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SUMMARY

Understanding and quantifying the behaviour of extreme wind speeds has important applications for design in
civil engineering. As in the extremal analysis of any environmental process, estimates are often required of the
probability of events that are rarer than those already recorded. Consequently, research has focused on the
development of techniques that make optimal use of the available data. One such approach lies in threshold
methods, which, unlike the more traditional annual maxima approach to the modelling of extremes, takes into
consideration all extreme events, extreme in the sense that they exceed some high threshold. However, the
implications of using all extremes in an analysis include problems of temporal dependence and non-stationarity.
Several pragmatic ways of circumventing the problem of temporal dependence have been developed, though these
often include the deletion of many extreme observations, for example, filter out a set of independent extremes.
This paper looks at another approach to inference—one which explicitly models the temporal dependence of the
process and so can use information on all extremes—and investigates the appropriateness of assumptions of
short-term temporal dependence for wind speeds. We also examine the success of such methods at estimating
some extreme events commonly studied for wind-speed data. Throughout this paper extreme wind speeds are
analysed within a Bayesian framework, which can be argued to be particularly advantageous for extreme value
analyses. For example, the objective of an extreme value analysis is usually an estimate of the probability of future
events reaching extreme levels—something which is handled quite naturally in a Bayesian analysis through
predictive distributions. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decade or so, there has been a move away from the traditional ‘Gumbel’ framework for

the statistical modelling of extreme values towards threshold approaches, which bring into use more

extreme observations and so increase the precision of any analysis. However, the trade-off for this

increased precision is the added complexity of near-certain temporal dependence between nearby

observations. The most popular approach to circumvent this issue is to employ some filtering scheme

which identifies threshold exceedances which are far enough apart to be deemed independent; such
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‘declustering’ techniques are discussed, and implemented, in Davison and Smith (1990), Walshaw

(1994), Coles (2001) and Fawcett (2005), and many others, which are cited within these few.

Such a pragmatic approach to temporal dependence, which is fairly straightforward to apply,

ensures that the likelihood asymptotics are rigorous. However, declustering is wasteful of data, and

estimation of model parameters has been shown to be sensitive to the filtering technique used to

identify the independent threshold exceedances. Also, any information about dependence is lost

through deletion.

In recent work, Fawcett and Walshaw (2006) argue that, when modelling extremes, it can be

advantageous to make use of all extremes instead of employing some filtering scheme. Their work has

shown that, instead of improving the estimation procedure by removing temporal dependence, filtering

out a set of independent threshold exceedances can lead to substantial bias in parameter estimates, and

especially in return level estimates. They show that if all threshold exceedances are used in the

analysis, then model parameters are more accurately estimated and with greater precision (owing to

the inclusion of more data). To account for the dependence in the data, appropriate adjustments to

standard errors and confidence intervals can be achieved by employing methods due to Smith (1991).

In this paper, we consider a more complex but potentially more informative approach, by explicitly

modelling temporal dependence through Markov chain models.

The implementation and practical consequences of such models for wind speed data are explored

here. We consider the ability of Markov chain models to estimate two cluster functionals of practical

interest: (i) storm length and (ii) time between successive storms, and compare the estimation of these

events for models which assume each of a first and second-order Markov structure.

In Section 2, we introduce the wind speed data used throughout this paper, and discuss some

modelling issues relevant to these data. In Section 3, we build a Markov chain model, which allows for

serial correlation in the wind speed data by invoking bivariate extreme value considerations for the

temporal evolution of the process. Section 4 implements this first-order Markov chain model for

the wind speed data, while Section 5 considers higher-order Markov chain models and explores the

sensitivity of extreme event estimation to the choice of model order.

