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1. Background and motivation

In the last fifteen years in the UK there has been a notable
increase in the frequency – and severity – of extreme
precipitation events.

In many instances, flooding has occurred as a result of rivers
bursting their banks – which itself has often been the result of
the observation of simultaneous rainfall extremes at a number
of sites within the catchment.
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1. Background and motivation

Models from extreme value theory that have been used to
characterise the spatial nature of such rainfall extremes are
restrictive:

Assumption of max–stability – dependence holds for all
events more extreme than those that have already
happened

In reality – dependence may be observed for data above
levels of practical interest, but these data may be
independent in the limit...

... leading to non–convergence of the dependence
structure
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1.1 Examples

The year 2012 was the second wettest year in the UK since
records began, and six years since 1998 are in the top ten
wettest years (1998, 1999, 2000, 2002, 2008 and 2012).

Flooding (usually in the summer) now seems to be an accepted
part of the British climate!

Lee Fawcett, Dave Walshaw and Simone Padoan Modelling spatial dependence in rainfall extremes



1.1 Examples

The year 2012 was the second wettest year in the UK since
records began, and six years since 1998 are in the top ten
wettest years (1998, 1999, 2000, 2002, 2008 and 2012).

Flooding (usually in the summer) now seems to be an accepted
part of the British climate!

Lee Fawcett, Dave Walshaw and Simone Padoan Modelling spatial dependence in rainfall extremes



1.1 Examples: Flooding in Boscastle (2004)

Over 100 homes/businesses destroyed

Two bridges destroyed

No loss of life
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1.1 Examples: Flooding in Tewkesbury (2007, 2012)

City completely cut off

2,100 callouts in two days to Gloucestershire Fire &
Rescue – normally 8,000 per year

Water supply badly affected
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1.1 Examples: Flooding in Cumbria (2009)

£100 million worth of damage

A number of deaths

Massive transport disruption
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1.1 Examples: Flash–flooding in Newcastle (2012)
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1.1 Examples: Extensive flooding in Europe (now!)
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1.2 Useful parameters?

The 2009 floods in Cumbria occurred as a result of rivers
(Derwent & Cocker) bursting their banks – rainfall extremes
were observed at many locations simultaneously .

Thus, of particular interest here might be the estimation of:

(i) Pr – joint exceedance probabilities of the marginal r–year
quantiles, at a collection of sites within a region

(ii) Tr – the total maximum rainfall accumulation we would
expect to see (on average) once every r years within a
region

Such quantities are both multivariate and spatial in nature.
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1.3 Our work

Data

Daily rainfall totals (mm) for 206 sites in the UK,
1961 −→ 2000 (inclusive)

Nine geographically–defined climate regions – areas of
different physiological character (Wigley et al., 1984)

To focus on extremes, we filter out a set of 40 annual
maxima for each site

Within each region, a single multivariate observation is
the set of annual maxima from sites within that region (a
single replication in our simulation study)
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1.3 Our work
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1.3 Our work

Aims

Investigate the consequences of model
mis–specification on the estimation of quantities such as
Pr and Tr

How do estimates of Pr and Tr depend on our assumptions
relating to spatial dependence in the extremes?

If there is genuine extremal dependence , models which
give asymptotic independence might under–estimate Pr

and Tr . But by how much, and is this significant?

If we have only sub–asymptotic dependence , using
max–stable models might over–estimate Pr and Tr . But by
how much, and is this significant?

For real data, can we tell whether or not any spatial
dependence present is asymptotic?
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2. Models for spatial data: Gaussian processes

By far the most simple and well–understood approach to
modelling spatial data is to assume our spatial process {Y (x)}
is Gaussian , that is

{Y (x)} ∼ GP(µ, ρ),

where µ and ρ are the mean and correlation functions
(respectively).

