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In this paper we investigate the impact of model mis-specification, in terms of the dependence structure
in the extremes of a spatial process, on the estimation of key quantities that are of interest to hydrologists
and engineers. For example, it is often the case that severe flooding occurs as a result of the observation
of rainfall extremes at several locations in a region simultaneously. Thus, practitioners might be interested
in estimates of the joint exceedance probability of some high levels across these locations. It is likely that
there will be spatial dependence present between the extremes, and this should be properly accounted
for when estimating such probabilities. We compare the use of standard models from the geostatistics
literature with max-stables models from extreme value theory. We find that, in some situations, using an
incorrect spatial model for our extremes results in a significant under-estimation of these probabilities
which – in flood defence terms – could lead to substantial under-protection.

Keywords: extreme value theory; Gaussian processes; geostatistics; max-stable processes; rainfall
extremes

1. Background and data

Over the last few decades, research in the field of extreme values has grown rapidly – both
in terms of the mathematical development of the subject and its applications. Mathematical
accounts and reviews can be found in, for example, [13,23,28,29]; more statistical treatments
may be found in, amongst others, [2,5,16]. In recent years, the need for accuracy and precision
when estimating the extremes of environmental processes has been a primary driver for the devel-
opment of increasingly sophisticated applications – especially in the modelling of multivariate
and spatial extremes. For example, understanding the behaviour of rainfall or sea-surge extremes
is crucial in flood protection, and data on such variables are often multivariate and/or spatial in
nature. Such applications often require inferences to be made well beyond the range of observed
data, requiring a certain degree of faith in the applicability of the mathematics underpinning the
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2 L. Fawcett and D. Walshaw

extrapolation; one consequence of this lack of data is highly uncertain tail estimates, often giving
extremely wide confidence intervals – a problem that a spatial/multivariate analysis can at least
attempt to address through the potential to pool information across sites or regions. There are
many useful references to work that has been important in the development of multivariate and
spatial extremes: see, for example, [7,19,24,27] for multivariate extremes and [4,10,30,31,34]
for work with a more spatial flavour.

In the last 15 years in the UK there has been a notable increase in the frequency, and severity,
of extreme precipitation events leading to localised, and sometimes more widespread, flooding.
For example: flash-flooding in Glasgow in 2002, resulting in the evacuation of over 200 people
from their homes, landslides and the contamination of drinking water; the Boscastle floods in
the southwest of England in 2004, resulting in the destruction of over 100 homes and business
properties; and flooding across the entire UK in 2007, 2008 and 2012, resulting in numerous
deaths and millions of pounds worth of damage to property and infrastructure. The year 2012
was the second wettest year in the UK since records began, and six years since 1998 are in the
top 10 wettest years (1998, 1999, 2000, 2002, 2008 and 2012). Observational studies and climate
models indicate that the occurrence and magnitude of such extreme rainfall events will continue
to increase in the future.

In many of the worst cases listed above, rivers burst their banks as a result of the observation
of simultaneous rainfall extremes at a number of sites across a region. Thus, of particular interest
here might be the estimation of:

(i) joint exceedance probabilities at a collection of sites within a region, or perhaps
(ii) exceedance probabilities/high quantiles of the aggregate rainfall observed across all sites

within a region.

By definition, such quantities are both multivariate and spatial in nature. Although (as men-
tioned above) working within a multivariate or spatial setting allows for the potential to share
information between sites, reducing the uncertainty of estimates of quantities such as those given
in (i) and (ii) [18], it is important that the models used characterise appropriately the observed
extremes, to lend confidence when extrapolating into high-dimensional space.

To date, models for spatial extremes have been based on max-stable processes (see Section 2).
A rather restrictive assumption of this class of models is that the dependence structure of the
observed extremes is comparable to that for a limiting model where dependence holds for
all events more extreme than those that have already occurred. In reality, dependence may
be observed for data above levels of practical interest, with these data being independent in
the limit. This issue of non-convergence of the dependence structure, and asymptotic indepen-
dence, is discussed in [19,20,24]. The most well-known spatial model giving such non-negligible
dependence at observable levels, whilst being independent in the limit, is probably a Gaussian
process [9]. Although diagnostic tools have been developed to help determine whether a data
set should be modelled using an asymptotically independent or asymptotically dependent model
(see Section 4.1 of this paper), the interpretation of these diagnostics can be rather subjective
and this can be a difficult task. The aim of this paper is to compare estimates of quantities like
those in (i) and (ii) under model mis-specification; that is, how are our estimates affected when
using a spatial model that assumes genuine extremal dependence when, in fact, the extremes of
the spatial process are asymptotically independent, or vice-versa?

Figure 1 shows a map of locations in the UK for which we have daily aggregate rainfall totals
(measured in mm). These sites are colour-coded according to geographically defined climate
regions representing areas of different physiological character, within which the rainfall climate
might be regarded as reasonably coherent. For further details regarding this partition, see [35].
For some regions, data are available for up to 40 years (1961–2000 inclusive). To focus on
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Figure 1. (Colour online) The 204 rainfall measurement locations by region. The points shown in grey
represent the central and eastern England (cee) region, as studied in this paper.

extreme rainfall, we filter out a set of annual maxima for each site; that is, in our analysis we
discard all but the largest daily rainfall measurement in each calendar year, reducing the num-
ber of observations per site to a maximum of 40. Within each region, and for each calendar
year, we treat the set of annual maxima from the sites within that region as a single multi-
variate observation (in terms of the simulated data in Section 3, this is referred to as a single
replication).