2. MODELLING EXTREME WIND SPEEDS

2.1. The wind speed data

The data used in this paper consist of hourly gust maximum wind speeds recorded at High Bradfield, a

high altitude site on the Pennines, for the UKMeteorological Office. The data given to us were recorded

over a 10-year period, from 1st January 1975 to 31st December 1984 inclusive, constituting

approximately 86000 observations after missing observations have been discounted. Figure 1 shows

a time series plot of the hourly maxima at High Bradfield, a histogram of the data and a plot of the time

series against the lag 1 time series. The first 3 years of data only are used in each case to best illustrate the

relevant data characteristics. Table 1 gives summaries of the entire dataset. For a detailed description of

the behaviour of the wind climate in the UK, see, for example, Shellard (1976); for a more involved

discussion of the wind climate at high-altitude sites in the Pennines, see Smithson (1987).

2.2. A model for threshold exceedances

A natural way of modelling extremes of time series such as the hourly maximum wind speeds at High

Bradfield is to use the generalised Pareto distribution (GPD) as a model for excesses over a high
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threshold. Let X1;X2; . . . be a sequence of independent random variables with common distribution

function F. Then, if it exists, the limiting distribution as u ! 1 of (X � ujX > u) is of GPD form:

GðyÞ ¼ 1� 1þ �y

�

� ��1=�

þ
ð1Þ

where aþ ¼ maxð0; aÞ and � and � are scale and shape parameters respectively (see, for example,

Coles (2001)).

2.3. Seasonal variation

The time series plot shown in Figure 1 illustrates the seasonal nature of the wind climate at High

Bradfield (which is also typical of the seasonal behaviour of the wind climate at most sites in the UK),
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Figure 1. Time series plot, histogram and plot of the time series against the version at lag 1 for the hourly gust maxima at High

Bradfield (1975–1977 inclusive).

Table 1. Summary statistics of High Bradfield hourly gust maxima (knots).

Mean Standard Deviation Median LQ UQ Min. Max.

22.28 12.24 20.0 13.0 29.0 0.0 99.0
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with the strongest gusts being typically recorded in the winter, particularly December and January. The

summer months give rise to more stable climatic conditions and so lower wind speeds are generally

observed. The modelling approach we adopt to overcome this problem of non-stationarity is to

partition the annual cycle into 12 ‘seasons’, using the calendar month as a natural way of doing this.

Experience has shown that for wind speeds, as with many other environmental variables, dividing the

year into 12 (roughly) equal-length seasons strikes a good balance between the two conflicting

requirements of (a) reflecting reasonably accurately the continuous nature of seasonal changes in

climate; and (b) retaining a substantial amount of data for analysis within each season (Walshaw,

1994). Thus, we denote by ð�m; �mÞ the GPD scale and shape parameters in month m, m ¼ 1; . . . ; 12,
fitting a separate GPD to each month of threshold exceedances.

2.4. Temporal dependence

Figure 1 shows a plot of the time series against the series at lag 1. The presence of substantial short-

term serial correlation in the sequence of hourly gust maxima is obvious from this plot. The partial

autocorrelation function for the hourly gust maxima (not shown) indicates a very large value at lag 1,

with all lags greater than 1 showing negligible partial autocorrelation. Three options are available to

circumvent the problems posed by short-term serial correlation. As already discussed, the most

commonly adopted approach is to employ a declustering scheme to filter out a set of independent

threshold exceedances. The second, shown to have substantial benefits over this approach, is to ignore

any temporal dependence and fit Equation (1) to the set of all threshold exceedances, but then

somehow account for this by adjusting the standard errors attached to maximum likelihood estimates.

Though the plot of hourly gust maxima against their lag 1 counterparts in Figure 1, and the partial

autocorrelation function, do not necessarily imply that a first-order dependence will hold for extreme

values in the series, they do at least suggest this as a reasonable assumption for modelling which can

(and in this paper will) be assessed later. Thus, a third approach is to model the temporal dependence in

the series using a first-order Markov chain model.

