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Summary. A typical extreme value analysis is often carried out on the basis of simplistic inferen-
tial procedures, though the data being analysed may be structurally complex. Here we develop
a hierarchical model for hourly gust maximum wind speed data, which attempts to identify site
and seasonal effects for the marginal densities of hourly maxima, as well as for the serial depen-
dence at each location. A Gaussian model for the random effects exploits the meteorological
structure in the data, enabling increased precision for inferences at individual sites and in indi-
vidual seasons. The Bayesian framework that is adopted is also exploited to obtain predictive
return level estimates at each site, which incorporate uncertainty due to model estimation, as
well as the randomness that is inherent in the processes that are involved.
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1. Introduction

In this paper we develop a hierarchical model for hourly maximum wind speeds over a region
of central and northern England. The data that are used consist of hourly gust maximum wind
speeds recorded for the British Meteorological Office at 12 locations (Fig. 1). We construct a
model which is based on a standard limiting extreme value distribution but incorporates random
effects for the sites, for seasonal variation and for the serial dependence that is inherent in the
time series of hourly maximum speeds obtained at each site.

For 10 of the 12 sites, data are recorded over a period of 18 years, from January 1st, 1974, to
December 31st, 1991, inclusively, constituting approximately 157000 observations at each site.
For two of the sites, Sheffield and Bradfield, data are available for 10 years, from January 1st,
1975, to December 31st, 1984, inclusively, constituting approximately 86000 observations at
each site. The 12 sites represent a variety of geographical locations—both urban and rural, high
and low altitudes, easterly and westerly positions etc. Fig. 2 illustrates an exploratory analysis
of data from two contrasting sites, Nottingham and Bradfield. Shown are time series plots of
the hourly maxima, histograms and a plot of the time series against the version at lag 1. The
first 3 years of data only are used in each case, to illustrate the relevant data characteristics
best.

The stations at Bradfield and Nottingham are chosen to represent contrasting climate char-
acteristics in terms of the wind behaviour. Bradfield is at a relatively high altitude (380 m above
sea-level), rural and exposed. The Nottingham station, in contrast, is low lying (50 m above
sea-level), urban and shielded by some nearby buildings, being a city centre site. The effects
of these differences are clearly seen in Fig. 2. Although both sites have stronger winds in the
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Fig. 1. Location of the wind speed stations

winter, the seasonal pattern is more obviously defined at Bradfield. The distribution of hourly
maxima at Bradfield is shifted considerably to the right of that at Nottingham, with the mean,
median and quartiles (which are not shown) all being substantially greater. We also observe
a stronger serial correlation at lag 1 at Bradfield. This is likely to arise as a consequence of
the fact that urban sites such as Nottingham generally exhibit more turbulence, leading to a
greater variance in the distribution of the hourly maximum speed if we condition, say, on the
value of the hourly mean. The greater variation that is observed in the hourly maxima at such a
location is likely to weaken the relationship between consecutive hourly maxima. For a detailed
description of the behaviour of the wind climate in the UK, see for example Shellard (1976) and
Smith (1983).

The aim of our hierarchical model is to exploit the complex structure that is inherent in the
data to improve over simplistic inferential procedures, which would more typically be applied
to sites individually. Coles (2002) achieved a similar aim for annual maximum wind speeds that
were obtained from about 100 locations in the USA. In the present paper the much more detailed
(hourly) records require a different extremal model, the incorporation of the seasonal random
effects, and a model for the serial dependence. The Bayesian paradigm transfers naturally to the
problems of inference that are inherent in our analysis, and we agree with arguments that were
presented by Coles and Powell (1996) which support the Bayesian approach as a good means
of exploiting data on extreme events, which are, by definition, rare. We employ Markov chain
Monte Carlo methods to address the analytically intractable problems of inference.