This paper is set out as follows. In Section 2, we provide an outline of some models used
for analysing spatial data. We include a brief description of Gaussian processes as used in the
field of geostatistics, before giving an overview of spatial models that have been developed as
an extension to the standard models from extreme value theory; for demonstration purposes,
we then apply these models to the rainfall extremes in central and eastern England, as shown
in Figure 1. In Section 3 we demonstrate a recently published R library for the simulation of
spatial extremes; we use this library to simulate extremes with known dependence structure
(using spatial models giving both asymptotic dependence and asymptotic independence) and
investigate the consequences of model mis-specification in terms of the estimation of quantities
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4 L. Fawcett and D. Walshaw

such as those given in (i) and (ii) above. In Section 4, we briefly review some diagnostics for
assessing the nature of dependence present in real-life spatial extremes, with a demonstration of
the application of one of these techniques to rainfall extremes observed in central and eastern
England. As with the simulated data in the previous section, we then investigate the effects of
model mis-specification for the rainfall process over this region of the UK.

2. Models for spatial data

2.1 Gaussian processes

By far the most simple and well-understood approach to modelling spatial data is to assume our
spatial process {Y(x)} is Gaussian; that is, {Y(x)} is a stochastic process for which any finite
linear combination of samples has a joint Gaussian distribution. This is often written as {Y(x)} ∼
GP(μ, ρ), where μ and ρ are the mean and correlation functions, respectively.

In the geostatistics literature [9,11,33], the correlation function of the Gaussian process is
usually defined by its range, nugget effect and sill/partial sill, as shown in Figure 2. For a pair
of sites, the range can be thought of as the distance beyond which observations on the variable
of interest are no longer spatially correlated. At an infinitesimally small separation distance,
there is often a correlation ‘nugget effect’, attributed to measurement errors or spatial sources of
variation at distances smaller than the sampling interval; the partial sill can be thought of as the
spatial correlation after the nugget effect, and the sill itself is the sum of the partial sill and the
nugget effect. There are a number of standard correlation functions available that will achieve
the desired effect of a decay in dependence between the measured variable at a pair of sites with
distance, as illustrated in Figure 2. For example, the exponential correlation function, with scale
parameter λ > 0, is given by

ρ(h) = exp

{−h

λ

}
, (1)

Partial

sill

         Range

Sill

Distance

Correlation

Nugget

0

Figure 2. Anatomy of a typical correlation function.
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Journal of Applied Statistics 5

where h is the distance between a pair of sites; a generalisation of this is the powered exponential
function with additional shape parameter ν, for 0 < ν ≤ 2:

ρ(h) = exp

{
−

(
h

λ

)ν}
. (2)

The Whittle–Matérn correlation function, with shape and scale parameters ν > 0 and λ > 0,
respectively, is given by

ρ(h) = (h/λ)ν

2ν−1�(ν)
Lν

(
h

λ

)
, (3)

where Lν is the modified Bessel function of order ν and �() is the gamma function. Correlation
functions such as those given by Equations (1)–(3) are isotropic, that is, they depend only on
the length of h and not its orientation; anisotropy can be added by replacing h with (hTAh)0.5,
where A is a positive definite matrix with determinant 1; see, for example, [11]. The exponential
function, as given in Equation (1), is often used for its simplicity; the powered exponential and
Whittle–Matérn functions, given in Equations (2) and (3), respectively, are more flexible owing
to the addition of the shape parameter ν, and thus also widely used in practice. Other commonly
used functions include the Cauchy and Bessel correlation functions; see [10] for more details.

Unlike max-stable models (see below), such Gaussian-based geostatistical models are widely
understood, and extremely flexible owing to the range of correlation functions that are avail-
able. Thus, in the context of the extremes of spatial processes, it is rather trivial to place the
sets of block maxima on the Gaussian scale via the probability integral transformation, hence-
forth using methods available from the standard geostatistical toolbox to model the dependence
structure. However, the requirement that the model for the original data should be max-stable
restricts the structure of the correlation function that can be used, even after transformation to
the Gaussian scale. Also, although the correlation function ρ governs the strength of depen-
dence between observations at a pair of sites across the entire range of positive dependence, all
Gaussian processes (unlike the max-stable models outlined below) bear the property of asymp-
totic independence; a property that may/may not be desirable for the spatial extremes of an
environmental process (see the discussion in Section 1).

2.2 Limiting models for extremes

The aim of this section is to summarise how standard models for extremes have been extended
to provide a spatial interpretation. Before detailing these so-called max-stable processes, we will
briefly outline the standard framework for modelling univariate/multivariate extremes within the
context of the traditional block/componentwise maxima setting (respectively).