3. FIRST-ORDER MARKOV CHAIN MODEL

Work by Fawcett (2005) shows that GPD parameter estimation, and return level estimation, can be

sensitive to the choice of declustering scheme used to filter out a set of independent threshold

exceedances. We can avoid declustering altogether if we are prepared to make stronger assumptions

about our process. Based on the evidence in Figure 1, and inspection of the partial autocorrelation

function for our hourly gust maxima, we might assume that the series of gust maxima X1;X2; . . . forms

a stationary first-order Markov chain within each season. The stochastic properties of such a chain are

completely determined by the joint distribution of successive pairs. Given a model f ðxi; xiþ1;wÞ
specified by parameter vector w, it follows that the likelihood for w is given by

LðwÞ ¼ f ðx1;wÞ
Yn�1

i¼1

f ðxi; xiþ1;wÞ
,Yn�1

i¼1

f ðxi;wÞ: ð2Þ

To model threshold excesses, we can invoke bivariate extreme value considerations to model

contributions to the numerator in the above expression; the denominator is simply replaced by the

corresponding univariate densities based on Equation (1).
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3.1. Bivariate threshold excess model

Suppose that a GPD with parameters (�; �) is a suitable model for threshold excesses of a threshold u

by a variable X. Then from Equation (1), and for x > u,

PrðX > xjX > uÞ ¼ 1þ �
x� u

�

� �h i�1=�

þ
: ð3Þ

Now

PrðX > xjX > uÞ ¼ PrðX > x;X > uÞ
PrðX > uÞ ð4Þ

¼ PrðX > xÞ
PrðX > uÞ ð5Þ

since x > u. Thus,

PrðX < xÞ ¼ 1� lu 1þ �
x� u

�

� �h i�1=�

þ
ð6Þ

where lu ¼ PrðX > uÞ.

Now suppose ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞ are independent realisations of a random variable (X; Y)
with joint distribution function F. For suitable thresholds ux and uy, the marginals for X � ux and

Y � uy each have an approximation of the form given in Equation (6), with respective parameter sets

ðlux ; �x; �xÞ and ðluy ; �y; �yÞ. The transformations

~X ¼ � log 1� lux 1þ �x
X � ux

�x

� �� ��1=�x
( ) !�1

and ð7Þ

~Y ¼ � log 1� luy 1þ �y
Y � uy

�y

� �� ��1=�y
( ) !�1

ð8Þ

then induce a variable ð~X; ~YÞ whose distribution function ~F has margins that are approximately

standard Fréchet for X > ux and Y > uy (Coles, 2001). It can be shown that the joint distribution

function Gðx; yÞ for a bivariate extreme value distribution with standard Fréchet margins has the

representation

Gðx; yÞ ¼ exp �Vðx; yÞf g ð9Þ

for x > 0; y > 0, where

Vðx; yÞ ¼ 2

Z 1

0

max q=x; ð1� qÞ=yð ÞdHðqÞ; ð10Þ

MARKOV CHAIN MODELS

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics (in press)



and H is a distribution function on [0,1] satisfying the mean constraintZ 1

0

qdHðqÞ ¼ 1

2
: ð11Þ

There is no characterisation of the complete family of distributions specified by Equation (9), and so

model choice involves specifying an appropriate sub-family through the choice of H.

3.2. The logistic family

One standard class of parametric families for G is the logistic family, for which

Vðx; yÞ ¼ x�1=� þ y�1=�
� ��

ð12Þ

for x > 0, y > 0 and � 2 ð0; 1�. Independence and complete dependence correspond to � ¼ 1 and

� ! 0 respectively. The set-up of this bivariate threshold excess model, using the logistic model, is

discussed in greater detail in Coles (2001), and has been used to measure spatial dependence of

extremes for pairs of sites in work by, amongst others, Smith and Walshaw (2003). In a time series

context and for the first-order Markov chain model being set up here, x and y can be replaced with

successive values in time xi and xiþ1 (respectively). Then, contributions to the numerator in Equation

(2) can be found by differentiation of Equation (9) with respect to both x and y if x > ux and y > uy,

with appropriate censoring if one of either x or y falls below its corresponding threshold. If both x and y

lie sub-threshold, the contribution to the numerator in Equation (2) is given by the distribution function

evaluated at the thresholds ux and uy. Contributions to the denominator in Equation (2) are given by the

univariate densities specified by Equation (1). Though the logistic model is the most widely used for

modelling multivariate extremes, other models are available which allow for asymmetry in the

dependence structure; we consider some of these in Section 5 of this paper.

