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Abstract We consider Bayesian inference for the extremes of dependent sta-
tionary series. We discuss the virtues of the Bayesian approach to inference for
the extremal index, and for related characteristics of clustering behaviour. We
develop an inference procedure based on an automatic declustering scheme,
and using simulated data we implement and assess this procedure, making
inferences for the extremal index, and for two cluster functionals. We then
apply our procedure to a set of real data, specifically a time series of wind-
speed measurements, where the clusters correspond to storms. Here the two
cluster functionals selected previously correspond to the mean storm length
and the mean inter-storm interval. We also consider inference for long-period
return levels, advocating the posterior predictive distribution as being most
representative of the information required by engineers interested in design
level specifications.
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1 Introduction

In this paper we consider Bayesian inference for characteristics of the cluster-
ing behaviour of extremes of dependent stationary series. As a starting point,
we consider the extremal index, which characterises the strength of extremal
dependence, and for which much work has been published concerning classical
(non-Bayesian) inference. Here we adopt Bayesian inference for the extremal
index itself, and for certain characteristics of the clusters of extremes (defined
as exceedances of an appropriate threshold) which will arise as part of such a
series. A simple example would be the mean cluster size. Such quantities are
often referred to as cluster functionals (Smith et al. 1997).

There are many reasons why a Bayesian analysis of extremes might be
preferable to a standard classical (frequentist) analysis, not least the ability to
supplement information provided by the data with other sources of informa-
tion, through the prior distribution. The output of a Bayesian analysis, which
provides posterior information on the status of extremal dependence, can also
be exploited to provide posterior inferences on any cluster functional related to
this dependence, for example by use of some appropriate cluster identification
method within a Bayesian sampling scheme. In this way it becomes possible to
assess the variability of estimates of the extremal index, as well as estimates of
any other cluster functional, by direct reference to their posterior distributions.
Further, estimating return levels, i.e. the values exceeded with specified small
probability, is a design requirement in many applications, and the Bayesian
framework provides a very effective tool for achieving this, via the posterior
predictive distribution.

We begin with the usual definition of the extremal index. Let X1, X2, . . . , Xn

be the first n observations of a stationary series satisfying Leadbetter’s D(un)

condition (Leadbetter et al. 1983), and let Mn = max{X1, X2, . . . Xn}. Now let
X̃1, X̃2, . . . , X̃n be an independent series, with X̃ having the same distribution
as X, and let M̃n = max

{
X̃1, X̃2, . . . , X̃n

}
. Then if M̃n has a non-degenerate

limit law given by Pr
{
(M̃n − b n)/an ≤ x

} → G(x), it follows that

Pr {(Mn − bn) /an ≤ x} → Gθ (x), (1)

for some 0 ≤ θ ≤ 1 (Leadbetter et al. 1983). The parameter θ is known as the
extremal index.

The concept of the extremal index was developed in a series of papers
including Newell (1964), Loynes (1965), O’Brien (1974) and Leadbetter et al.
(1983), with a review by Leadbetter and Rootzén (1988). From a statistical
point of view, since there are already many publications on estimating extreme
value distributions from i.i.d. data, it can be seen that estimating the extremal
index is a key problem. To this end, the extremal index has been the focus of
much recent theoretical and practical research—see Ferro and Segers (2003),
Ancona-Navarrete and Tawn (2000), Smith and Weissman (1994) and Smith
(1992).

The conventional approach to estimation of the extremal index, as well
as the estimation of any other cluster functional, has been to identify
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(empirically) clusters of extreme events, and then to use ad hoc methods
to study within-cluster behaviour (see, for example, Coles 2001). However,
estimates are often highly sensitive to the choice of cluster identification
procedure, and it is difficult to assess the variability of our estimators using
such an empirical approach.

Ancona-Navarrete and Tawn (2000) suggest a maximum likelihood esti-
mator for the extremal index which makes use of the characterisation in
expression (1). However, the estimation of cluster functionals still requires
the identification of clusters of extremes, and so this problem is still subject
to issues of sensitivity.

Smith et al. (1997) use parametric models for the temporal evolution of
extremes to simulate clusters of extremes for a process, allowing the study of
estimates of the extremal index, and other cluster functionals by analysing
their sampling distributions obtained via repeated simulation-estimation.
However, issues surrounding the choice of model for the dependence struc-
ture then arise, which are often non-trivial to address.