2.2.1 Univariate considerations

Suppose Y1, Y2, . . . , Yn are independent and identically distributed random variables with dis-
tribution function F. Then, if there exists sequences of constants {an} > 0 and {bn} such
that

Pr{a−1
n (max[Y1, Y2, . . . , Yn] − bn) ≤ x} → G(x)

as n → ∞, G must be max-stable; that is,

Gn(b′
n + a′

nx) = G(x)

must hold for sequences {a′
n} > 0 and {b′

n}, where n ∈ N. It turns out that the complete family of
non-degenerate limiting distributions with this property is the generalised extreme value (GEV)
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6 L. Fawcett and D. Walshaw

distribution, with distribution function

G(y; μ, σ , ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

[
−

(
1 + ξ(y − μ)

σ

)−1/ξ

+

]
, ξ 
= 0,

exp

[
− exp

(−(y − μ)

σ

)]
, ξ = 0,

(4)

where −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞ are location, scale and shape parameters
(respectively) and u+ denotes max(u, 0). The fact that the support of the GEV depends on ξ

would lead some to prefer to think of the GEV as a family of distributions indexed by ξ . How-
ever, our characterisation above as a single three-parameter distribution with a functional form
for the support is standard throughout the extreme value literature. In practice, Equation (4) is
often used to model a set of block maxima; typically, n is set to be the number of observations
per year, giving the usual analysis of annual maxima. Estimates of an extreme quantile zr can be
obtained by equating the right-hand side of Equation (4) to 1 − r−1 and then solving for y = zr,
where zr is the r-observation return level associated with return period r. With block length equal
to one year, this is equivalent to the r-year return level, typically interpreted as the value that is
exceeded once on average every r years. Specifically,

ẑr =
⎧⎨
⎩

μ + σ

ξ
[(− log(1 − r−1))−ξ − 1], ξ 
= 0,

μ − σ log[− log(1 − r−1)], ξ = 0.
(5)

where μ, σ and ξ are replaced with their estimates μ̂, σ̂ and ξ̂ , perhaps obtained by maximising
the GEV log-likelihood. Indeed, in the maximum-likelihood setting, confidence intervals for ẑr

are usually obtained via profile log-likelihood owing to the severe asymmetry of the surface of
the log-likelihood often encountered for return levels.

2.2.2 Extension to the multivariate setting

Now suppose we have independent sequences of D-variate random variables (Y1i, Y2i, . . . , YDi),
i = 1, 2, . . . , n, with componentwise maxima

max[Y11, Y12, . . . , Y1n], max[Y21, Y22, . . . , Y2n], . . . , max[YD1, YD2, . . . , YDn].

If it exists (and is non-degenerate), the limiting joint distribution of these maxima, after marginal
transformation to standard Fréchet with distribution function exp(−1/z), for z > 0, can be
written as

Pr{Z1 ≤ z1, Z2 ≤ z2, . . . , ZD ≤ zD} = exp{−V(z1, z2, . . . , zD)}, (6)

z1, z2, . . . , zD > 0, where the exponent measure V(z1, z2, . . . , zD) can be written according to its
so-called spectral representation:

V(z1, z2, . . . , zD) =
∫
SD

max

(
ω1

z1
,
ω2

z2
, . . . ,

ωD

zD

)
dM (ω1, ω2, . . . , ωD),

where M is a measure on the D-dimensional unit simplex SD (see [27]) satisfying the constraint∫
SD

ωjdM (ω1, ω2, . . . , ωD) = 1, j = 1, . . . , D, (7)

in order to achieve unit Fréchet margins. Unlike the univariate setting, there is no simple para-
metric form for the limiting distribution; V can take any form subject to Equation (7). Commonly
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Journal of Applied Statistics 7

used choices include the logistic, negative logistic, bilogistic and Dirichlet models – see Chapter
8 in [5] for more details.

2.2.3 Extending further: the infinite-dimensional case

The infinite-dimensional analogues of multivariate extreme value distributions, as provided by
Equation (6), are max-stable processes [12]. More precisely, consider a stochastic process {Y(x)},
x ∈ R

D, having continuous sample paths. Then the limiting process is given by

{a−1
n (x)(max[Y1(x), Y2(x), . . . , Yn(x)] − bn(x))} → {Z(x)},

as n → ∞, where Yi, i = 1, . . . , n are independent replications of Y , an(x) > 0 and bn(x) ∈
R

D are sequences of continuous functions and the limiting process Z is assumed to be
non-degenerate. Schlather [30] shows that Z(x) can be written, according to its spectral
characterisation, as:

Z(x) = max[ζ1Y1(x), ζ2Y2(x), . . .],

where ζ1, ζ2, . . . are the points of a Poisson process on (0, ∞] with intensity d
(ζ) = ζ−2dζ

and E[Y(x)] = 1 for all x ∈ R
D. Different choices for the process Y give some useful max-

stable processes, such as the Gaussian extreme value process, sometimes referred to as the Smith
model after the (famously) unpublished University of Surrey technical report by Smith [31]; the
extremal Gauss process [30], arrived at by allowing the {Y(x)} to be a (stationary) standard Gaus-
sian process with some correlation function ρ (see Section 2.1); and Brown–Resnick processes,
obtained by taking {Y(x)} as exp{U(x) − σ 2(x)/2}, where U(x) is a (stationary) Gaussian process
with variance function σ 2(x) [22]. The extremal Gauss process cannot account for independence
between extremes when the distance h increases indefinitely; recently, Brown–Resnick processes
have been cited as an important alternative, as they possess the property of independence in the
limit as h → ∞. de Haan and Pereira [14] give additional examples; a comprehensive review is
provided by Davison et al. [10].