Section 2 focuses on the construction of the hierarchical model. In Section 3 we present
results for parameter estimation, together with some diagnostic assessments. Finally, Section 4
discusses results for return level inference, both estimative and predictive. The wind speed data
(threshold exceedances only) for each of the 12 sites that are studied in this paper, as well
as the R code that was used and instructions on how to use the code can be obtained from
www.mas.ncl.ac.uk/∼nlf8/c5776R/home.html.

2. A hierarchical model

2.1. A model for threshold exceedances
A natural way of modelling extremes of time series such as the hourly maximum wind speeds is
to use the generalized Pareto distribution (GPD) as a model for excesses over a high threshold.
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Fig. 2. Time series plots and histograms of hourly gusts observed at (a), (b) Bradfield and (d), (e) Notting-
ham over a 3-year period (1975–1977 inclusively): also shown are (c), (f) plots of the time series against the
lagged series
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Let X1, X2, . . . be a sequence of independent and identically distributed random variables with
common distribution function F . Then, for a high value of the threshold u, the conditional
distribution .X − u|X > u/ will be approximately of GPD form, with cumulative distribution
function

H.y/=1−
(

1+ ξy

σ

)−1=ξ

+
, .1/

where a+ = max.0, a/ and σ and ξ are scale and shape parameters respectively. This arises
because, if a limiting distribution exists for any normalization of .X−u|X > u/, then this limit
will be exactly of GPD form (Davison and Smith, 1990). The limit is taken as u ↑ uF , where
uF is the finite upper end point of F if it exists, or ∞ otherwise. This basic theory sets up the
model for independent and identically distributed random variables; additional model struc-
ture to handle non-stationarity and dependence is considered in Sections 2.2 and 2.3 (respec-
tively).

2.2. The marginal distribution for exceedances at site j, season m
For our purposes, we need the GPD parameters to vary across sites, and seasonally. We take
a pragmatic approach to seasonality, partitioning the annual cycle into 12 ‘months’. Thus
our hierarchical model will need to yield parameter pairs .σm,j, ξm,j/ for m = 1, . . . , 12 and
j = 1, . . . , 12, where m and j are indices of season and site respectively. It is also necessary to
allow the threshold u that is used for excesses modelled by equation (1) to vary, since different
criteria about what constitutes an extreme value will be in play for each combination of sea-
son and site. We shall denote by um,j the value of the exceedance threshold for month m and
site j.

2.3. Modelling temporal dependence
By far the most common approach that is used to handle the serial correlation inherent in
extremes of environmental variables is to identify ‘clusters’ of extremes, and to model only the
cluster peaks, which are taken to be a set of independent exceedances; see, for example, Davison
and Smith (1990) and Walshaw (1994). However, Fawcett and Walshaw (2006a) make a strong
case against this procedure, demonstrating that the discarding of the majority of exceedances
is not only wasteful but also often appears to introduce bias into return level estimation, which
would not otherwise be present (simulation results are presented in Fawcett (2005) and Fawcett
and Walshaw (2006a), with some theoretical results also available in Fawcett (2005)). For this
reason we prefer to retain all exceedances over a high threshold for modelling. This leaves us
with the options of

(a) somehow adjusting the inferences to take account of the dependence in the data that are
used for modelling or

(b) explicitly modelling the dependence.

Here we adopt option (b), since the data support a simple first-order Markov chain model for
the serial dependence. The partial autocorrelation functions for all sites (which are not shown)
indicate a very large value at lag 1, with all lags greater than 1 showing negligible partial auto-
correlation. Although this does not necessarily imply that the temporal dependence is entirely
explained by the first-order dependence for the extreme values, it does at least suggest this as
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a reasonable assumption for modelling, which can be assessed later. The stochastic properties
of such a chain are completely determined by the joint distribution of successive pairs. Given
a model f.xi, xi+1;ψ/ specified by parameter vector ψ, it follows that the likelihood for ψ is
given by