In Section 2 we review some methods used for estimating the extremal
index, and we recap some techniques which have been proposed to assess the
variability of such estimates. We discuss how one of these methods, due to
Ferro and Segers (2003), can be extended to cover the cluster identification
process and hence can be used to make inferences on various cluster func-
tionals. We also discuss the practicalities of Bayesian inference and how the
methods suggested by Ferro and Segers (2003) can be adapted to work within
the Bayesian framework. In Section 3 we illustrate the implementation (and
assess the performance) of such methods in the Bayesian framework using sim-
ulated data, obtaining a posterior distribution for the extremal index and two
selected cluster functionals. In Section 4, these techniques are implemented
for a time series of genuine wind-speed data obtained at High Bradfield in
northern central England. The same two cluster functionals here correspond
to the mean storm duration, and the mean duration of calm periods (both
of interest to practitioners), and inference on return levels is based on the
posterior predictive distribution.

2 Inference for the Extremal Index and Cluster Characteristics

2.1 Cluster Size Methods

Section 1 gives a formal definition of the extremal index; an alternative
characterisation, provided by Hsing et al. (1988), is that θ−1 is the limiting mean
cluster size in the point process of exceedance times over a high threshold.
This suggests that a suitable way to estimate the extremal index can be found
through methods which identify clusters of extremes, the estimate itself being
found as the reciprocal of the mean cluster size. One such approach is ‘runs’
declustering, where a declustering interval κ is chosen such that a cluster of
extremes above a threshold is deemed to have terminated when at least κ
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consecutive observations fall below that threshold. Another method is ‘blocks’
declustering. This method of cluster identification partitions the data into
approximately k blocks of length τ and the threshold exceedances within each
block are treated as a single cluster of extremes. As with most other cluster
identification procedures, both of these require an arbitrarily chosen auxiliary
parameter (e.g. the declustering interval κ in ‘runs’ declustering and the block
size τ in ‘blocks’ declustering), the choice of which can seriously influence
the extremal index estimate. Such estimation procedures are also completely
empirical, giving a point estimate for θ without any natural way to quantify
the uncertainty associated with it. For a more detailed discussion of both ‘runs’
and ‘blocks’ declustering see, for example, Smith and Weissman (1994).

From the estimate for θ it is possible to obtain point estimates for certain
cluster functionals. However, estimation of such quantities will also be vul-
nerable to the choice of declustering parameter used in the original cluster
identification process, and once again, the variability of the estimates is difficult
to quantify.

2.2 Maxima Methods

Another class of estimators, based on block maxima and using the charac-
terisation in expression (1), has been developed by, amongst others, Gomes
(1993) and Ancona-Navarrete and Tawn (2000). From expression (1) it can
be seen that, relative to the independent case, the effect that introducing
extremal dependence to the time series has on the limiting distribution of
block maxima is to change this distribution from G(x) (for i.i.d. variables)
to Gθ (x) (for a stationary dependent sequence). The distributions G(x) and
Gθ (x) can be estimated using data on maxima obtained from (respectively) the
observed stationary sequence, and a constructed independent sequence with
the same marginal distribution as the stationary sequence. Then, by a suitable
comparison of these two estimated distributions, θ itself can be estimated
(see Gomes 1993).

First consider the estimation of the distribution of the maximum of any sta-
tionary sequence divided into k blocks of length τ . If we denote the maximum
of the ith block by Mτ,i, for i = 1, . . . , k, then it follows that, for large enough
τ , the Mτ,i are approximately independent observations from a distribution
G(x; μ, σ, ξ), being a generalised extreme value (GEV) distribution, where

G(x; μ, σ, ξ) = exp

{

−
[

1 + ξ

(
x − μ

σ

)]−1/ξ

+

}

, (2)
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and a+ = max(0, a). The parameters μ (∞ < μ < ∞), σ (σ > 0) and ξ (−∞ <

ξ < ∞) are location, scale and shape parameters respectively. These parame-
ters can be estimated by assuming the Mτ,i values are a random sample from
the GEV distribution and using, for example, maximum likelihood estimation
(see Coles 2001, Chapter 3, for details of both the limiting theory and the
estimation ideas).

For any stationary sequence, an exchangeable sequence with the same
marginal distribution as the dependent sequence can be generated by ran-
domising the index of the observations. This exchangeable series acts as a
good approximation to an associated i.i.d. series, such as the independent series
prior to expression (1). For this associated series, denote the block maxima by
M̃τ,i for i = 1, . . . , k. Now if the M̃τ,i were i.i.d. GEV random variables having
distribution G(x; μ, σ, ξ) , and if the extremal index of the dependent series is
equal to θ , then from Eq. 1, the block maxima of the dependent series, Mτ,i,
have a distribution Gθ (x; μ, σ, ξ), which is easily seen to be a GEV distribution
G(x; μθ, σθ , ξθ ), where

μθ = μ − σ(1 − θξ )/ξ,

σθ = σθξ and

ξθ = ξ.

Gomes (1993) proposed estimating θ from estimates (μ̂, σ̂ , ξ̂ ) and (μ̂θ , σ̂θ , ξ̂θ )

obtained from the separate fits to the two sets of block maxima. A pooled
estimate of ξ is calculated as

ξ̃ = σ̂ − σ̂θ

μ̂ − μ̂θ

.