2.3 Application to rainfall data: central and eastern England

As an illustration of the spatial models discussed in this section so far, we demonstrate the use of
a recently published R library – namely the CompRandFld library [26] – to fit a Gaussian pro-
cess, and two max-stable processes, to the annual maximum rainfall measurements at locations in
the central and eastern England region shown in Figure 1. We have rainfall measurements for 21
sites in this region. In some years, the annual maximum rainfall observation is missing at some
sites; when this occurs, we regard the multivariate observation for that year as missing entirely.
For central and eastern England this leaves us with 26 years worth of complete componentwise
maxima. Although wasteful of data, this approach for dealing with missingness is adequate for
the purpose of the work in this section; [1] demonstrate a data augmentation procedure to gener-
ate artificial data to replace the missing components. The top row of plots in Figure 3 shows the
distribution of the annual maxima for the 21 sites in this region.

To fit a Gaussian process to our spatial data, we first need to transform the margins to standard
Normal. As discussed in Section 2.2.1, the GEV (4) is the limiting model for our annual maxima
at each site. Denoting the marginal GEV distribution functions by Gj(y; μj, σj, ξj), j = 1, . . . , 21,
we transform to standard Normal using

�−1{Gj(y; μ̂j, σ̂j, ξ̂j)},
where � is the distribution function of the standard Normal, and μ̂, σ̂ and ξ̂ are the maximum-
likelihood estimates of the GEV location, scale and shape respectively. Estimates of the marginal
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8 L. Fawcett and D. Walshaw

Figure 3. Top row: Boxplots showing the distribution of annual maxima for each site in central/eastern
England; bottom row: maximum-likelihood estimates of marginal GEV parameters, and 100 year return
levels, with 95% confidence intervals (obtained via profile likelihood for the return levels).

GEV parameters and 100-year return levels, with 95% confidence intervals, are shown in
the bottom row of plots in Figure 3. These estimates have been obtained using conventional
maximum-likelihood estimation. Coles and Dixon [6] suggest that the performance of this
method may be poor for small samples, and they propose a penalised likelihood alternative. How-
ever when we implemented the penalised likelihood approach for our 21 sites, using the penalty
function recommended by Coles and Dixon [6], we found almost no change in our parameter
estimates or standard errors, and the resulting plots of parameter estimates were visibly indis-
tinguishable from those shown in Figure 3. The FitComposite function in CompRandFld
can then be used to fit a Gaussian process to the sample of transformed spatial extremes by
maximising the full log-likelihood in the usual way. Using the exponential, powered exponential
and Whittle–Matérn correlation functions, as given by Equations (1)–(3), respectively, gives the
results shown in the top row of Table 1; parameter estimates and their standard errors are shown,
along with the values of the maximised log-likelihood.

Transforming the marginal annual maxima to standard Fréchet, by applying

− log{Gj(y; μ̂j, σ̂j, ξ̂j)}−1,

we can also use FitComposite to fit various max-stable models. However, rather than
attempting to maximise the full log-likelihood, we now use composite likelihood methods
[8,25,32], as it would be computationally infeasible to obtain the full joint density function from
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Journal of Applied Statistics 9

Table 1. Estimates of the parameters in the correlation functions (with standard errors in parentheses) for
each of the spatial models fitted to rainfall annual maxima for sites in central and eastern England.

Model Correlation Scale (λ) Shape (ν) �max CLIC

Gaussian process Exponential 56.444 (44.937) – −706.52 –
Powered exponential 44.390 (141.503) 0.689 (1.607) −705.45 –
Whittle–Matérn 78.569 (220.167) 0.328 (1.785) −706.18 –

Extremal Gauss process Exponential 168.025 (64.105) – −23575.98 47034
Powered exponential 168.344 (64.724) 1.075 (0.188) −23572.12 47020
Whittle–Matérn 168.424 (83.844) 0.158 (0.078) −23572.48 47010

Brown–Resnick process Exponential 22.230 (3.889) – −23457.71 46947
Powered exponential 20.342 (4.003) 0.532 (1.251) −23441.60 46701
Whittle–Matérn 167.879 (52.316) 1.000a −23423.18 46523

Notes: The maximised log-likelihood �max is also shown (the maximised composite log-likelihood for max-stable
models), along with the composite likelihood information criterion (where composite likelihood has been used).
aThe parameter was held fixed.

Equation (6) unless D was small. Specifically, we assume independence between each of our
multivariate observations (i.e. independence across years); within years, the log-likelihood is
formed by summing the logged pairwise marginal densities, and a sandwich estimator is used to
estimate the variance matrix of the parameter vector. For more details, see [10]. Thus, Table 1
also shows parameter estimates for an extremal Gauss process and a Brown–Resnick process.
The maximised composite log-likelihood is also shown, along with the composite log-likelihood
information criterion; [10] demonstrate how these figures can be used to aid model choice.

By allowing the marginal GEV parameters to depend on the latitude/longitude of the sites at
which rainfall data has been collected, Davison et al. [10] also show how the spatial models
can be interpolated to provide return level estimates at locations for which no observations have
been collected; hence, they produce return level maps for rainfall over a region in Switzerland. In
our work, we are interested in quantities such as (i) and (ii), as defined in Section 1, and how the
estimation of such quantities can be sensitive to the assumptions regarding the spatial structure in
our process. As discussed in Section 1, identifying the type of spatial dependence in our extremes
(i.e. asymptotic/sub-asymptotic) can be difficult, and we will return to this issue in Section 4.1.

