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3. Data applications
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� Bootstrapping for confidence intervals
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1.1 Background and motivation: extreme wind speeds

In the U.K., the British Standards Institution produce contour
maps displaying strength requirements for structures based on
“once–in–50–year gust speeds”.

This is known as the 50–year return level gust.

The maps themselves are the result of simple extreme value
analyses carried out on medium to long term records collected
at stations in the U.K.
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1.1 Background and motivation: extreme wind speeds

During storms in 1987, 2002 and 2005, gust speeds exceeded
the 200–year return level .

Perhaps building codes should be revised?

Or maybe the estimation procedure is inappropriate...
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1.1 Background and motivation: extreme sea–surge

Sea level = mean sea level + tide + surge + waves

Sea surge is generated by wind and air pressure
Key factor in coastal flooding — e.g. North Sea (1953),
Bangladesh (1993)
Practical motivation: structural failure — probably a
sea–wall in this case — is likely under the condition of
extreme surges
Aim: Design a sea–wall so that it protects against the
once–in–a–hundred year sea surge, or the 100–year
return level
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1.2 The data: Bradfield gusts and Newlyn sea–surges

Newlyn sea–surges
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1.3 Modelling extremes

Let {Xn} denote a stationary sequence of random variables
with common distribution function F , and let
Mn = max{X1, . . . ,Xn}.

It is typically the case that, as n → ∞,

Pr(Mn ≤ x) ≈ F nθ(x), (1)

where θ ∈ (0, 1) is known as the extremal index ; see, for e.g.,
Leadbetter & Rootzén (1988).

As θ → 0 there is increasing dependence in the extremes of the
process; for an independent process, θ = 1.
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1.3 Modelling extremes: The GPD

The Generalised Extreme Value distribution (GEV) is the
limiting model for F n.

Pickands (1975) showed that for large enough u, (X − u|X > u)
follows a Generalised Pareto distribution (GPD) with
distribution function

H(y ;σ, ξ) = 1 −

(

1 +
ξy
σ

)

−1/ξ

, (2)

defined on {y : y > 0 and (1 + ξy/σ) > 0}, where σ > 0 and ξ
are the GPD scale and shape (respectively).
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1.3 Modelling extremes: The GPD

The GPD provides a natural way of modelling extremes of
time series such as sea–surge/wind speed extremes

Much less wasteful than the standard “annual maxima”
approach using the GEV

What about serial dependence? It is usually the case that
θ < 1 in Equation (1): Peaks Over Thresholds (POT) with
declustering interval κ

Other issues, e.g. seasonal variability: Fourier forms for
the GPD parameters, piecewise seasonality approach,...
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1.3 Modelling extremes: return levels

Suppose the GPD is a suitable model for threshold
exceedances (X − u). Then

Pr(X > x |X > u) =
Pr(X > x ∩ X > u)

Pr(X > u)

=
Pr(X > x)
Pr(X > u)

,

for x > u. This leads to

Pr(X ≤ x) = 1 − λu

[

1 + ξ

(

x − u
σ

)]

−1/ξ

, (3)

where λu = Pr(X > u).
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1.3 Modelling extremes: return levels

Estimates of an extreme quantile zs can then be obtained by
equating (1) to 1 − s−1, where F n(x) is given by (3), and
solving for x = zs.

zs is the s–observation return level associated with
return period s

We usually work on an annual scale, giving the r–year
return level

zr = u +
σ

ξ

[

(

λ−1
u

{

1 − [1 − 1/(rny )]
θ−1

})

−ξ
− 1

]

(4)

where ny is the number of observations per year.

In practice, ẑr is often obtained by replacing (λ, σ, ξ) in (4)
with MLEs (λ̂u, σ̂, ξ̂); working with cluster peaks from a
POT analysis, θ ≈ 1.

Confidence intervals are usually constructed using profile
likelihood.