Then an estimate of θ is given by

θ̂ =
(

σ̂

σ̂θ

)−1/ξ̃

.

Ancona-Navarrete and Tawn (2000) advanced this idea further. They sug-
gested that, instead of separately estimating the two sets of GEV parameters
and then manipulating these to estimate θ , it would be better to simultaneously
estimate all the components of the augmented parameter vector (μ, σ, ξ, θ),
which is a sufficient statistic for the joint distribution (Mτ , M̃τ ).

To undertake this simultaneous estimation, the components of the vector

(Mτ , M̃τ ) = (Mτ,1, . . . , Mτ,k, M̃τ,1, . . . , M̃τ,k) (3)
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are treated as independent (but not identically distributed) GEV random
variables. Thus, the joint log-likelihood is given by

�(μ, σ, ξ, θ |Mτ , M̃τ ) = −k(logσ + ξ logθ) −
k∑

i=1

[
σ + ξ(Mτ,i − μ)

σθξ

]−1/ξ

−(1/ξ + 1)

k∑

i=1

log
[
σ + ξ(Mτ,i − μ)

σθξ

]

−klogσ −
k∑

i=1

[

1 + ξ

(
M̃τ,i − μ

σ

)]−1/ξ

−(1/ξ + 1)

k∑

i=1

log

[

1 + ξ

(
M̃τ,i − μ

σ

)]

. (4)

Although the joint vector in Eq. 3 is not independent, Ancona-Navarrete and
Tawn (2000) demonstrate that the impact of this approximation is asymp-
totically zero, and argue that it is always likely to be negligible in practice.
The extremal index θ can then be estimated (simultaneously with the GEV
parameters μ, σ and ξ) via maximisation of � in Eq. 4.

It is also possible to estimate the limiting mean cluster size by inversion
of the extremal index estimator, and assess the variability of this and the
estimator for the extremal index itself, by reference to the usual asymp-
totic properties of maximum likelihood estimators. However, other cluster
characteristics require the systematic identification of clusters of extremes
using a declustering technique. For such cluster functionals, estimates remain
vulnerable to the choice of technique used to identify clusters, and hence the
methods based on maxima do not improve over the cluster size methods when
such quantities are of interest.

2.3 Simulation Methods

Smith et al. (1997) propose a simulation framework for estimating the extremal
index and other cluster functionals. They fit a first-order Markov chain model
to their data, modelling the distribution of consecutive pairs of extremes using
bivariate extreme value distributions. They assess the suitability of the first-
order Markov assumption for their data, and then use ad hoc procedures to
compare different models for the choice of dependence structure. The bivari-
ate logistic model, with dependence parameter α ∈ (0, 1] (see, for example,
Coles 2001), is found to be the most suitable model to represent the temporal
evolution of the extremes of their process, and the estimated value of α is
then used to repeatedly simulate clusters of extremes from their series. For
each series of simulated clusters the extremal index is estimated using the runs
estimator, as well as other cluster functionals, and 95% confidence intervals
are obtained from this collection of estimates.
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Although Smith et al. (1997) find that a first-order Markov assumption
seems adequate for the extremes of their process, in common with standard
time series modelling, the selection of model-order can be difficult. Testing
between orders d − 1 and d is equivalent to testing for conditional indepen-
dence of variables within a unit simplex domain (Smith et al. 1997). Standard
likelihood procedures can be used, though models will typically be non-nested,
and so it may be necessary to use more informal goodness-of-fit assessments
based on comparisons of predicted and observed functionals of interest. The
same difficulties can also arise when selecting between different dependence
models of a given order; work by Fawcett (2005) also shows that estimates of
the extremal index and other cluster functionals are highly sensitive both to
the choice of model, and the choice of model-order.

2.4 Methods Based on Inter-arrival Times of Extremes

Ferro and Segers (2003) provide an alternative approach to inference for
clusters of extremes. Consider a high threshold u, with marginal exceedance
probability F̄(u). Now consider a sequence of exceedances of u, and denote
by T(u) the random variable corresponding to the inter-arrival times of con-
secutive exceedances (known as ‘inter-exceedance times’). Ferro and Segers
(2003) show that under a reasonable mixing condition, and to a first-order
approximation, the distribution of inter-exceedance times is given by

Pr (T(u) > n) = θ
(
1 − F̄(u)

)nθ
. (5)

As with the maxima method of Ancona-Navarrete and Tawn (2000), a maxi-
mum likelihood estimate of θ can be found by numerical optimisation of the
likelihood associated with the model in Eq. 5. Unfortunately, as Ferro and
Segers (2003) explain, a combination of two features can cause it to perform
poorly. Firstly, the distribution (5) from which the likelihood is constructed is
not a good model for the smallest inter-exceedance times. Secondly, the asso-
ciated log-likelihood is extremely sensitive to the number of inter-exceedance
times equal to one; the observed value may be far from the value that is
expected under the model, in which case poor estimates result.