3. Simulation study

In this section, we use the CompRandFld package to fit, and simulate from, Gaussian and max-
stable processes, as outlined in Sections 2.1 and 2.2, respectively. The function RFSim within
this library simulates one or more replications of a random field – either Gaussian or max-stable
– with a given correlation model and parameters therein. In the context of our rainfall extremes,
we use the term replication to correspond to a single multivariate observation across several sites
within a region. The primary aim of this section is to investigate the consequences of model mis-
specification; in particular, the effects of assuming max-stability when in fact the true process
is asymptotically independent, and vice-versa, on estimates of various quantities of practical
interest.

3.1 Study design

In each main arm of the study, we simulate a ‘master’ random field, this field being either
Gaussian (and so possessing the property of asymptotic independence), or max-stable. For our
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10 L. Fawcett and D. Walshaw

Figure 4. Plots of data for two sites simulated from (1) a Gaussian process (top row), and (2) an extremal
Gauss process (bottom row), for the four values of scale parameter λ used in the correlation function.

max-stable random fields, we simulate from both the extremal Gauss process and a Brown–
Resnick process. For each of our simulated master data sets, we use the exponential correlation
function, as given by Equation (1), considering a range of values of the scale parameter λ to
reflect the various levels of spatial dependence that might be encountered with real life envi-
ronmental extremes; specifically, we use λ = 1, 20, 50 and 100, where the strength of spatial
correlation increases with λ. For each random field we generate, we assume a zero nugget effect.
As with the rainfall data explored in Section 2.3, our simulated spatial data will have GEV
marginal distributions; we transform from standard Normal in the Gaussian process, and from
standard Fréchet in the max-stable processes, to GEV with μ = 300, σ = 80 and ξ = 0.1 –
values similar to those estimated for the rainfall data in central and eastern England shown in
Figure 3. Each master random field will consist of N = 100 replications across n = 50 ‘sites’;
for each site, Cartesian co-ordinates are generated randomly from a Uniform U(0, 10) distribu-
tion. Plots of the data from two randomly chosen sites, after transformation to GEV margins, are
shown in Figure 4 for both the Gaussian and extremal Gauss processes. The effect of λ on the
dependence is obvious, as is the effect of asymptotic dependence as provided by the extremal
Gauss process.

To each master random field we then fit the correct spatial process, and an incorrect spatial
process. For example, if the master data set has been simulated from a max-stable process, we
will use the FitComposite function demonstrated in Section 2.3 to fit the correct max-stable
process – but we will also fit, incorrectly, a Gaussian process. The resulting estimated parame-
ters from both the correct and incorrect fits will then be used to simulate K = 106 replications
from both models, giving a (K × n) matrix of realisations yk,i, k = 1, . . . , K and i = 1, . . . , n,
for both the correct and incorrect models. As well as comparing realisations from a Gaussian
process to those from the max-stable processes, we will also consider the consequences of
specifying the incorrect max-stable process; that is, for example, the effects of fitting a Brown–
Resnick process when in fact the master data set has been simulated from an extremal Gauss
process.
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3.2 Quantities of interest

Using each of our (K × n) matrices of simulated data, we can investigate the consequences of
model mis-specification on the estimation of quantities such as those outlined in (i) and (ii) in
Section 1. For example, we discussed in Section 1 that recent flooding events in the UK have
often occurred as a result of the observation of simultaneous rainfall extremes across several
locations within a region. Thus, from our K replications, we can obtain, empirically, estimates
of the joint exceedance probabilities of the marginal r-year return levels zr for S sites of inter-
est. In this study, we use r = 10, 50, 200, 1000, 5000 and 10,000, and we obtain estimates of
the joint exceedance probabilities Pr for S = 3 and S = 10 sites of interest. Of the 50 sites for
which we simulate data, we select these sites of interest in two ways: (i) as the S sites which are
closest together according to the minimum polygonal perimeter connecting them, giving {snear

t },
t = 1, . . . , S; (ii) as the S sites which are furthest apart according to their polygonal perimeter,
giving {sfar

t }.
Then, for each of the correct and incorrect models for spatial dependence, we estimate Pr

using

P̂r =
K∑

k=1

Ik

K
, (8)

where

Ik =
{

1 if yk,s∗
t
> zr, t = 1, . . . , S;

0 otherwise,

at each replication k = 1, . . . , K, where ∗ is used generically for near and far. From our (K × n)

matrix of realisations from each of the correct and incorrect models, we also obtain estimates of
return levels for total maxima across all sites. For each row k, k = 1, . . . , K, we find

Tk =
n∑

i=1

yk,i, (9)

which – in the context of the rainfall data analysed in Section 2.3 – would correspond to total
maximum daily rainfall accumulations across all sites within a region, a surrogate for the total
maximum daily rainfall accumulation within the region as a whole. Denoting by T [k] the kth
order statistic of {T1, T2, . . . , TK}, we then estimate empirically the r-year return level for total
maxima across all replications as

ẑr(tot) = T [K(1−r−1)];

as for estimates of P̂r, we consider r = 10, 50, 200, 1000, 5000 and 10,000.