Lee Fawcett and Dave Walshaw Estimating return levels from serially dependent extremes



1.4 Return levels: Newlyn sea surges
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1.4 Return levels: Newlyn sea surges
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2 Simulation study: Aims

To investigate the use of all threshold excesses for
estimating return levels over the standard POT approach

Will need to consider the issue of serial dependence
carefully

This will require consideration of the extremal index

If successful, we will

– Avoid declustering altogether

– Press more extremes into use −→ increase estimation
precision of return levels
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2.1 Simulated data

Simulate Markov chains with joint density given by

f (x1, x2, . . . , xn) =
n−1
∏

i=1

f (xi , xi+1;ψ)

/

n−1
∏

i=2

f (xi ;φ), i = 1, . . . , n−1.

GPD density used for contributions to the denominator

Invoke bivariate extreme value theory for contributions to
the numerator on (u,∞)× (u,∞)
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2.1 Simulated data

We make use of two well–known symmetric dependence
models for the generation of consecutive extremes:

The logistic model, with dependence parameter α,
0 < α ≤ 1

The negative logistic model, with dependence parameter
ρ > 0

Independence: α = 1 or ρ ց 0

Complete dependence: α ց 0 or ρ → ∞.
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2.1 Simulated data

We also use a model allowing for asymmetry in the
dependence structure:

The bilogistic model, with dependence parameters (α, β)

α− β determines the extent of asymmetry

Independence: α = β → 1

Reduces to the logistic model when α = β
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2.2 Return levels: dependence on serial correlation

Relationship between the 50/200–year return level and the extremal index θ
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2.2 Connection with dependence models

Define, arbitrarily, xm such that F n(xm) = 1/2. Then from (1):

Pr(max {X1, . . . ,Xm} ≤ xm)
1/θm ≈

1
2
, giving

θm ≈ −
log Pr(max {X1, . . . ,Xm} ≤ xm)

log 2
.

This provides a link between the dependence parameter(s) for
any model for extremal dependence and the extremal index.
We can

simulate M first–order Markov chains each of length m with
logistic(α)/negative logistic(ρ)/bilogistic(α, β) dependence

estimate the numerator in the above as the proportion of
simulated chains whose maximum does not exceed xm
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2.2 Connection with dependence models
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2.3 Extremal index estimation

A polynomial estimator (θ̂[1]log , θ̂[1]neglog and θ̂
[1]
bilog)

– Fit one of the dependence models (logistic/negative
logistic/bilogistic) to consecutive pairs and estimate the
dependence parameter(s) in that model

– Use the polynomial relationships previously obtained to
estimate θ

Other commonly–used estimators

– Cluster size estimators (θ̂[2], θ̂[3])

– A maxima method (θ̂[4])

– An intervals estimator (θ̂[5])

Lee Fawcett and Dave Walshaw Estimating return levels from serially dependent extremes



2.4 Simulation study details

Simulate stationary first–order Markov chains of extreme value
type according to the three models given previously. We use

α = 0.10, 0.11, . . . , 1

ρ = 0.10, 0.15, . . . , 1, 1.1, . . . , 7.0,

α = 0.6 and β = 0.10, 0.11, . . . , 0.99

for the logistic , negative logistic and bilogistic (respectively).

Also simulated data with non–extremal dependence – AR(1)
process.

The marginals are transformed to GPD(λu, σ, ξ), using
λu ≈ 0.05, σ = 1 and ξ = −0.4,−0.1, 0, 0.3, 0.8.
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2.4 Simulation study details

We simulate N = 1000 chains of length n = 10, 000; for each,
we fit the GPD to:

all excesses over u, giving
(

λ̂u, σ̂, ξ̂, θ̂
[1], . . . , θ̂[5]

)(j)
−→

ẑ(j)
r , j = 1, . . . , 1000

cluster peak excesses over u, using κ = 5, 20, 30, 50, 60,

giving
(

λ̂u, σ̂, ξ̂
)(j)