Due to the shortcomings of the model in Eq. 5 we choose only to exploit
an extension to the inter-exceedance times methodology of Ferro and Segers
(2003). This extension provides an “automatic” scheme for the identification
of clusters which avoids the need to make an arbitrary choice of declustering
parameter, allowing the inter-arrival times between threshold exceedances to
identify clusters in a more natural way than those schemes which require an
arbitrary auxiliary parameter (such as standard ‘runs’ or ‘blocks’ declustering
as described in Section 2.1). They outline their declustering method as follows.
Inter-arrival times of threshold excesses are classified into two types: indepen-
dent inter-cluster times and independent sets of intra-cluster times. Given the
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set of inter-arrival times Ti; i = 1, . . . , N − 1, between threshold exceedances
S1, . . . , SN , we can assume that the largest C − 1 = �θ N� inter-arrival times
are approximately independent inter-cluster times that divide the remainder
into approximately independent sets of intra-cluster times. More precisely,
if T(C) is the C-th largest inter-arrival time and Ti j is the j-th inter-arrival
time to exceed T(C), then {Ti j}C−1

j=1 is a set of approximately independent inter-
cluster times. Let T j = {Ti j−1+1, . . . , Ti j−1}, where i0 = 0, iC = N and T j = ∅ if
i j = i j−1 + 1. Then {T j}C

j=1 is a collection of approximately independent sets of
intra-cluster times. Essentially, this approach is equivalent to runs declustering
with κ = T(C), where C = �θ N� + 1; however, the declustering parameter is no
longer chosen arbitrarily—the specific value of κ is now governed by the level
of extremal dependence in the process, which is quantified by θ .

2.5 Bayesian Methods

Before we consider methods for estimating the extremal index (and other
characteristics of clustering behaviour) within the Bayesian framework, we
give a general introduction to Bayesian methods in extremes.

Although the Bayesian paradigm was quite late to be adopted by statisti-
cians working on extreme value theory and methods, there is now a reasonable
body of literature focusing on Bayesian statistics for extremes. For some
general background, Coles (2001) devotes a section to this topic in Chapter
9, while Stephenson and Tawn (2004) review the literature in a paper which
focuses on accounting for the three extremal types. Coles and Powell (1996)
carry out a comprehensive review of the literature up to that date, and analyse
wind data from a number of locations in the USA by constructing a prior for
the GEV parameters based on estimates obtained at other locations.

Among the other significant contributions, Coles and Tawn (1996) use
expert knowledge to construct a multivariate prior for the GEV parameters,
and Smith and Walshaw (2003) extend this idea to bivariate distributions for
extreme rainfall at pairs of locations within a region. Smith (1999) considers
predictive inference under the Bayesian and frequentist paradigms, and Smith
and Goodman (2000) and Bottolo et al. (2003) construct Bayesian hierarchical
models for extreme values in insurance problems. Fawcett and Walshaw
(2006a) model extreme wind speeds in a region of the UK using a Bayesian
hierarchical model. Fawcett and Walshaw (2006b) consider Bayesian inference
for Markov chain models (also for extreme wind speeds) using a simulation
framework similar to that used by Smith et al. (1997), outlined in Section 2.3,
to obtain estimates of the extremal index.

For Bayesian inference in our general context, we assume that the data x =
(x1, . . . , xn) provide our information on clustering behaviour by coming from
a density within a parametric family F = { f (x; ψ) : ψ ∈ �}. So, for example,
x may be a vector of block maxima as given in Eq. 3, or it may be a vector of
inter-exceedance times for observations above a suitable high threshold. We
wish to make inference on the parameter vector ψ (in the parameter space �).
Denote the likelihood function for ψ by L(ψ |x) = f (x; ψ), and suppose that
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our prior beliefs about ψ are expressed by the probability density function
π(ψ). Then Bayes’ Theorem gives the posterior density as

π(ψ |x) = π(ψ)L(ψ |x)

f (x)
. (6)

Computation of the denominator in Eq. 6 can be problematic, as the solution
is usually analytically intractable. Stochastic simulation using a Markov chain
Monte Carlo (MCMC) method provides a now widely used solution.