{Y (x)} is a stochastic process

Any finite linear combination of samples has a joint
Gaussian distribution
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2. Models for spatial data: Gaussian processes

Anatomy of a typical correlation function:
[
Cressie (1993), Wackernagel (2003), Diggle & Ribeiro (2007)

]

Partial

sill

         Range

Sill

Distance

Correlation

Nugget

0
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2. Models for spatial data: Gaussian processes

Standard correlation functions:

Model Parameters Correlation function
(scale λ, shape ν) (distance h)

Exponential λ > 0 exp {−h/λ}

Powered λ > 0 exp {−(h/λ)ν}
exponential 0 < ν ≤ 2

Whittle–Matérn λ > 0
(h/λ)ν

2ν−1Γ(ν)
Lν(h/λ)

ν > 0

Isotropic

Anisotropy can be added by replacing h with (hTAh)0.5,
where A is a positive definite matrix with determinant 1

List not exhaustive!
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2. Models for spatial data: Gaussian processes

Gaussian–based geostatistical models are
widely–understood

Extremely flexible owing to the range of correlation
functions that are available

Idea: Transform annual maxima to Gaussian −→ use
standard methods from the geostatistical toolbox to model
dependence structure

Problem #1: The model for the original data should be
max–stable −→ restricts structure of the correlation
function that can be used

Problem #2: GP(µ, ρ) bear the property of asymptotic
independence
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3. Limiting models for extremes

Standard Gaussian–based geostatistical models might be
inappropriate for our rainfall annual maxima.

The standard models for extremes have been extended to
provide a spatial interpretation: max–stable processes .
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3.1 Univariate considerations

Suppose Y1,Y2, . . . ,Yn are independent and identically
distributed random variables with distribution function F .

Then, if there exists sequences of constants {an} > 0 and {bn}
such that

Pr
{

a−1
n (max [Y1,Y2, . . . ,Yn]− bn) ≤ x

}
→ G(x)

as n → ∞, G must be max–stable ; that is,

Gn(b′
n + a′

nx) = G(x)

must hold for sequences {a′
n} > 0 and {b′

n}, where n ∈ N.
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3.1 Univariate considerations

The only non–degenerate distribution with this property is the
generalised extreme value (GEV) distribution:

G(x ;µ, σ, ξ) =

{
exp

[
− (1 + ξ(x − µ)/σ)

−1/ξ
+

]
, ξ 6= 0

exp [−exp (−(x − µ)/σ)] , ξ = 0,

where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞ are location,
scale and shape parameters (respectively).

Estimates of an extreme quantile zr can be obtained by
inversion of the above, giving the r–year return level :

ẑr =





µ+
σ

ξ

[(
−log

(
1 − r−1

))−ξ
− 1

]
, ξ 6= 0,

µ− σlog
[
−log

(
1 − r−1

)]
, ξ = 0.
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3.2 Extension to the multivariate setting

Now suppose we have independent sequences of D–variate
random variables (Y1i ,Y2i , . . . ,YDi), i = 1, 2, . . . , n, with
componentwise maxima

max[Y11,Y12, . . . ,Y1n], . . . ,max[YD1,YD2, . . . ,YDn].

If it exists (and is non–degenerate), the limiting joint distribution
of these maxima (after marginal transformation to standard
Fréchet), for z > 0, can be written as

Pr {Z1 ≤ z1,Z2 ≤ z2, . . . ,ZD ≤ zD} = exp {−V (z1, z2, . . . , zD)} ,

with z1, z2, . . . , zD > 0.
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3.3 Extending further: the infinite–dimensional case

The infinite–dimensional analogues of multivariate extreme
value distributions are max–stable processes (de Haan,
1984).

More precisely, consider a stochastic process {Y (x)}, x ∈ R
D,

having continuous sample paths. Then the limiting process is
given by

max
{

a−1
n (x) (max [Y1(x),Y2(x), . . . ,Yn(x)]− bn(x))

}
→ {Z (x)} ,

as n → ∞, where

Yi , i = 1, . . . , n are independent replications of Y

an(x) > 0 and bn(x) ∈ R
D are sequences of continuous

functions

The limiting process Z is assumed to be non–degenerate
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3.3 Extending further: the infinite–dimensional case

Schlather (2002) shows that Z (x) can be written, according to
its spectral characterisation, as:

Z (x) = max [ζ1Y1(x), ζ2Y2(x), . . .] ,

where ζ1, ζ2, . . . are the points of a Poisson process on (0,∞]
with intensity dΛ(ζ) = ζ−2dζ and E[Y (x)] = 1 for all x ∈ R

D.