L.ψ/=f.x1;ψ/
n−1∏
i=1

f.xi, xi+1;ψ/

/
n−1∏
i=1

f.xi;ψ/: .2/

Contributions to the numerator can be modelled by using an appropriate bivariate extreme
value model, thereby capturing the first-order Markov structure as suggested above. One of the
most flexible and accessible of such models is the logistic model (for example see Tawn (1988)
and Coles (2001)). For consecutive threshold exceedances, the appropriate form of this model
is

F.xi, xi+1/=1−{Z.xi/
−1=α +Z.xi+1/−1=α}α, xi, xi+1 >u, .3/

where the transformation Z, for generic threshold u, GPD parameters σ and ξ, and exceedance
rate per observation, λ, is given by

Z.x/=λ−1{1+ ξ.x−u/=σ}1=ξ
+ .4/

and ensures that the margins are also of GPD form. The parameter α ∈ .0, 1] measures the
strength of dependence between consecutive extremes, smaller values indicating stronger depen-
dence. Independence and complete dependence are obtained when α=1 and in the limit as α↓0
respectively. We take a pragmatic approach to the parameter λ, using the empirical proportion
of threshold exceedances as a fixed point estimate for each location and each month. Although it
would be more consistent with our overall approach to incorporate exceedance rate parameters
into our hierarchical model fully, the experience of both authors is that to allow for inference
on such parameters has negligible influence on the inferences for other parameters, including
return levels, while significantly increasing the computational load (see Walshaw (1991) and
Fawcett (2005)).

Inference for this model is complicated by the fact that a bivariate pair may exceed a specified
threshold in just one of its components. Let

R0,0 = .0, u/× .0, u/,

R1,0 = [u, ∞/× .0, u/,

R0,1 = .0, u/× [u, ∞/,

R1,1 = [u, ∞/× [u, ∞/,

so that, for example, a point .xi, xi+1/ ∈ R1,0 if xi exceeds the threshold but xi+1 does not.
For points in R1,1, model (3) applies, the density of which gives the appropriate likelihood
component. However, for a point in R1,0 or R0,1, the corresponding likelihood component is
given by

@F

@xi

∣∣∣
.xi,u/

or
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@F

@xi+1

∣∣∣
.u,xi+1/

respectively. If both xi and xi+1 fall below the threshold u, the contribution to the numerator in
equation (2) is given by the distribution function evaluated at the threshold u. The denominator
in equation (2) is simply replaced with the corresponding univariate densities by using equation
(1).

2.4. Construction of the hierarchical model
We assume that the GPD model (1) is valid for exceedances over a high threshold, allowing
this threshold and the GPD parameters to vary across sites and seasons. We also make the
assumption that extremes between sites and between seasons are independent, but that suc-
cessive extremes within seasons have a first-order Markov dependence structure and so can be
modelled by using equation (2). Although in reality there will clearly be some spatial depen-
dence in the weather observed at locations that are separated by the distances involved, this
does not translate to strong correlations in extreme values across sites. Further, the temporal
dependence in extremes of wind speed is typically short lived, so independence between months
is a reasonable assumption. This also justifies the use of a first-order Markov chain model for
extremes within seasons, though Fawcett and Walshaw (2006b) examine models which allow
for longer-range dependence.

We also make the assumption that there is no interaction between seasonal and site effects.
Again, the mild contrast in seasonal behaviour that is illustrated by Bradfield and Nottingham
warns that this is, at best, an approximation, but we shall see from an assessment of perfor-
mance that our model appears to be robust to any moderate departures from this and the other
assumptions. A more detailed discussion can be found in Fawcett (2005). Finally, in our model
we assume that both spatial effects and seasonal (monthly) effects are exchangeable a priori. It
would be reasonable to suggest that this last assumption may seem oversimplistic: for example
we would, a priori, expect there to be clear temporal structure in the data, with wind speeds in
January and February being more similar than those in January and July, for instance. However,
we have investigated more complex model structures which exploit such temporal structure and
have found little benefit for the added complexity. We return to this issue in Section 3.2.