The idea behind one such method, the Metropolis–Hastings sampler (see,
for example, Smith and Roberts 1993), is to produce simulated values from
the posterior distribution in the following way: set an initial value ψ (1), and
specify an arbitrary probability rule q(ψ (i+1)|ψ (i)) to simulate future values. At
each step in the simulation, the probability rule q(�|ψ (i)) is used to generate a
proposal value ψ∗ for ψ (i+1). We then set ψ (i+1) equal to ψ∗ with probability

Ai = min

{

1,
π(ψ∗)L(ψ∗|x)q(ψ (i)|ψ∗)

π(ψ (i))L(ψ (i)|x)q(ψ∗|ψ (i))

}

,

or put ψ (i+1) = ψ (i) otherwise. Whether or not the move is accepted or rejected
depends on the acceptance probability, which itself depends on the relation-
ship between the density of interest and the probability rule. A common choice
for this probability rule is a random walk chain, where the proposal ψ∗ at
iteration r is ψ∗ = ψ (r) + εr, where the εr are i.i.d. random variables. It can be
shown that the generated sequence has a stationary distribution which, under
simple regularity assumptions, is the target posterior distribution in Eq. 6. No
matter what the choice of q, the rejection steps outlined above ensure that the
simulated values have, in the limit, the desired marginal distribution.

To implement an estimation procedure for the extremal index θ (and indeed
any other cluster functional) in the Bayesian setting, we require a likelihood
function involving θ . In this paper, in order to obtain draws from the posterior
distribution for θ , we exploit the log-likelihood � given in Eq. 4. However,
we then combine this with the inter-exceedance times methodology of Ferro
and Segers (2003), outlined in Section 2.4, to obtain draws from the posterior
distribution for the declustering interval κ . We do this by setting κ equal to the
C-th largest inter-exceedance time, where C = �θ N� + 1 (see Section 2.4). For
each posterior draw for κ we can then implement a runs declustering scheme
to identify unique clusters of extremes, and so obtain an associated posterior
draw for any other cluster functional. Specifically, we implement the following
steps:

1. Obtain a posterior sample ψ (1), . . . , ψ (R), where ψ = (μ, σ, ξ, θ), and R
is the number of iterations in our MCMC scheme, using log-likelihood �

(Eq. 4);
2. Calculate C(r) = �θ(r)N� + 1, r = 1, . . . , R;
3. Find κ(r), the C(r)-th largest inter-exceedance time, that is the C(r)-th order

statistic in the sequence Ti, i = 1, . . . , N − 1, r = 1, . . . , R;
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4. Use each κ(r), r = 1, . . . , R, as the declustering interval to implement a full
cluster identification procedure based on runs declustering;

5. Use each set of identified clusters found using κ(r), r = 1, . . . , R, to estimate
any other cluster characteristic, say H(r), and so obtain draws from the
(approximate) posterior distribution for that functional also.

3 Application to Simulated Data

In this section we use simulated data to investigate the performance of the
procedure for implementing Bayesian inference, described in Section 2.5. In
Section 3.1 we describe the simulation of a dependent series. Section 3.2
contains some preliminary analyses based on using the non-Bayesian methods
described in Sections 2.1 and 2.2, and in Section 3.3 we implement our full
MCMC scheme.

3.1 Simulation of a Dependent Series

We generate a sequence of artificial data Xi; i = 1, . . . , n, where the joint
distribution of each pair of consecutive observations is given by the c.d.f.

G(xi, xi+1; α) = exp
[− {

exp (−xi/α) + exp (−xi+1/α)
}α] ; i = 1, . . . , n − 1,

for xi, xi+1 > 0 and α ∈ (0, 1]. Independence and complete dependence corre-
spond to α = 1 and α → 0 respectively. This is the symmetric logistic model for
dependence of bivariate extremes, as described by Tawn (1988). In this form,
it ensures that the sequence is stationary with identically distributed Gumbel
margins (i.e. having F(x) = exp

{−exp(−x)
}
), and that there is genuine ex-

tremal dependence in the time series, the strength of which is controlled by the
value of α. With this marginal choice the lag 1 autocorrelation is 1 − α2. The
precise method of simulation utilises an envelope rejection method to simulate
each value of xi+1 conditional on xi, so that (xi, xi+1) has a bivariate unit
exponential distribution. The margins are then transformed to the required
Gumbel form (Fawcett 2005, Chapter 5). In the present study, we simulate
two series of length n = 10,000 with a fixed level of dependence—α = 0.2 and
α = 0.5. These values of α give lag 1 autocorrelations of 0.96 and 0.75, and
Smith (1992) shows that the corresponding values of θ are 0.0616 and 0.328
(respectively).