4. INFERENCE

4.1. Prior information and Bayesian sampling

We now fit the first-order Markov chain model to the wind speed data at High Bradfield. Thresholds

um, m ¼ 1; . . . 12, are chosen for each month m using mean residual life plots—for more information

on these, see, for example, Coles (2001). In the absence of any expert prior information, we specify

non-informative prior distributions for the GPD scale and shape parameters and the logistic

dependence parameter. For computational convenience, and to retain the positivity of the scale

parameter, we work with � ¼ logð�Þ and specify the following (independent) prior distributions:

� �mð Þ � Nð0; 10000Þ; ð13Þ

� �mð Þ � Nð0; 100Þ; ð14Þ

� �mð Þ � Uð0; 1Þ; ð15Þ
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m ¼ 1; . . . ; 12. After setting initial values for both �m and �m, a simple Metropolis step1 is used to

generate successive draws from the posterior distribution. At each iteration, the simulated values for

�m and �m are used to transform the data to standard Fréchet; a Metropolis step is then similarly used to

generate a posterior draw for the logistic dependence parameter �m using the Markov chain likelihood

in Equation (2). Within each of the Metropolis steps, a random walk procedure is used to generate

candidate values for each of the parameters, the variances of the innovations being tuned to maximise

the efficiency of the algorithm.

For data from each month, for all but nine pairs of observations, likelihood contributions to the

Markov chain model component are given by differentiation of Equation (9). However, there are

discontinuities between years; for example, we can safely assume the Markov property for consecutive

pairs throughout January 1975, but a discontinuity will arise between the last observation from this

month (which should form a pair with the first observation in February 1975) and the first observation

in January 1976. For each of these nine pairs we assume independence, that is assign a value of 1 to �m

in that pair’s contribution to the likelihood.

4.2. Return levels

Let X1;X2; . . . ;Xn be the first n observations from a stationary sequence with marginal distribution

function F. Standard arguments in Leadbetter et al. (1983, Ch. 3) show that, for large n and x, it is

typically the case that

PrfmaxðX1;X2; . . . ;XnÞ � xg � fFðxÞgn� ð16Þ

where � 2 ð0; 1Þ is the extremal index and is a measure of the degree of extremal dependence in the

series, and can be interpreted as the reciprocal of the mean cluster size; for a more detailed discussion

of the extremal index, see Coles (2001). Setting x ¼ zr in Equation (16), equating this to 1� r�1 and

solving for zr, gives the r-year return level of the process, or the value which is exceeded (on average)

once every r years. In the context of extreme wind speeds, the 50-year return level is used by the

British Standards Institution (1997) to produce contour maps displaying the strength requirements for

buildings and other such large structures so that this level of wind speed can be withstood. Thus, the

accuracy and precision of return level estimation is an important design requirement.

4.3. Predictive analysis

The objective of most extreme value analyses is to obtain an estimate of the probability of future events

reaching extreme levels; conveniently, prediction is neatly handled within a Bayesian setting. For

example, we have seen in Subsection 2.2 that a suitable marginal model for the threshold excess Y of a

process is Y � GPDð�; �Þ. Estimation of w ¼ ð�; �; �Þ could be made on the basis of previous

observations x ¼ ðx1; x2; . . . ; xnÞ using the Markov chain model approach with logistic dependence

parameter � quantifying the degree of extremal dependence between successive extremes. Allowing

for uncertainty in parameter estimation and future observations,

Pr Y � yjx1; . . . ; xnf g ¼
Z
W

Pr Y � yjwf g�ðwjxÞdw ð17Þ

1Details of MCMC techniques are now extensively published (Smith and Roberts (1993), for example) and so are omitted here.
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gives the distribution of a future threshold excess. Solving