We denote by .σm,j, ξm,j/ the parameters of the GPD model (1) which is assumed to be valid
for threshold excesses in season (month) m and site j. Following work in Fawcett (2005) which
suggests that the serial dependence in extremes is fairly constant across all seasons, we assume
that the Markov chain model (3) describes the dependence over all seasons at site j, with a
logistic dependence parameter αj substituted for α. To ensure a threshold stability property in
our models, we use σ̃m,j =σm,j − ξm,jum,j in place of the usual scale parameter σm,j. With this
parameterization, if X − uÅ

m,j is distributed GPD(σ̃m,j, ξm,j), then, for all values um,j > uÅ
m,j,

we have that X−um,j is also GPD(σ̃m,j, ξm,j) distributed (for example see Coles (2001)). This
is useful here, because it allows comparisons of the GPD scale and shape parameters across
seasons and sites. It also allows us to specify prior information for both parameters without
having to worry about the additional complications that would arise for parameters which were
threshold dependent.

The assumptions above lead us to specify the following random-effects model:

log.σ̃m,j/=γ
.m/
σ̃ + "

.j/
σ̃ , .5/

ξm,j =γ
.m/
ξ + "

.j/
ξ , .6/

αj = ".j/
α , .7/
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where, generically,γ and " represent seasonal and site effects respectively. We work with log.σ̃m,j/

for computational convenience, and to retain the positivity of the scale parameter σ̃m,j. All
random effects for log.σ̃m,j/ and ξm,j are taken to be normally and independently distributed:

γ
.m/
σ̃ ∼N0.0, τσ̃/, .8/

γ
.m/
ξ ∼N0.0, τξ/, m=1, . . . , 12, .9/

for the seasonal effects, and

"
.j/
σ̃ ∼N0.aσ̃, ζσ̃/, .10/

"
.j/
ξ ∼N0.aξ , ζξ/, j =1, . . . , 12, .11/

for the site effects, where N0.η, ρ/ is the normal distribution with mean η and precision ρ (used for
notational convenience). We choose the mean of the normal distribution of the seasonal effects
to be fixed at zero in distributions (8) and (9) to avoid overparameterization and problems of
model identifiability, although we could equally well have fixed the mean for the distribution of
the site effects to achieve this. In the absence of any prior knowledge about αj, we set the prior
by specifying

".j/
α ∼U.0, 1/: .12/

The final layer of the model is the specification of prior distributions for the random-effect
distribution parameters. Here we adopt conjugacy wherever possible to simplify computations,
specifying

aσ̃ ∼N0.bσ̃, cσ̃/, aξ ∼N0.bξ , cξ/, .13/

τσ̃ ∼Ga.dσ̃, eσ̃/, τξ ∼Ga.dξ , eξ/, .14/

ζσ̃ ∼Ga.fσ̃, gσ̃/, ζξ ∼Ga.fξ , gξ/, .15/

subject to the choice of arguments for these functions, i.e. the hyperparameters which determine
the precise normal and gamma distributions.

3. Analysis of the wind speed data

The first step of the analysis involves setting the thresholds um,j to select the set of exceedances
for modelling. This is achieved here by adopting the standard approach of using mean residual
life plots to identify an appropriate threshold for each month m and location j. The details for
this can be found in Fawcett (2005), with the method itself being described well by Davison and
Smith (1990).

Estimation for the model that was developed in Section 2 can then be carried out following an
appropriate choice of hyperparameters in equations (13)–(15), with the inference being based on
the implementation of an appropriate Markov chain Monte Carlo scheme. The algorithm that
was employed is a Metropolis within Gibbs algorithm, i.e. we update each component singly
by using a Gibbs sampler where the conjugacy allows straightforward sampling from the full
conditionals, and a Metropolis step elsewhere. The full conditionals for the Gibbs sampling
are

a·|. . . ∼N

(
b·c· + ζ·

∑
"

.j/·
c· +nsζ·

, c· +nsζ·

)
, .16/
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ζ·|. . . ∼Ga
{

f· + ns

2
, g· + 1

2

∑
.".j/

· −a·/2
}

, .17/

τ·|. . . ∼Ga
(

d· + nm

2
, e· + 1

2

∑
γ.m/2

·

)
, .18/

where nm is the number of months, 12, and ns is number of sites, 12, and here the notation ζ·, for
example, is used generically to denote either ζσ̃ or ζξ . The complexity of the likelihood which is
derived from model (1) means that conjugacy is unattainable for the random-effect parameters,
and a Metropolis step is used to update each of these.