−→ ẑ(j)
r , j = 1, . . . , 1000
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2.5 Some results
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3.1 Data applications: Newlyn sea surges

θ̂ ẑ10 ẑ50 ẑ1000
All excesses

using θ̂
[1]
log 0.425 (0.045) 0.817 (0.073) 0.903 (0.107) 1.034 (0.179)

using θ̂
[1]
neglog 0.413 (0.037) 0.816 (0.073) 0.902 (0.107) 1.033 (0.178)

using θ̂
[1]
bilog 0.377 (0.020) 0.810 (0.071) 0.897 (0.105) 1.029 (0.176)

using θ̂[2] 0.182 (0.047) 0.767 (0.059) 0.860 (0.090) 1.000 (0.159)
using θ̂[3] 0.106 (0.032) 0.732 (0.052) 0.830 (0.079) 0.978 (0.146)
using θ̂[4] 0.282 (0.206) 0.793 (0.078) 0.883 (0.105) 1.024 (0.171)
using θ̂[5] 0.223 (0.050) 0.779 (0.062) 0.870 (0.094) 1.018 (0.163)

Cluster peaks — 0.868 (0.106) 0.920 (0.144) 0.975 (0.202)

Maximum likelihood estimates for the extremal index and three return levels for the

Newlyn sea–surges (units for return levels are in metres).

Suitability of first order Markov assumption/models used?

Dependence of some estimators for θ on auxiliary parameter

θ̂[5] most suitable?
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3.2 Data applications: Bradfield wind speeds

An extensive study in Fawcett & Walshaw (2006) suggests
that a first–order Markov structure, with logistic
dependence, is suitable

So θ̂
[1]
log might be a suitable estimator for the extremal index

Need to account for seasonality: monthly varying GPD
parameters can be combined to estimate overall return
levels by solving

12
∏

m=1

Hm(x)nmθm = 1 − r−1, m = 1, . . . , 12.
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3.2 Data applications: Bradfield wind speeds

ẑ10 ẑ50 ẑ1000
All excesses
using θ̂

[1]
log,m 88.463 (5.520) 96.071 (9.967) 107.644 (22.435)

using θ̂
[5]
m 84.885 (6.151) 92.882 (8.873) 105.003 (19.745)

Cluster peaks 96.556 (13.527) 102.537 (22.776) 107.143 (43.052)

Maximum likelihood estimates for three return levels for the Bradfield wind speeds

(units are in knots).
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3.3 Confidence intervals for return levels

Standard errors highlight the gain in precision when using
all threshold excesses

We obtain confidence intervals using the bootstrap
distribution for zr

– Use a block bootstrap procedure to sample, with
replacement, entire clusters of extremes

– For each bootstrap replication b, b = 1, . . . ,B, find
(

λ̂u, σ̂, ξ̂, θ̂
[5]
)(b)

−→ ẑ(b)
r

– Form 95% confidence interval for zr from the bootstrap

sample
{

ẑ(1)
r , . . . , ẑ(B)

r

}

– We use bias–corrected, accelerated intervals (Efron,
1987), which give better coverage than the standard
percentile intervals
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3.3 Confidence intervals for return levels

ẑ10 ẑ50 ẑ1000

Sea surges (0.657,0.872) (0.708,1.019) (0.772,1.306)
Cluster peaks (0.765, 1.569) (0.792, 2.675) (0.835, 6.452)

Wind speeds (80.847,87.749) (86.088,98.540) (90.623,116.103)

Bootstrapped 95% (BCa) confidence intervals for three return levels
for the Newlyn sea–surges (metres) and the Bradfield wind speeds
(knots).
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Summary

Return level inference under the standard POT approach
can be highly sensitive to the choice of declustering
interval used to identify clusters

Using all threshold excesses can avoid the issue of
declustering

– This requires an appropriate estimator of the extremal index
– The intervals estimator seems robust here

Using all threshold excesses can substantially increase
precision of return level estimates

A block bootstrap procedure can be used to obtain
confidence intervals
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