3.2 Preliminary Analyses

A 95% marginal quantile was used to identify extreme events in each sim-
ulated time series; work by Ancona-Navarrete and Tawn (2000) shows that
the choice of threshold used to identify extremes has a very limited effect on
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estimates of the extremal index, provided reasonable values are chosen and
the threshold level is high. Using each of the ‘runs’ and ‘blocks’ declustering
methods described in Section 2.1, we have estimated the extremal index as
the reciprocal of the observed mean cluster size, using various values of the
declustering parameter in each scheme to identify clusters. Figure 1 shows a
plot of the declustering parameter against the extremal index estimate for both
schemes, and for both simulated series. From these plots, the shortcomings
of such cluster size estimation procedures are clear: estimation of θ is both
sensitive to the choice of declustering scheme (here, ‘runs’ and ‘blocks’) and
the choice of auxiliary parameter within the chosen scheme (κ and τ for ‘runs’
and ‘blocks’ respectively). Sensitivity of estimates of the extremal index to
the choice of declustering scheme and/or the choice of parameter within that
scheme will also lead to the sensitivity of any other cluster characteristic which
is a function of θ . Indeed, some cluster functionals will be defined by the way
in which clusters are identified, leading to a direct dependence between these
functionals and, for example, the value for κ used in ‘runs’ declustering; two
examples are the mean cluster length and the mean interval duration between
clusters (which we denote by ρ and ω, respectively). Thus it is important to
develop methods for estimating the extremal index, and indeed any functional
of cluster behaviour, without the need to make arbitrary choices of cluster
identification scheme or within-scheme auxiliary parameter.

We can use the approach of Section 2.2 to obtain a maximum likelihood
estimator for θ , by numerical optimisation of � in Eq. 4. Doing so gives θ̂ =
0.063 (0.052) and θ̂ = 0.297 (0.047) for the series with θ = 0.0616 and 0.328
(respectively, standard errors in parentheses). Inverting θ̂ gives an estimate of
the limiting mean cluster length: ρ̂ = 15.873 (0.212) and ρ̂ = 3.367 (0.193) for

Fig. 1 Plot of estimates of the extremal index, θ , against the declustering parameter used to
identify clusters of extremes (κ for ‘runs’ declustering and τ for ‘blocks’ declustering). The solid
lines indicates estimates obtained using ‘runs’ declustering, the dotted lines ‘blocks’ declustering.
The horizontal broken lines represent the true parameter values. Estimates in the left panel have
been obtained from a series with α = 0.2; in the right panel, α = 0.5.
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the same two series (estimates of the standard error have been found via the
delta method—see, for example, Coles 2001, page 33). This approach does not
extend to the estimation of other cluster functionals, however, which require
the identification of clusters of extremes (see above).

3.3 Implementation of the MCMC Scheme for Bayesian Inference

Here we implement the Bayesian inference procedure developed in Section
2.5. We specify independent, highly uninformative prior distributions for the
GEV parameters in Eq. 2. Specifically, we use

μ ∼ N
(
0, 104

)
,

log(σ ) ∼ N
(
0, 104

)
and

ξ ∼ N
(
0, 102

)
,

where the Normal distribution here is specified by its mean and variance. We
work with log(σ ) for computational convenience and to retain the positivity
of the scale parameter σ ; simple exponentiation of the posterior draws for
log(σ ) can then be used to obtain posterior draws for σ itself. In the absence
of any useful prior information about the extremal index, we again choose an
uninformative option, specifically the flat prior:

θ ∼ U(0, 1).

Though not attempted in this paper, any subsequent Bayesian inference for
the extremal index, or for any cluster functional derived from this using the
scheme outlined at the end of Section 2.5, has the potential to be improved by
using prior distributions for μ, log(σ ), ξ and θ which are derived from carefully
elicited prior information about these parameters, instead of the largely non-
informative priors used here.

We use a Metropolis–Hastings sampling scheme with random walk updates
to simulate from the posterior density for ψ = (μ, σ, ξ, θ). We implement the
Metropolis–Hastings sampler over R = 50,000 iterations, to obtain a posterior
sample ψ (1), . . . , ψ (50,000), and then use the posterior draws θ(1), . . . , θ (50,000) to
obtain posterior samples for the runs declustering parameter κ , as well as the
two cluster functionals ρ and ω (using steps 3–5 of the sampling scheme dis-
cussed in Section 2.5). The sampler was initialised at various starting points to
confirm convergence to the stationary distribution; trace plots from the MCMC
output (not shown here) confirmed quite rapid convergence, although to be
safe we discard the first 2,000 observations as ‘burn-in’. Posterior densities
after the removal of burn-in are summarised in Table 1. The posterior densities
for μ, σ and ξ are not of primary interest here and so summaries for these
parameters are omitted from this table. Also shown in Table 1, for comparison,
are the corresponding maximum likelihood estimates for θ for both simulated
series (see Section 3.2) as well as the maximum likelihood estimates for the
(limiting) mean cluster size ρ, with asymptotic standard errors in parentheses.
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Table 1 Posterior means (and standard deviations in parentheses) for the extremal index (θ),
the declustering parameter (κ) and the two cluster functionals (ρ and ω), as well as 95% credible
intervals