3.3 Bootstrapping

Our estimates P̂r and ẑr(tot), using Equations (8) and (9), respectively, are one-off estimates
obtained empirically from the simulated data. To assess the variability of these estimates, we
could repeat the simulation procedure multiple times, each time with K = 106. However, com-
putationally this would be burdensome. Rather, we use bootstrap methods to estimate var[P̂r],
var[ẑr(tot)] and confidence intervals for both. Specifically, for each bootstrap replication b,
b = 1, . . . , B, we randomly sample (with replacement) K rows from each (K × n) matrix of
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12 L. Fawcett and D. Walshaw

simulated data. For each bootstrap replication of the simulated spatial process, we find P̂r and
ẑr(tot), yielding a collection of estimates

{P̂(1)
r , ẑ(1)

r(tot), . . . , P̂(B)
r , ẑ(B)

r(tot)},
from which we can estimate variances or construct confidence intervals. Here, we use B = 1000.
We estimate var[P̂r] and var[ẑr(tot)] by finding the variance of the bootstrap replicates P̂(b)

r

and ẑ(b)

r(tot), respectively, b = 1, . . . , B. For confidence intervals, rather than record the 2.5%-
and 97.5%-iles from the bootstrap samples (the standard percentile method), we use bias-
corrected accelerated (BCa) intervals as proposed in [15]. This method corrects for bias owing
to non-normality (particularly useful for ẑr(tot)); it also accelerates convergence to a solution by
correcting for the rate of change of the normalised standard errors of P̂r and ẑt(tot), relative to
their true values, in constructing the confidence bounds of the percentile method. For a detailed
demonstration of the practical implementation of these BCa intervals, see [17].

3.4 Results

Table 2 shows some results from one arm of the simulation study. Here, the master random field
has been simulated from an Extremal Gauss process with an exponential correlation model, with
scale parameter λ = 20. The correct form of model has then been fitted, yielding an estimated
correlation parameter of λ̂ = 21.043; a million replications of this fitted random field have then
been simulated, and the first column of Table 2 shows estimates of Pr for S = 3 and S = 10, and
also zr(tot). The next column shows estimates of these quantities of interest when an incorrect
spatial model is fitted: specifically, we show estimates for the standard Gaussian process (after
marginal transformation to standard Normal), results again being based on a million replications
of this fitted process.

Figure 5 summarises some of these results: the top row of plots are densities of the bootstrap
samples for P̂10, P̂50, P̂200 and P̂1000 for simulations from the (correct) extremal Gauss process
(red), and the (incorrect) Gaussian process (blue), for the S = 3 sites closest together; the bottom
row shows the same information but for the S = 3 sites furthest apart.

Both the table of results and the plots reveal significant differences in estimates of Pr, when
the sites of interest lie far apart (far), for the different spatial structures assumed. For example,
estimates of Pr are consistently larger when (correctly) assuming the max-stable extremal Gauss
model, than when (incorrectly) assuming asymptotic independence with the standard Gaussian
process, and significantly so. In practical terms this might suggest that using a model which
assumes asymptotic independence when, in fact, there is asymptotic dependence, could lead to
significant under-estimation of the likelihood of simultaneous extremes at multiple locations.

Similarly, estimates of Pr when the sites of interest lie within close proximity of each other
(near) are almost always larger when we have simulated from the (correct) extremal Gauss
random field, relative to the (incorrect) standard Gaussian process; however, any differences are
hardly ever significant when comparing the corresponding bootstrapped confidence intervals.
This might be as we would expect: for sites very close together, dependence between extremes
from a standard Gaussian random field is more likely to persist than for sites further apart, giving
less distinction between estimates of Pr when simulating from the extremal Gauss random field
and the standard Gaussian process.

Considering differences between estimates of zr(tot) when assuming the correct form of spatial
structure and when assuming asymptotic independence, for all but the shortest return period
estimates are larger when we (correctly) use the extremal Gauss process. Again, in practical
terms, this might suggest that an incorrect assumption of asymptotic independence could lead
to significantly under-estimated return levels and perhaps substantial under-protection in flood
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Table 2. Estimates of: (i) the joint probability, Pr, of simultaneously exceeding r-year return levels in S = 3
margins and S = 10 margins, and (ii) r-year return levels for total rainfall maxima across all margins,
zr(tot). Bootstrapped 95% confidence intervals are shown in parentheses.

Simulated process (n = 50, K = 106)
True spatial process: Extremal Gauss
(n = 50, N = 100) Extremal Gauss process Standard Gaussian process
Correlation model: Exponential, λ = 20 (λ̂ = 21.043) (λ̂ = 117.367)

P̂r ×100(S = 3) r = 10 near 9.272 (8.690, 9.821) 8.202 (7.652, 8.740)
far 4.392 (4.001, 4.780) 2.227 (1.951, 2.520)

r = 50 near 1.735 (1.481, 1.990) 1.683 (1.450, 1.932)
far 0.798 (0.620, 0.982) 0.191 (0.110, 0.282)

r = 200 near 0.449 (0.330, 0.590) 0.512 (0.371, 0.670)
far 0.207 (0.120, 0.303) 0.029 (0.000, 0.071)

r = 1000 near 0.110 (0.051, 0.181) 0.101 (0.040, 0.171)
far 0.049 (0.010, 0.101) 0.000 –

r = 5000 near 0.021 (0.000, 0.050) 0.020 (0.000, 0.050)
far 0.020 (0.000, 0.050) 0.000 –

r = 10, 000 near 0.010 (0.000, 0.030) 0.010 (0.000, 0.031)
far 0.010 (0.000, 0.030) 0.000 –