3.1. Markov chain Monte Carlo simulations
In the absence of expert prior knowledge, prior parameters were chosen to give a highly non-
informative specification:

b· =0, c· =10−6, d· = e· =f· =g· =10−2: .19/

The implementation of the Markov chain Monte Carlo scheme yields samples from the approx-
imate posterior distributions for the 12 site effect parameters and the 12 seasonal effect param-
eters for each of log.σ̃m,j/ and ξm,j, and for the 12 site effect parameters which constitute the
only variation that is allowed for the dependence parameter αj. This gives a total of 60 sam-
ples. The chain was allowed to run for 500000 iterations. Serial correlation in the samples is
removed by thinning to every 100th observation, and the resulting trace plots (which are not
shown) demonstrate good mixing and apparent good convergence. Convergence was checked
by multiple runs of the chain from various starting-points, demonstrating multiple convergence
to the same limit for all the random-effect parameters. Table 1 summarizes the results in terms of
the posterior means and standard deviations of the random-effects parameters for Bradfield in
January. Also included are the equivalent results for Nottingham in July, presented to illustrate
the contrasting site and season characteristics.

For the GPD and logistic dependence parameters, Table 2 provides a comparison of the pos-
terior means and standard deviations from the hierarchical model with maximum likelihood
estimates and standard errors obtained from a maximum likelihood analysis applied separately
to each site and season. This illustrates that one apparent advantage of the hierarchical model
over a standard likelihood analysis is a reduction in sampling variation: Table 2 shows that for
the GPD parameters σ̃m,j and ξm,j, for the locations and seasons that were chosen, the posterior
standard deviations are substantially smaller than the asymptotic standard errors of the cor-
responding maximum likelihood estimates. This effect is repeated over all sites and seasons;

Table 1. Posterior means (and standard deviations in parenthe-
ses) of some site and seasonal effects

Effects Mean for Bradfield, Mean for Nottingham,
January July

Seasonal γ
.m/
σ̃ 1.891 (0.042) 1.294 (0.042)

γ
.m/
ξ 0.021 (0.018) 0.002 (0.018)

Site "
.j/
σ̃ 0.367 (0.044) −0.121 (0.041)

"
.j/
ξ −0.105 (0.020) −0.059 (0.017)

"
.j/
α 0.385 (0.009) 0.300 (0.011)
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Table 2. Posterior means (and standard deviations) with corresponding maximum likelihood
estimates (and asymptotic standard errors) of the GPD parameters and the logistic dependence
parameter

Parameter Results for Bradfield, January Results for Nottingham, July

Mean Maximum likelihood Mean Maximum likelihood
(standard estimate (asymptotic (standard estimate (asymptotic
deviation) standard error) deviation) standard error)

σ̃m,j 7.267 (0.211) 8.149 (0.633) 3.234 (0.061) 2.914 (0.163)
ξm,j −0.084 (0.015) −0.102 (0.055) −0.057 (0.013) 0.018 (0.044)
αj 0.385 (0.009) 0.368 (0.012) 0.400 (0.011) 0.412 (0.020)

hence it appears that the pooling of information is seen to add considerably to the precision of
the analysis. It is worth noting that the same effect is present to a lesser extent for the logistic
dependence parameters αj, where the pooling of information occurs across seasons only, with-
out there being any link across locations.