θ κ ρ ω

(=0.062)
Posterior mean (SD) 0.065 (0.050) 14.035 (4.002) 14.648 (0.707) 53.343 (10.546)
95% credible interval (0.031, 0.165) (6, 23) (12.203, 18.321) (32.222, 77.372)
m.l.e. (asymp. SE) 0.058 (0.052) – 13.317 (1.193) –

(=0.328)
Posterior mean (SD) 0.319 (0.048) 5.974 (3.678) 3.048 (0.237) 39.662 (5.440)
95% credible interval (0.225, 0.416) (2, 16) (2.618, 3.420) (29.715, 50.867)
m.l.e. (asymp. SE) 0.297 (0.047) – 3.361 (0.233) –

Also shown, for comparison and where available, are the corresponding maximum likelihood
estimates (m.l.e.s; and associated asymptotic standard errors in parentheses)

Overall, this simulation study has demonstrated the viability of our ap-
proach to inference. The Bayesian sampling scheme provides a more complete
inferential procedure than non-Bayesian techniques which are based on the
empirical identification of clusters of extremes (see Section 2.1), whilst also
avoiding the somewhat complex and non-trivial modelling issues surrounding
simulation-based inference schemes such as those in Smith et al. (1997).
Further, it enables direct inference on the cluster functionals of interest.

4 Application to Bradfield Wind Speed Data

4.1 Markov Chain Monte Carlo Simulations

We now apply the MCMC scheme used for the simulated data in Section 3
to make inferences for the extremal index and the two cluster functionals for
a set of real-life wind speeds. The data we use consist of hourly maximum
observations collected over a period of 10 years (January 1st 1975–December
31st 1984) at High Bradfield in the Peak District of Northern England (see
Fawcett 2005, Chapter 2). A time series plot of the first three years of this
dataset is shown in Fig. 2, and the strong seasonal element in our data is clear.
We deal with this by analysing each ‘season’ separately—here, as closely as
possible, we divide the year into twelve ‘months’ of equal length, and use these
as our seasons. The fitting of distinct model components for each month is a
tried-and-tested compromise between retaining a sufficient amount of data for
modelling, while reducing seasonal variation within each modelling unit to a
level which can be ignored (see, for example, Walshaw 1994). Also shown in
Fig. 2 is a plot of the time series against the version at lag 1, to illustrate the
degree of temporal dependence between successive observations. The lag 1
autocorrelation coefficient for our series is 0.960.

As in the simulation study, we specify independent, non-informative prior
distributions for each of the GEV parameters and the extremal index itself. We
use the same MCMC scheme to sample 50,000 iterations on θ and κ . Samples
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Fig. 2 Time series plot for the first three years (1975–1977 inclusive) of hourly maximum wind
speeds at High Bradfield. Also shown is a plot of the time series against the version at lag 1.

of ρ and ω (mean cluster length and mean interval duration between clusters
respectively) are then obtained as before.

To confirm convergence, the MCMC was run from multiple starting points.
Again, convergence was achieved quite rapidly. Table 2 summarises the results
of the MCMC scheme after the removal of ‘burn-in’ (again, 2,000 iterations)
and, as with Table 1, compares these posterior summaries with the corre-
sponding m.l.e.s (where available). In the context of the Bradfield wind speed
data, the functionals ρ and ω now correspond to the mean storm duration,
and the mean interval duration between storms, respectively. The information
provided in Table 2 regarding these functionals would be of interest to
meteorologists and engineers concerned with the physical properties of storms
which these functionals represent.

4.2 Return Levels and Predictive Inference

So far, we have discussed how Bayesian inference for the extremal index θ can
be extended to make inferences for cluster characteristics of practical interest.
In a practical setting, we are often interested in the estimation of extreme
quantiles, or return levels, as a primary aim, and so we describe how this can be
conducted as part of our procedure for inference on clustered extremes.

Table 2 Posterior means (and standard deviations in parentheses) for the extremal index (θ),
the declustering parameter (κ) and the two cluster functionals (ρ and ω), as well as 95% credible
intervals, for the Bradfield wind speed data (January)

θ κ ρ ω

Posterior mean (SD) 0.243 (0.047) 5.266 (5.840) 4.924 (0.637) 82.747 (15.271)
95% credible interval (0.162, 0.347) (2, 24) (4.289, 6.246) (56.435, 117.259)
m.l.e. (asymp. SE) 0.207 (0.042) – 4.833 (0.578) –

Also shown, for comparison and where available, are the corresponding maximum likelihood
estimates (m.l.e.s; and associated asymptotic standard errors in parentheses)
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A typical application of the generalised extreme value (GEV) distribution
is to fit Eq. 2 to a series of independent block maxima. Estimates of extreme
quantiles can then be obtained by inversion of Eq. 2, to give

zr = μ − σ

ξ

[
1 − {−log(1 − 1/r)

}−ξ
]
,

for ξ 
= 0, where G(zr) = 1 − r−1 and zr is the return level associated with
the r-year return period. In the case of ξ = 0, the c.d.f. is of Gumbel
form, obtained as the limit as ξ → 0 of Eq. 2, and given by G(x; μ, σ) =
exp {− exp[−(x − μ)/σ ]}. Inverting this gives

zr = μ − σ log
[−log(1 − 1/r)

]
.