Pr Y � zr;predjx1; . . . ; xn
� � ¼ 1� r�1 ð18Þ

for zr;pred therefore gives an estimate of the r-year return level, which incorporates uncertainty due to

model estimation. Although Equation (17) is analytically intractable, it can be approximated since we

have estimated the posterior distribution using MCMC. After removal of the ‘burn-in’ period, the

MCMC procedure gives a sample wð1Þ; . . . ;wðBÞ that can be regarded as realisations from the

stationary distribution �ðwjxÞ. Thus

Pr Y � zr;predjx1; . . . ; xn
� � � 1

B

XB
i¼1

Pr Y � zr;predjwðiÞ
n o

ð19Þ

which we can set equal to 1� r�1 and solve for zr;pred using numerical methods (Coles, 2001).

4.4. Results for High Bradfield

Though not shown here, the MCMC sample paths showed rapid convergence to their apparent

stationary distributions, with good mixing properties. Table 2 shows posterior means (and standard

deviations in parentheses) for the GPD scale and shape parameters and the logistic dependence

parameter (for each month), as well as the thresholds used. Table 2 shows that the posterior draws for

the logistic dependence parameter typically range between 0.3 and 0.45, representing strong (or at

least moderate) temporal dependence for all months. Though these values are of interest in their own

right, the increased complexity (and computational expense) of modelling temporal dependence in this

way can only be justified if it can be shown that there are real practical advantages over the simpler

methods which ignore dependence or filter out a set of independent exceedances.

As discussed earlier, estimates of return levels are used in a practical setting to specify design

requirements for buildings and other such structures. The annual exceedance rate of zr is given by

Table 2. Posterior means (and standard deviations) of the GPD scale and shape parameters and logistic
dependence parameter for each month m ¼ 1; . . . ; 12, Also shown are the monthly thresholds.

Month (m) um �m �m �m

1 59.8 8.078 (0.640) �0.084 (0.057) 0.346 (0.016)
2 45.7 8.123 (0.665) �0.090 (0.057) 0.368 (0.018)
3 51.3 8.898 (0.668) �0.339 (0.051) 0.429 (0.019)
4 43.4 8.390 (0.665) �0.259 (0.054) 0.360 (0.018)
5 35.4 6.843 (0.586) �0.105 (0.063) 0.354 (0.018)
6 37.9 3.932 (0.350) 0.076 (0.068) 0.449 (0.019)
7 35.1 7.451 (0.566) �0.397 (0.050) 0.424 (0.020)
8 35.2 6.955 (0.610) �0.086 (0.063) 0.352 (0.018)
9 35.1 9.894 (0.405) �0.133 (0.025) 0.294 (0.009)
10 48.4 7.718 (0.634) �0.217 (0.060) 0.425 (0.018)
11 52.4 7.349 (0.594) �0.046 (0.052) 0.416 (0.019)
12 53.8 8.332 (0.746) �0.103 (0.069) 0.370 (0.017)
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X12
m¼1

f1� GmðzrÞhm�mg; m ¼ 1; . . . ; 12 ð20Þ

where f1� GmðzrÞhm�mg is the annual exceedance rate of zr in monthm (from Equation (16)),Gm is the

GPD distribution function in month m with parameters �m and �m (from Equation (1)) and hm is the

number of hours in month m. By setting this equal to r�1, the solution for zr is the r-year return level to

a good approximation, provided r is large (Coles, 2001). The extremal index in Expression (20)

ensures we incorporate the temporal dependence of the series into the estimation of zr, and is

implicitly defined through the value of �m. Thus, for each posterior draw for �m we obtain a

corresponding posterior draw for �m through simulation; for a more detailed discussion about how this

is done, see Fawcett (2005). Expression (20) can then be set equal to r�1 and solved for zr for each

posterior draw of �m, �m and �m to obtain posterior draws for the r-year return level zr.