P̂r ×100(S = 10) r = 10 near 5.896 (5.440, 6.370) 4.208 (3.790, 4.601)
far 2.627 (2.320, 2.931) 0.827 (0.650, 1.001)

r = 50 near 1.056 (0.861, 1.271) 0.708 (0.541, 0.880)
far 0.429 (0.311, 0.550) 0.039 (0.010, 0.080)

r = 200 near 0.308 (0.210, 0.420) 0.179 (0.100, 0.271)
far 0.098 (0.040, 0.161) 0.000 –

r = 1000 near 0.060 (0.020, 0.111) 0.029 (0.000, 0.071)
far 0.029 (0.000, 0.070) 0.000 –

r = 5000 near 0.010 (0.000, 0.030) 0.000 (0.000, 0.030)
far 0.006 (0.000, 0.011) 0.000 –

r = 10, 000 near 0.000 – 0.000 –
far 0.000 – 0.000 –

ẑr(tot) (Thousand) r = 10 24.182 (24.096, 24.267) 24.336 (24.254, 24.423)
r = 50 32.299 (32.051, 32.520) 31.763 (31.570, 31.973)
r = 200 40.308 (39.745, 40.966) 38.738 (38.331, 39.123)
r = 1000 50.948 (49.826, 51.972) 47.651 (46.452, 49.302)
r = 5000 64.583 (60.050, 70.194) 58.668 (54.897, 61.809)
r = 10, 000 71.626 (66.681, 75.694) 63.732 (59.630, 71.285)

defence terms. Differences between estimates of our quantities of interest were negligible when
comparing results from the extremal Gauss process and a Brown–Resnick process, although it is
noted that estimates assuming a Brown–Resnick process were consistently smaller.

Another arm of the study (for which results are not shown here) revealed that using a max-
stable process when in fact our extremes are asymptotically independent (simulated from a
standard Gaussian process) can result in significantly over-estimated Pr and zr(tot), especially
when using the extremal Gauss process. In practical terms, such over-protection, perhaps in terms
of flood defence, could have huge financial implications. Of course, these findings can only be
extended to real data if we are able to clarify the nature of the dependence present between our
observed spatial extremes. As discussed in Section 1, this can be challenging.
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14 L. Fawcett and D. Walshaw

Figure 5. (Colour online) Bootstrap sampling distributions of the joint probability of exceeding the marginal
10, 50, 200 and 1000 year return levels at S = 3 sites of interest when fitting the correct max-stable model
(extremal Gauss process, results in red) and an incorrect asymptotically independent model (standard Gaus-
sian process, results in blue). The top row of plots show results for the S = 3 sites closest together (near),
the bottom row for the S = 3 sites furthest apart (far).

4. Rainfall extremes: central and eastern England revisited

4.1 Nature of spatial dependence

As in Section 2.2.3, let Z(x) be a stationary max-stable process with standard Fréchet margins.
Then it can be shown [3] that

Pr{Z(x) < z, Z(x + h) < z} = exp

{−θ(h)

z

}
,

for some separation distance h. The function θ(h) is known as the extremal coefficient function
where, generally, 1 ≤ θ(h) ≤ D, where θ(h) = 1 and θ(h) = D represent full dependence, and
complete independence, respectively. The analogous function in the asymptotically independent
class is the coefficient of tail dependence function η(h), where η(h) = 1/θ(h); thus, η(h) = 1
would suggest asymptotic dependence between a pair of sites separated by a distance h. A Hill
estimator [21] can be used to estimate η(h), as in [34].

Figure 6 shows Hill estimates of η(h) for all pairs of sites in the central and Eastern England
region shown in Figure 1, including (block) bootstrapped 95% confidence intervals. This plot
illustrates the difficulties often encountered when attempting to assess the nature of spatial depen-
dence across a region. For pairs of sites that are closer together, that is, for small h – perhaps
h < 100 km – it seems plausible that η(h) = 1, suggesting genuine extremal dependence and the
suitability of a max-stable model. However, for larger values of h asymptotic independence may
be more plausible since here it is more likely that η(h) < 1.
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Figure 6. (Colour online) Hill estimates of the coefficient of tail dependence (black circles) for every pair
of sites in the central and eastern England region, with 95% bootstrapped confidence intervals. The red
and green lines show loess curves fitted through the Hill estimates, and the lower/upper 95% confidence
bounds, respectively. The separation distance is in km.

4.2 Estimation of Pr and zr(tot)

Although the plot in Figure 6 is informative, the mix of dependence structures, depending on
the separation distance h, makes it difficult for us to choose between, for example, a standard
Gaussian process and an extremal Gauss process, when attempting to estimate Pr and zr(tot).
As we discovered in the simulation study, model mis-specification, in terms of the dependence
structure, may not be important when estimating Pr for sites of interest that are close together
(see the top row of plots in Figure 5). However, if our sites of interest are further apart, using
a Gaussian process when, in fact, the true process is max-stable (for example) could lead to
significant under-estimation (and possibly substantial under-protection in flood defence terms;
see the bottom row of plots in Figure 5).