Now for a dependent series with extremal index θ , standard arguments in
Leadbetter et al. (1983), Chapter 3, show that, for large n and x, typically

Pr
{

max
(

X̃1, X̃2, . . . , X̃n

)
≤ x

}
≈ Gnθ (x). (7)

Setting x = zr in approximation (7), equating this to 1 − r−1 and solving for zr

gives, to a good approximation, the r-year return level of the process.
With the Bradfield wind speed data, we have the added complexity of

seasonal variation. The seasonal estimates of the GEV parameters μ, σ and
ξ , and the extremal index θ , can be recombined to give overall return level
estimates for Bradfield. The annual exceedance rate zr is given by

12∑

m=1

{
1 − Ghmθm

m (zr)
}
, m = 1, . . . , 12, (8)

where 1 − Ghmθm
m (zr) is the annual exceedance rate of zr in month m (obtained

from approximation (7)), Gm is the GEV distribution function in month m
with parameters μm, σm and ξm (from model (2)), hm is the number of hours in
month m, and θm is the extremal index in month m. Expression (8) can then be
set equal to r−1 and solved for zr for each posterior draw of μm, σm, ξm and θm

to obtain posterior draws for the r-year return level zr.
If we denote by π(ψ |x) the posterior distribution for ψ = (μm, σm, ξm, θm)

given data x = (x1, . . . , xn), then the posterior predictive distribution is given
by:

Pr(X ≤ x|x1, . . . , xn) =
∫

�

Pr(X ≤ x|ψ)π(ψ |x)dψ . (9)

Solving

Pr(X ≤ zr,pred|x1, . . . , xn) = 1 − r−1

for zr,pred therefore gives the posterior predictive estimate of the r-year return
level. This estimate incorporates uncertainty due to model estimation, in addi-
tion to the uncertainty associated with future observations given any particular
model. Although Eq. 9 is analytically intractable, it is easily approximated
through the estimated posterior distribution (which is found by simulation).
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Table 3 Posterior means (and standard deviations in parentheses) for the 10, 50, 200 and 1000
year return levels for the Bradfield wind speed data, along with 95% credible intervals

z10 z50 z200 z1000

Posterior mean (s.d.) 96.48 (2.38) 103.86 (4.51) 109.65 (7.74) 116.73 (12.16)
95% credible interval (91.42, 102.77) (96.82, 115.55) (99.88, 132.01) (104.62, 149.33)
m.l.e. (asymp. s.e.) 96.75 (2.86) 103.24 (5.93) 108.15 (8.79) 113.31 (12.22)
95% profile confidence (93.70, 100.35) (99.77, 107.91) (103.88, 113.09) (108.52, 118.79)
interval
Posterior predictive 100.71 111.96 124.28 144.94

Also shown, for comparison, are the corresponding m.l.e.s (and asymptotic standard errors in
parentheses), and 95% confidence intervals based on the profile likelihood. The bottom row of
the table gives the predictive estimates of these return levels

After deletion of burn-in, we have a sample ψ (1), . . .ψ (B) which may be
regarded as observations from the stationary distribution π(ψ |x). Thus,

Pr(X ≤ zr,pred|x1, . . . , xn) ≈ 1

B

B∑

r=1

Pr(X ≤ zr,pred|ψ (r)), (10)

and we can solve approximation (10) by using a standard numerical method
(see Coles and Tawn 1996, for details of these ideas).

For Bradfield, Table 3 shows the posterior predictive estimates of the
return levels zr, together with the posterior means (and standard deviations
in parentheses), for return periods r = 10, 50, 200 and 1000 years. Also shown
are 95% credible intervals taken from the simulated posterior distribution for
these return levels. For comparison, the corresponding m.l.e.s (and associated
asymptotic standard errors) are also shown. Due to the severe asymmetry of
the likelihood surface often encountered for return levels, in the likelihood
analysis we report 95% confidence intervals based on the profile likelihood
(see, for example, Venzon and Moolgavkar 1988). The posterior predictive
return levels shown in Table 3 are arguably the most useful information
for anyone interested in design-level specifications, as they provide a pure
representation of the exceedance probability for a given wind-speed. Unlike
any point estimates provided by classical inference, these values have taken
into account the model uncertainty, in addition to the within-model process
variability.
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