Fig. 3, which shows the posterior means from the hierarchical model plotted against the
maximum likelihood estimates obtained separately from each site, and, in the case of σ̃ and ξ,
each season, is a further illustration of the possible gains that are achieved from the pooling
of information through the hierarchical model. The line of equality is plotted on each graph,
enabling an easy assessment of the degree to which the variability in estimates is reduced in
the hierarchical model. In our case, this reduction in variability, which is sometimes termed
shrinkage (e.g. Coles (2002)) is very apparent for the GPD shape parameter ξ, but less so for the
scale parameter σ̃ and the logistic dependence parameter α.

One cautionary point to observe here is that all of the comparisons that were outlined above
relate to Bayesian inference applied to the hierarchical model, versus classical inference applied
to the separate sites and seasons model. Hence any gain in performance that is attributed to
the hierarchical model is confounded with possible differences due to the inference paradigm
that is employed. Given the non-informative priors that are used, we would argue that any such
differences are not likely to be responsible for a major part of the contrasts in methods observed,
but further work here may shed more light.

3.2. Diagnostics
The performance of the hierarchical model in terms of its fit to the data can be assessed via
probability plots and quantile–quantile plots (plots of the fitted distribution function versus the
empirical distribution function, and of fitted quantile versus empirical quantile). By using the
fitted parameter values (here we use posterior means) to transform each monthly set of excesses
at each site to a common margin (say unit exponential), the fit of the GPD (1) to excesses in all
seasons can be assessed simultaneously. Fig. 4 shows probability plots and quantile–quantile
plots for Bradfield and Nottingham. The very good fit that is demonstrated here is repeated
across the other 10 sites and is sustained when separate months are analysed individually, sup-
porting the overall adequacy of the model, and demonstrating some robustness to any deviations
from the modelling assumptions. Though not used here, methods for checking model goodness
of fit specific to complex Bayesian models have been developed by, for example, Gelfand and
Trevisani (2002).
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Fig. 3. Plots of posterior means against the maximum likelihood estimates of GPD parameters, the logistic
dependence and the 1000-year return level



Extreme Wind Speeds 641

F
ig

.4
.

(a
)

P
ro

ba
bi

lit
y

pl
ot

fo
r

B
ra

dfi
el

d,
(b

)
qu

an
til

e
pl

ot
fo

r
B

ra
dfi

el
d,

(c
)

pr
ob

ab
ili

ty
pl

ot
fo

r
N

ot
tin

gh
am

an
d

(d
)

qu
an

til
e

pl
ot

fo
r

N
ot

tin
gh

am



642 L. Fawcett and D. Walshaw

Table 3. Posterior means (and standard deviations in parenthe-
ses) of some seasonal and site effects based on the conditional
autoregressive model

Effects Mean for Bradfield, Mean for Nottingham,
January July

Seasonal γ
.m/
σ̃ 1.888 (0.031) 1.286 (0.032)

γ
.m/
ξ 0.022 (0.011) 0.004 (0.014)

Site "
.j/
σ̃ 0.371 (0.043) −0.120 (0.039)

"
.j/
ξ −0.106 (0.019) −0.058 (0.017)

"
.j/
α 0.376 (0.010) 0.302 (0.009)

We now investigate our a priori assumption of exchangeable month and site effects. Although
this assumption may seem simplistic, our experience (Walshaw, 1991, 1994) suggests that at-
tempts to link the month effects are not liable to yield much change in terms of inference, and
the spatial structure is even more difficult to exploit, especially with so few sites. Nevertheless,
we investigate whether the same applies here by adopting a conditional autoregressive model
(see, for example, Sun et al. (1999)) for the seasonal effects, which incorporates the most obvious
aspect of the temporal structure, namely the fact that we would expect adjacent months to be
more similar than non-adjacent months.

We adopt the following (conditional) prior distributions for the seasonal effects for log.σ̃m,j/

and ξm,j, which replace equations (8) and (9):

γ.m/
· |.γ.m−1/

· , γ.m+1/
· /∼N0{ 1

2 .γ.m−1/
· +γ.m+1/

· /, τ·}, .20/

where once again γ.m/
: , for example, can denote either γ

.m/
σ̃ or γ

.m/
ξ . The cyclical nature of the

monthly sequence is taken care of here by replacing the values 0 and 13 for m − 1 and m + 1
respectively by the values 12 and 1, ensuring that the months 12 and 1 are correctly identified
as being adjacent in our model.