Figure 2 shows posterior densities for the 10-, 50-, 200- and 1000- year return levels, constructed

after the removal of burn-in; the numerical posterior summaries are given later in Table 4 (we report

the posterior median rather than the mean due to the severe asymmetry shown in Figure 2). Also shown

in Table 4 are the corresponding predictive return levels which have taken into account uncertainty in

parameter estimation and future observations. Figure 3 shows a plot of these predictive return levels

(on the usual -log{-log(1� r� 1)} scale, given in bold); the corresponding posterior medians for some

standard return levels are also shown for comparison, with their associated 95 per cent credible
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Figure 2. Posterior densities for the 10-, 50-, 200- and 1000-year return levels (z10; z50; z200 and z1000 respectively).
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Table 3. Posterior means (and 95 per cent credible intervals) for dependence
parameters in January.

Model �1 �1

Logistic 0.346 (0.312, 0.379)
Bilogistic 0.413 (0.371, 0.455) 0.405 (0.359, 0.448)
Dirichlet 0.423 (0.374, 0.466) 0.430 (0.381, 0.482)

Table 4. Posterior medians (and 95 per cent credible intervals) for return levels based on the first and second-
order Markov chain model; Corresponding predictive values are also shown; wind speeds are in knots.

z10 z50 z200 z1000

First-order model 96.21 103.14 108.15 113.55
(91.69, 102.80) (96.61, 115.92) (99.63, 131.64) (104.57, 149.31)

Predictive (zr;pred) 100.71 111.96 124.28 144.94

Second-order model 96.79 103.28 108.15 113.41
(92.03, 102.11) (97.53, 115.42) (99.91, 129.98) (106.47, 148.90)

Predictive (zr;pred) 100.02 111.43 123.37 143.78
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Figure 3. Predictive return level curve (bold line) for High Bradfield, Also shown, for comparison, are posterior medians for

some standard return levels with their 95 per cent credibility bands.
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intervals. Clearly, designing to this lower level could lead to substantial underprotection due to

uncertainty in parameter estimation (particularly for longer period return levels, for which even

designing to the upper limit of the 95 per cent credible interval might be inadequate).

5. FURTHER MODELLING CONSIDERATIONS

We now investigate the sensitivity of inferences to the choice of model for consecutive pairs of hourly

wind speeds observed at High Bradfield. We also consider the possibility that a higher-order Markov

chain model might be more appropriate for the temporal dependence contained in our data, and

investigate the ability of such models to capture certain cluster characteristics, information about

which is completely lost if temporal dependence is either ignored, or filtered out via some declustering

scheme.

5.1. Alternative models for temporal dependence

The main reason for the popularity of the logistic model (12) is its flexibility, with all levels of positive

temporal dependence—complete independence to perfect dependence—catered for by the depen-

dence parameter �. The derivation of the joint distribution function for the bivariate logistic model

from Equation (10) is not obvious, but it can be shown that Equation (12) can be obtained by letting H

have the density function

hðqÞ ¼ 1

2
ð��1 � 1Þfqð1� qÞg�1�1=�fq�1=� þ ð1� qÞ�1=�g��2 ð21Þ

on 0 < q < 1 (Coles, 2001). The mean constraint (11) is automatically satisfied for this model because

of the symmetry about q ¼ 0:5. However, one limitation of the logistic model due to the symmetry of h

is the fact that the variables x and y in Equation (12) are exchangeable. The following two models are

suggested as alternatives to the symmetric logistic model, to account for the possibility of an

asymmetric dependence structure.

5.1.1. The bilogistic model. A generalisation of the logistic model that allows for asymmetry in the

dependence structure is the bilogistic model, derived by Joe et al. (1992). Here, h has the density

function

hðqÞ ¼ 1

2
ð1� �Þð1� qÞ�1

q�2ð1� aÞa1�� �ð1� aÞ þ �af g�1 ð22Þ

on 0 < q < 1, where � and � are parameters such that 0 < � < 1 and 0 < � < 1, and a ¼ aðq; �; �Þ is
the solution of

ð1� �Þð1� qÞð1� aÞ� � ð1� �Þqa� ¼ 0: ð23Þ

When � ¼ �, this model reduces to the logistic model. The value �� � determines the extent of

asymmetry in the dependence structure.