Table 3 shows estimates of Pr for the S = 3 sites closest together, and furthest apart, in the
central and eastern England region; estimates of zr(tot) are also shown. An exponential corre-
lation function was assumed (see Equation (1)) with scale parameter λ = 56.444/λ = 168.025
for a standard Gaussian/extremal Gauss process (respectively), as obtained in Section 2.3 and
shown in Table 1. The fitted values of the nugget, range and sill were then used alongside these
values of λ (and the fitted marginal GPD parameters as shown in Figure 3) to simulate K = 106

replications from the fitted Gaussian/extremal Gauss random field, and estimates of Pr and zr(tot)

were obtained as in the simulation study in Section 3; results, with associated bootstrapped 95%
confidence intervals, are shown in Table 3.

As observed in the simulation study, we see that for the S = 3 sites furthest apart, there are
significant differences in estimates of Pr given by the two fitted random fields for all return
periods r. This is because extremal dependence persists as h increases in the extremal Gauss ran-
dom field, giving significantly higher estimates of Pr here. Interestingly, we also see significant
differences in estimates of Pr for the two spatial models when looking at the three sites closest
together for return periods r = 10, 50 and 200 years, with those from the max-stable model being
significantly higher. The problem with our real data, of course, is that it is difficult to tell – from
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16 L. Fawcett and D. Walshaw

Table 3. Estimates of: (i) the joint probability, Pr, of simultaneously exceeding r-year return levels in S = 3
margins, and (ii) r-year return levels for total rainfall maxima across all margins, zr(tot), for the rainfall
extremes observed across the central and eastern England region. Bootstrapped 95% confidence intervals
are shown in parentheses.

Rainfall data: Extremal Gauss process Standard Gaussian process
Central/Eastern England (λ = 168.025) (λ = 56.444)

P̂r ×100%(S = 3) r = 10 near 9.199 (8.610, 9.740) 5.218 (4.800, 5.660)
far 8.518 (7.960, 9.070) 0.577 (0.430, 0.730)

r = 50 near 1.757 (1.480, 2.020) 0.771 (0.600, 0.950)
far 1.568 (1.320, 1.820) 0.031 (0.000, 0.070)

r = 200 near 0.490 (0.360, 0.640) 0.199 (0.120, 0.300)
far 0.450 (0.330, 0.580) 0.000 –

r = 1000 near 0.079 (0.030, 0.140) 0.041 (0.010, 0.090)
far 0.069 (0.020, 0.120) 0.000 –

r = 5000 near 0.010 (0.000, 0.030) 0.020 (0.000, 0.050)
far 0.010 (0.000, 0.030) 0.000 –

r = 10, 000 near 0.000 – 0.000 –
far 0.000 – 0.000 –

ẑr(tot) (Thousand mm) r = 10 10.378 (10.270, 10.507) 9.719 (9.642, 9.806)
r = 50 14.123 (13.788, 14.380) 12.023 (11.858, 12.202)
r = 200 18.023 (17.087, 19.131) 14.209 (13.666, 14.661)
r = 1000 21.815 (20.651, 24.002) 16.613 (15.606, 17.490)
r = 5000 25.998 (22.740, 29.153) 18.574 (17.457, 20.768)

r = 10, 000 27.635 (24.002, 31.265) 19.271 (17.490, 20.968)

Notes: An extremal Gauss process, and a standard Gaussian process, have been used to allow for an asymptotic
dependence/independence dependence structure.

Figure 6 – which of these two models best captures the spatial dependence present in the rainfall
extremes in this region.

5. Concluding remarks

In this paper, we have shown that significant estimation bias can occur for some key parameters
of hydrological interest, if the nature of the dependence in our spatial extremes is not consid-
ered carefully. In particular, we have investigated the effect of model mis-specification on the
estimation of joint exceedance probabilities Pr at several sites within a region, as well as high
quantiles of total annual maximum rainfall zr(tot) across all sites. We have shown that – for
a selection of sites that might be considered geographically ‘far apart’ – assuming asymptotic
independence when in fact there exists genuine extremal dependence can result in significant
under-estimation of the probability of exceeding marginally high quantiles at all sites simulta-
neously (see Figure 5). Conversely, substantial over-estimation of such quantities is observed
when fitting a max-stable model to extremes which, spatially, exhibit extremal independence. In
the context of flood defence, this is worrying; the former situation could lead to dangerous under-
protection, whilst the latter to unjustified financial investment. However, estimates of such key
quantities are much less sensitive to the choice of dependence structure for a collection of sites
considered to be geographically ‘close together’. For example, the spatial dependence implied
by a standard Gaussian process for a set of such sites is strong enough, above levels of practi-
cal interest, to give estimates of Pr that are not significantly different to those obtained from a
max-stable model.

D
ow

nl
oa

de
d 

by
 [

N
ew

ca
st

le
 U

ni
ve

rs
ity

] 
at

 0
6:

25
 1

5 
N

ov
em

be
r 

20
13

 



Journal of Applied Statistics 17

Work has already been done on how to assess the nature of spatial dependence for such real-
life extremes; see, for example [3,34]. The difficulty of such diagnostics, as shown in Figure 6
in this paper, is that it is plausible that our data possess a mix of dependence structures (both
asymptotic/sub-asymptotic) depending on the separation distance between a pair of sites. Future
work, then, will investigate the potential of mixture models to model such rainfall extremes across
a region, allowing for both forms of spatial dependence simultaneously.
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