This model conditions each month effect on those of the months on either side of it. It could
be argued that this is a more reasonable assumption than that of full exchangeability under the
original model. However, the inferences are not altered greatly. Table 3 shows the results for
the seasonal and site effects, and is directly comparable with Table 1. There are some improve-
ments in the precision of estimation, illustrated by the reduced posterior standard deviations.
However, although the additional structure may prove to be useful for other problems, here
we feel that the changes in inference are not sufficient to justify the additional complexity of
the model, and we retain the original model for making further inferences on return levels. It is
worth noting here that the inferences for the GPD parameters themselves, and the return levels,
are similarly insensitive to the choice between these two models.

3.3. Return levels and predictive inference
In a practical setting, we are often more interested in estimating extreme quantiles, expressed
as return levels, than the actual GPD parameters themselves. Let X1, X2, . . . , Xn be the first n

observations from a non-independent stationary sequence with marginal distribution function
F . Standard arguments in Leadbetter et al. (1983), chapter 3, show that, for large n and x,
typically
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Pr{max.X1, X2, . . . , Xn/�x}≈F.x/nθ, .21/

where θ ∈ .0, 1] is the extremal index and is a measure of the degree of extremal dependence in
the series. It can be interpreted as the reciprocal of the mean cluster size; for a more detailed
discussion of the extremal index, see, for example, Coles (2001). Setting x = qr in approxi-
mation (21), equating this to 1 − r−1 and solving for qr, gives, to a good approximation, the
r-year return level of the process, or the value which is exceeded (on average) once every r

years. In the context of extreme wind speeds, the 50-year return level is used by the British
Standards Institution (1997) to produce contour maps displaying the strength requirements
for buildings and other large structures so that this level of wind speed can be withstood.
Thus the accuracy and precision of return level estimation is an important design consider-
ation.

For each site j, j =1, . . . , 12, the annual exceedance rate of qr is given by
12∑

m=1
{1−Fm,j.qr/

hm,jθj}, m=1, . . . , 12, .22/

where 1−Fm,j .qr/
hm,jθj is the annual exceedance rate of qr in month m (obtained from approx-

imation (21)), Fm,j is the GPD function in month m with parameters σ̃m,j and ξm,j (from model
(1)) and hm,j is the number of hours in month m. The extremal index θj in expression (22)
ensures that we incorporate the temporal dependence of the series into the estimation of qr and
is implicitly defined through the value of the logistic dependence parameter αj at site j. Thus,
for each posterior draw for αj we obtain a corresponding posterior draw for θj through simu-
lation; for a more detailed discussion about how this is done, see Fawcett (2005). Though far
from automatic, and potentially very computationally expensive, methods due to Smith (1992)
could also be employed to calculate the extremal index θj given a particular value of logistic
dependence αj. Expression (22) can then be set equal to r−1 and solved for qr for each posterior
draw of σ̃m,j, ξm,j and θj to obtain posterior draws for the r-year return level qr.

The objective of most extreme value analyses is to obtain an estimate of the probability that
future events will reach extreme levels. Conveniently, prediction is neatly handled within the
Bayesian setting. We have seen that estimation of the GPD and logistic dependence parameters
ψ= .σ̃m,j, ξm,j, αj/ can be made on the basis of previous hourly observations x= .x1, . . . , xn/ by
using a Markov chain model, resulting in a posterior distribution π.ψ|x/. Through the Bayesian
methodology, we then have

Pr.X�x|x1, . . . , xn/=
∫
ψ

Pr.X�x|ψ/π.ψ|x/dψ .23/

(where X is a randomly chosen threshold exceedance), which gives the distribution of future
large values of the process, allowing both for parameter uncertainty and the randomness in
future observations when we condition on any particular values of the parameters. Solving