MARKOV CHAIN MODELS

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics (in press)



5.1.2. The Dirichlet model. An alternative (asymmetric) model proposed by Coles and Tawn (1991) is

the Dirichlet2 model, where

hðqÞ ¼ ���ð�þ � þ 1Þð�qÞ��1 �ð1� qÞf g��1

2�ð�Þ�ð�Þ �qþ �ð1� qÞf g�þ�þ1
; ð24Þ

and where 0 < q < 1, and the parameters satisfy � > 0 and � > 0. As with the bilogistic model, the

Dirichlet model is symmetric in the case � ¼ �.
Table 3 shows the results of fitting a Markov chain model to the High Bradfield wind speed data

using the three models for dependence discussed so far—the (symmetric) logistic model, the bilogistic

model, and the Dirichlet model. We show posterior means and 95 per cent credible intervals for

January (hence the parameter subscript 1), though similar model comparisons are observed for other

months. The similarity between the dependence parameters within both the bilogistic and Dirichlet

models suggests that in fact there is nothing to be gained from allowing asymmetry in the dependence

structure; indeed, for both the bilogistic and Dirichlet fits the 95 per cent credible intervals for �1 and

�1 overlap substantially, and this is repeated across all other months. Recall that, when � ¼ �, the
Dirichlet model is symmetric and the bilogistic model actually reduces to the (symmetric) logstic

model given in Equation (12).

5.2. Higher-order Markov chain models

Extensions of the first-order Markov model to a general dth order Markov chain are straightforward.

The right-hand-side of Equation (2) is simply replaced by

Yn�d

i¼1

fdðxi; . . . ; xiþd�1;wÞ
,Yn�d

i¼d

fd�1ðxi; . . . ; xiþd�2;wÞ ð25Þ

where fi is the joint density of i consecutive observations. Testing between orders d � 1 and d is

equivalent to testing for conditional independence of variables within a unit simplex domain (see

Coles and Tawn, 1991). In this Section, we use this approach to compare first-and second-order

Markov assumptions for the wind speeds observed at High Bradfield. We also examine the ability of

both a first- and second-order Markov chain model to capture information on the clustering of

extremes in the wind speed data, which can also be used as a model diagnostic. We then compare

return level inference based on fitting the first-order Markov chain model (Subsection 4.4) with that,

which uses a second-order Markov assumption.

5.2.1. Fitting a second-order Markov chain model. Using the inferential procedures outlined in

Section 4, we now fit a second-order Markov chain model (with logistic dependence structure) to the

High Bradfield wind speed data. Posterior means for � (not shown) range from 0.482 (September) to

0.621 (October), where � is now a measure of the joint dependence of successive triples of extremes.

These values are higher than those based on the first-order fit, reflecting a decay in dependence with an

increase in range.

2Coles and Tawn use the name Dirichlet since the model is developed by transformation of the standard Dirichlet family of
distributions.

L. FAWCETT AND D. WALSHAW

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics (in press)



5.2.2. Comparison of first- and second-order Markov assumptions. We now assess the suitability of

the first-and second-order Markov assumptions for our wind speed data by looking for conditional

independence of observations at lag 2. We also use both the first and second-order Markov chain

models to estimate two cluster functionals commonly studied in the hydrological literature: (i) storm

length and (ii) duration between storms.