Different choices for the process Y give some useful
max–stable processes:

Gaussian extreme value process (Smith,1990)

Extremal Gauss process (Schlather, 2002)

Brown–Resnick process (Kabluchko et al., 2009)
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4. Application to rainfall in Central/Eastern England
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4. Application to rainfall in Central/Eastern England

Transform margins to standard normal using

Φ−1{Gj(x ; µ̂j , σ̂j , ξ̂j)};

then fit a simple Gaussian process

Transform margins to standard Fréchet using

−log{Gj(x ; µ̂j , σ̂j , ξ̂j)}
−1;

then fit a max–stable process (e.g. Extremal
Gauss/Brown–Resnick)

Standard likelihood approach for the Gaussian process;
use composite likelihood for the MS processes
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4. Application to rainfall in Central/Eastern England

Suppose our data matrix for CEE is:

X =




site 1 site 2 · · · site 21
1961 X1 −→
1962 X2 −→

LF
...

...
...

2000 X40 −→




If the parameters of the model ϑ can be identified from the
pairwise marginal densities, then we maximise a composite
log–likelihood of the form

ℓp(ϑ) =

40∑

i=1

∑

{j<k ;xj ,xk∈Xi}

log f (xj , xk ;ϑ).

The variance matrix is found via an information sandwich:

var(ϑ) = J−1(ϑ̂)K (ϑ̂)J−1(ϑ̂).
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4. Application to rainfall in Central/Eastern England

Model Correlation Scale (λ) Shape (ν) ℓmax CLIC

Gaussian Exponential 56.444 — –706.52 —
process (44.937)

Powered exponential 44.390 0.689 –705.45 —
(141.503) (1.607)

Whittle–Matérn 78.569 0.328 –706.18 —
(220.167) (1.785)

Extremal Gauss Exponential 168.025 — –23,575 47,034
process (64.105)

Powered exponential 168.344 1.075 –23,572 47,020
(64.724) (0.188)

Whittle–Matérn 168.424 0.158 –23,572 47,010
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5. Simulation study

Simulate a master random field M (Gaussian/max–stable):

M =





site 1 site 2 · · · site n
rep. 1 (µ, σ, ξ)
rep. 2 margins (λ, ν)
rep. 3 spatial

LF
... U(0, 10) co-ord.

rep. N





Fit correct spatial process to M: (λ̂, ν̂) (+ others: sill, range...)

Fit incorrect spatial process to M: (λ̂, ν̂)A (+ others: sill, range...)

Simulate K replications using (λ̂, ν̂) and (λ̂, ν̂)A, giving





site 1 site 2 · · · site n
rep. 1

LF
...

rep. K









site 1 site 2 · · · site n
rep. 1

LF
... A

rep. K





We use (µ, σ, ξ) = (300,80,0.1); (n,N,K ) = (50,100,106);
λ = (1,20,50) and ν = (0.5,1,1.5,2).
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5.1 Quantities of interest: Pr

Let Pr : joint exceedance probabilities of the marginal
r -year return levels zr for S ‘sites of interest’ in our ‘region’

We use S = 3 and S = 10: choosing randomly, we get

– s = {23,43,47} for S = 3

– s = {41,18,12,13,8,4,32,5,17,47} for S = 10

Then, for each of the correct and incorrect models, we get:

P̂r =
K∑

k=1

Ik/K ,

where

Ik =

{
1 if yk ,st > zr , t = 1, . . . ,S;
0 otherwise,

at each replication k = 1, . . . ,K .
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5.1 Quantities of interest: Tr

Recall that Tr is the total maximum rainfall accumulation we
would expect to see once, every r year, across an entire region.

Difficult to estimate, since we have a finite number of ‘sites’.