Pr.X�qr,pred|x1, . . . , xn/=1− r−1 .24/

for qr,pred therefore gives an analogue of the r-year return level which additionally incorporates
uncertainty due to model estimation. Although equation (23) is analytically intractable, it is eas-
ily approximated through the estimated posterior distribution (which is found by simulation).
After deletion of burn-in, we have a sample ψ[1], . . . ,ψ[B] that may be regarded as observations
from the stationary distribution π.ψ|x/. Thus,

Pr.X�qr,pred|x1, . . . , xn/≈ 1
B

B∑
k=1

Pr.X�qr,pred|ψ[k]/, .25/
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Table 4. Return levels for Bradfield and Nottingham†

Model Results (knots) for Bradfield and the Results (knots) for Nottingham and the
following return periods (years): following return periods (years):

10 50 200 1000 10 50 200 1000

Hierarchical 96.887 103.463 112.518 128.128 66.533 73.532 79.515 86.307
(0.982) (1.333) (2.023) (2.691) (0.949) (1.455) (2.024) (2.742)

Maximum 96.745 103.236 108.152 113.306 71.362 83.056 94.010 107.718
likelihood (2.864) (5.930) (8.786) (12.219) (2.565) (4.890) (11.239) (14.564)

Predictive 104.392 113.089 119.957 127.338 68.389 75.504 81.655 88.782

†Posterior standard deviations, and asymptotic standard errors for the maximum likelihood analyses, are shown
in parentheses.

and we can solve approximation (25) by using a standard numerical method. See Coles and
Tawn (1996) for details of these ideas.

Table 4 shows the posterior means and standard deviations of the return levels qr for return
periods r = 10, 50, 200, 1000 years, for both Bradfield and Nottingham. Again, the posterior
means and standard deviations for qr are compared with maximum likelihood estimates and
their associated standard errors. The main contrast here is the much greater degree of precision
that is apparent from the hierarchical model, although the caveat that was mentioned at the
end of Section 3.1, relating to the two different inference paradigms, is also relevant here. Fig. 3
also shows a ‘shrinkage’ plot for the 1000-year return level, where one possible benefit of the
hierarchical model is revealed: the results of maximum likelihood estimation are very unstable
for such extreme quantiles and can provide unrealistic estimates, whereas the hierarchical model
achieves a degree of stability through the pooling of information across sites, enabling sensible
estimates to be obtained at all locations.

Predictive return levels for the periods 10, 50, 200 and 1000 years are also shown in Table 4 for
both Bradfield and Nottingham, and a plot of the predictive distribution of a future exceedance
is shown in Fig. 5 with the x-axis transformed to the scale indicated, which is commonly chosen
as being convenient to show a range of return levels.

4. Discussion

The hierarchical model for the UK hourly wind speed data has been employed here as a natural
framework for modelling the variation that is inherent in the data under consideration. The
underlying structure of the data, in terms of seasonality and spatial variation, has been esti-
mated through the model, allowing the sharing of information between sites and seasons. This
provides apparent benefits in terms of a greatly improved precision in estimation of the model
parameters. Estimative inferences for the quantities that are of most interest to engineers, return
levels, have also improved in precision as a consequence.

There are also several reasons for preferring a Bayesian analysis of extreme data over the
likelihood approach. First, although we have used non-informative priors, the facility to extend
this model to incorporate other sources of information through prior distributions is there and
has obvious appeal, since extreme data are, by their very nature, scarce. Second, the Bayesian
framework has enabled a natural expression of predictive quantiles, which incorporate both
the randomness of the process and model uncertainty, to produce a single value for design
specification.
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Fig. 5. Predictive return level curves for Bradfield ( ) and Nottingham (-- - - - - - )

The value of information in extreme value analyses is especially high, and the improvements
in efficiency that are found here through appropriate structural modelling are likely to have
benefits in many practical applications, and the model framework developed is transferable to
other environmental variables for which measurements are available over a spatial network of
locations.
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