5.2.2.1. Conditional independence between observations at lag 2. We first compare the suitability of a

first and second-order Markov structure by considering the trivariate distribution of consecutive triples

of extremes. Creating a series ~Xi by transforming the data to unit Fréchet (at sufficiently high levels),

under the fitted model the distribution of ð~Xi; ~Xiþ1; ~Xiþ2Þ is in the domain of attraction of the time series

logistic model of Coles and Tawn (1991), with parameters determined by �. This means that, if we set

Ri ¼ ~Xi þ ~Xiþ1 þ ~Xiþ2, and Wi;j ¼ ~Xiþj�1=Ri, j ¼ 1; 2; 3, then the density of the angular components

ðWi;1;Wi;3Þ is of known form. A plot ofWi;1 againstWi;3 (which we call a ‘simplex plot’ here) can help

determine the appropriateness of a first-order Markov assumption relative to a second-order one. If the

majority of points lie towards the edges of the plot, pairwise dependence (only) is implied, supporting

the adequacy of the first-order Markov chain model; a cluster of points on the interior suggests a three-

way dependence (i.e. second-order Markov chain model). For more information on using such plots

for model selection, see Coles and Tawn (1991).

Figure 4 shows two simplex plots for the High Bradfield data, one for the Markov chain model fit

for January and one for July, though similar plots were obtained for all 12 months. In both we see a

tendency for points to lie on the interior of the plot, suggesting that a second-order Markov assumption

for the temporal structure of our data might be preferable to a first-order assumption (though in some

months this is more obvious than others; for example, the simplex plot for July seems to show a more

pronounced clustering of points on the interior than that for January).

5.2.2.2. Storm length. A general summary of cluster behaviour is the distribution, !, of the number

of exceedances per cluster. In a climatological setting, this is sometimes referred to as the ‘storm

length’ (Brabson and Palutikof, 2000). A comparison between the model-based and empirical

estimates of ! is made in Figure 5 (top), which shows density plots of ! for the wind-speed data in
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Figure 4. Simplex plots of Wi;1 versus Wi;3 for the High Bradfield data: January and July.
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January (solid line), along with the corresponding density plots based on a simulated first-order

Markov chain (dotted line) and a second-order Markov chain (dashed line), the posterior means of

�1 from each of the first and second-order fits to the wind-speed data being used to simulate the

chains (with the same marginal GPD parameters as the wind-speed data also). Similar comparisons

between the empirical and model-based distribution of ! were made for other months (though

storm lengths were generally smaller during summer months). The plot in Figure 5 suggests

that the second-order model fits storm lengths much better than does the first-order model, storms

typically being of much shorter duration in the first-order model than those observed at High

Bradfield.

5.2.2.3. Duration between storms. The performance of the first-and second-order models is also

assessed by comparing empirical and model-based estimates of the times between successive storms,

the distribution of which we denote by �, again a quantity often studied in wind climatology. Figure 5

(bottom) shows the empirical distribution of � (solid line) along with model-based estimates using the

first- and second-order Markov chain models (dotted and dashed lines respectively). Again, we see a
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Figure 5. Model-based and empirical estimates of the storm length distribution ! (top) and the distribution of the duration

between storms � (bottom); the dotted and dashed lines correspond to the first-and second-order fits respectively; the bold lines

correspond to the observed distribution.
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clear preference for the second-order model, which allows for a (much) heavier tail in the distribution

of � than does the first-order model.

5.2.3. Return level estimation. The diagnostics used in 5.2.2 seem to indicate a preference for the

second-order Markov chain model over the simpler first order model for the temporal dependence in

the extremes of the wind-speed data. Thus, if we were interested in the clustering behaviour of the

wind-speed data per se, we would use the second-order model as a basis for our inference. In this

situation, the increased complexity of allowing for longer-range dependence in the extremes (with the

associated computational expense) is clearly justified. However, if return level estimation is used as a

basis for model order selection, Table 4 suggests that increasing the order of our model is unnecessary.

Table 4 reports posterior summaries for some return levels obtained for the second-order Markov chain

fit, with summaries from the first-order model obtained in Subsection 4.4 also given. We see that the

first- and second-order Markov chain models give very similar estimates of return levels, both in terms

of posterior location and variability.
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