For each replication k in our simulated data frame,
k = 1, . . . ,K , we find:

Tk =
n∑

i=1

yk ,i .

Denoting by T [k ] the k–th order statistic of {T1,T2, . . . ,TK},
we then estimate empirically the r–year return level for
aggregate values across all replications as

ẑr(agg) = T [K (1−r−1)].
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ẑr(agg) = T [K (1−r−1)].

Lee Fawcett, Dave Walshaw and Simone Padoan Modelling spatial dependence in rainfall extremes



5.1 Quantities of interest: Tr

Recall that Tr is the total maximum rainfall accumulation we
would expect to see once, every r year, across an entire region.

Difficult to estimate, since we have a finite number of ‘sites’.

For each replication k in our simulated data frame,
k = 1, . . . ,K , we find:

Tk =
n∑

i=1

yk ,i .

Denoting by T [k ] the k–th order statistic of {T1,T2, . . . ,TK},
we then estimate empirically the r–year return level for
aggregate values across all replications as
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5.2 Sampling error

Our estimates P̂r and ẑr(agg) are one–off estimates obtained
empirically from the simulated data.

To assess the variability of these estimates, we could repeat the
simulation procedure multiple times, each time with K = 106.

However, computationally this would be rather burdensome!

Rather, we use bootstrap methods to estimate var[P̂r ],
var[ẑr(agg)] and confidence intervals for both.

Lee Fawcett, Dave Walshaw and Simone Padoan Modelling spatial dependence in rainfall extremes



5.2 Sampling error
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5.2 Sampling error: Bootstrap scheme

For each bootstrap replication b, b = 1, . . . ,B, we
randomly sample (with replacement) K rows from each
(K × n) matrix of simulated data

For each bootstrap replication of the simulated spatial
process, we find P̂r and ẑr(agg), yielding a collection of
estimates

{
P̂

(1)
r , ẑ(1)

r(agg), . . . , P̂
(B)
r , ẑ(B)

r(agg)

}
,

from which we can estimate variances or construct
confidence intervals

Using B = 1000, we obtain bias–corrected accelerated
(BCa) intervals as proposed in Efron (1987), making use of
a jackknife procedure
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5.3 Some results

True spatial process:
Extremal Gauss Simulated process (n = 50, K = 106)

(n = 50, N = 100)
Correlation model: Extremal Gauss Standard Gaussian process

Exponential, λ = 20 (λ̂ = 21.043) (λ̂ = 117.367)
r = 10 5.141 (5.000, 5.284) 3.303 (3.184, 3.409)

P̂r r = 50 1.040 (0.978, 1.105) 0.367 (0.332, 0.403)
×100% r = 200 0.254 (0.223, 0.284) 0.068 (0.052, 0.084)
(S = 3) r = 1000 0.041 (0.030, 0.055) 0.010 (0.004, 0.017)

r = 10000 0.005 (0.001, 0.010) 0.002 (0.000, 0.005)
r = 10 3.227 (3.111, 3.336) 1.531 (1.456, 1.607)

P̂r r = 50 0.632 (0.581, 0.684) 0.119 (0.097, 0.140)
×100% r = 200 0.136 (0.114, 0.161) 0.014 (0.007, 0.022)
(S = 10) r = 1000 0.029 (0.019, 0.041) 0.000 —

r = 10000 0.002 (0.000, 0.005) 0.000 —
r = 10 24.182 (24.096, 24.267) 24.336 (24.254, 24.423)
r = 50 32.299 (32.051, 32.520) 31.763 (31.570, 31.973)

ẑr(agg) r = 200 40.308 (39.745, 40.966) 38.738 (38.331, 39.123)
(thousand) r = 1000 50.948 (49.826, 51.972) 47.651 (46.452, 49.302)

r = 10000 71.626 (66.681, 75.694) 63.732 (59.630, 71.285)
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Further work

Diagnostic checks for max–stability in UK rainfall extremes

Comparison of regional estimates of Pr and zr(agg) for UK
data

Mixture modelling to account for asymptotic
dependence/independence between rainfall extremes for
sites within the same region
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