

∥

∥

∥

(u,xi+1)

respectively.

For R0,0, the contribution to the numerator in the Markov
chain likelihood is given by the distribution function evaluated
at the threshold u.
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Assumptions

In the construction of our hierarchical model, we assume that:

the GPD is valid for exceedances over a high threshold for
each season at each site;

extremes between sites and between seasons are independent,

– but successive extremes within seasons have a first–order
Markov dependence

– independence between seasons seems reasonable – dependence
between wind speed extremes is typically short–lived

– Spatial dependence in weather at our sites should not translate
to strong correlations between extremes across sites
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Assumptions

We also assume that

there is no interaction between seasonal and site effects

both spatial effects and seasonal effects are exchangeable

– we might expect there to be clear structure in the data – wind
speeds in January and February should be more similar than
those in January and July

– we will return to this issue later on
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Threshold stability

Recall that we denote by (σm,j , ξm,j) the parameters of the GPD
assumed to be valid for threshold excesses in season m and site j .

To ensure threshold stability in our models, we now use

σ̃m,j = σm,j − ξm,jum,j
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Threshold stability

With this parameterisation, if X − u∗

m,j follows a GPD(σ̃m,j , ξm,j),
where um,j > u∗

m,j , then

X − um,j also follows the same GPD,

which is useful for comparisons across different sites and
seasons.

It also allows us to specify prior information about both
parameters without having to worry about threshold
dependency.
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Random effects model

With these assumptions in mind, we build the following random
effects model:

log(σ̃m,j) = γ
(m)
σ̃ + ǫ

(j)
σ̃ ,

ξm,j = γ
(m)
ξ + ǫ

(j)
ξ and

αj = ǫ(j)
α ,

where γ and ǫ represent seasonal and site effects respectively.

We work with log(σ̃m,j) for computational convenience, and to
retain the positivity of the scale parameter σ̃m,j .
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Random effects model

All random effects for log(σ̃m,j) and ξm,j are taken to be normally
and independently distributed:

γ
(m)
σ̃ ∼ N0(0, τσ̃) and

γ
(m)
ξ ∼ N0(0, τξ), m = 1, . . . , 12,

for the seasonal effects, and

ǫ
(j)
σ̃ ∼ N0(aσ̃, ζσ̃) and

ǫ
(j)
ξ ∼ N0(aξ, ζξ), j = 1, . . . , 12,

for the site effects.

In the absence of any prior knowledge about αj , we set

ǫ(j)
α ∼ U(0, 1).
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Random effects model

The final layer of the model is the specification of prior
distributions for the random effect distribution parameters.

Here we adopt conjugacy wherever possible to simplify
computations, specifying:

aσ̃ ∼ N0(bσ̃ , cσ̃), aξ ∼ N0(bξ, cξ);

τσ̃ ∼ Ga(dσ̃, eσ̃), τξ ∼ Ga(dξ, eξ);

ζσ̃ ∼ Ga(fσ̃, gσ̃), ζξ ∼ Ga(fξ, gξ).
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MCMC technique

Estimation of the model outlined in Section 2 is made via a
Metropolis within Gibbs algorithm

Here, we update each component singly using a Gibbs sampler
where conjugacy allows;

Elsewhere, we adopt a Metropolis step
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MCMC technique

The full conditionals for the Gibbs sampling are:

a
�
| . . . ∼ N

(

b
�
c
�
+ ζ

�

∑

ǫ
(j)
�

c
�
+ nsζ�

, c
�
+ nsζ�

)

;

ζ
�
| . . . ∼ Ga

(

f
�
+

ns

2
, g

�
+

1

2

∑

(ǫ
(j)
�

− a
�
)2
)

;

τ
�
| . . . ∼ Ga

(

d
�
+

nm

2
, e

�
+

1

2

∑

(γ
(m)
�

)2
)

;

where nm = 12 and ns = 12.

The complexity of the GPD likelihood means that conjugacy is
unattainable for the random effects parameters, and a Metropolis
step is used here.
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MCMC technique

Obviously, we first need to specify appropriate hyper–parameters.
In the absence of any expert prior knowledge, we use:

b
�
= 0, c

�
= 10−6, d

�
= e

�
= f

�
= g

�
= 10−2.

The implementation of the MCMC scheme then yields samples
from the approximate posterior distributions for

the 12 site effect parameters for each of log(σ̃m,j) and ξm,j ;

the 12 seasonal effect parameters for each of log(σ̃m,j) and
ξm,j , and

the 12 site effect parameters for the dependence parameter αj .
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Some results
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Some results

Bradfield, January Nottingham, July
Mean (st. dev.) MLE (s.e.) Mean (st. dev.) MLE (s.e.)

γ
(m)
σ̃ 1.891 (0.042) 1.294 (0.042)

γ
(m)
ξ 0.021 (0.018) 0.002 (0.018)

ǫ
(j)
σ̃ 0.367 (0.044) –0.121 (0.041)

ǫ
(j)
ξ –0.105 (0.020) –0.059 (0.017)

ǫ
(j)
α 0.385 (0.009) 0.300 (0.011)

σ̃m,j 7.267 (0.211) 8.149 (0.633) 3.234 (0.061) 2.914 (0.163)
ξm,j –0.084 (0.015) –0.102 (0.055) –0.057 (0.013) 0.018 (0.044)
αj 0.385 (0.009) 0.368 (0.012) 0.400 (0.011) 0.412 (0.020)

Table: 1: Bayesian random effects analysis
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Return level inference

Let X1,X2, . . . ,Xn be the first n observations from a stationary
sequence with marginal distribution function F .

Standard arguments in Leadbetter et al. (1983) show that, for
large n and x ,

Pr {max(X1,X2, . . . ,Xn) ≤ x} ≈ {F (x)}nθ ,

where θ ∈ (0, 1] is the extremal index and is a measure of the
degree of extremal dependence in the series.

Setting x = qr in the above extression, equating this to 1 − r−1

and solving for qr , gives, to a good approximation, the r–year
return level.

Accurate and precise return level estimation is an important design
consideration.
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Return level inference

For each site j , j = 1, . . . , 12, the annual exceedance rate of qr is
given by

12
∑

m=1

{

1 − Fm,j (qr )
hm,jθj

}

, m = 1, . . . , 12,

where

{1 − Fm,j (qr )
hm,jθj} is the annual exceedance rate of qr in

month m;

Fm,j is the GPD distribution function in month m with
parameters σ̃m,j and ξm,j ;

hm,j is the number of hours in month m, and

the extremal index θj is implicitly defined through the value of
the logistic dependence parameter αj at site j .
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Return level inference

Return Period (years)
10 50 200 1000

Hierarchical 96.887 103.463 112.518 128.128
model (0.982) (1.333) (2.023) (2.691)

Maximum 96.745 103.236 108.152 113.306
likelihood (2.864) (5.930) (8.786) (12.219)

Predictive 104.392 113.089 119.957 127.338

Table: 2: Return levels for Bradfield (knots)
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Shrinkage plots
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Figure: 5: Posterior means against maximum likelihood estimates
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Summary of results

The main take–home points are:

A reduction in sampling variation under the Bayesian
hierarchical model

– posterior standard deviations substantially smaller than the
corresponding standard errors...

– ... probably due to the pooling of information across sites and
seasons

– This is also evident in the “shrinkage plots”

Estimates of return levels using maximum likelihood
estimation can be very unstable – the hierarchical model
achieves a greater degree of stability

The Bayesian paradigm offers an extension to predictive
return levels, which cannot be achieved under the classical
approach to inference
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