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We consider a fully Bayesian analysis of road casualty data at 56 designated mobile safety camera sites
in the Northumbria Police Force area in the UK. It is well documented that regression to the mean (RTM)
can exaggerate the effectiveness of road safety measures and, since the 1980s, an empirical Bayes (EB)
estimation framework has become the gold standard for separating real treatment effects from those of RTM.
In this paper we suggest some diagnostics to check the assumptions underpinning the standard estimation
framework. We also show that, relative to a fully Bayesian treatment, the EB method is over-optimistic
when quantifying the variability of estimates of casualty frequency. Implementing a fully Bayesian analysis
via Markov chain Monte Carlo also provides a more flexible and complete inferential procedure. We assess
the sensitivity of estimates of treatment effectiveness, as well as the expected monetary value of prevention
owing to the implementation of the safety cameras, to different model specifications, which include the
estimation of trend and the construction of informative priors for some parameters.

Keywords: Markov chain Monte Carlo; mobile safety cameras; negative binomial distribution; Northum-
bria Safety Camera Partnership; regression to the mean

1. Background

In 2011, official statistics revealed that 203,950 people were reported as injured as a result of
road traffic accidents in Great Britain [8]. Of these, 1901 people were killed and 23,122 were
seriously injured placing a huge economic and human cost on society. Road casualty reduction
is therefore a key aim of government transport policy with new road safety measures continually
being tested in an attempt to reduce the number and severity of casualties. Implementing a road
safety measure, whether this is a new junction layout, education programmes for young children
or new technology to assist in the enforcement of traffic laws, clearly comes at a financial cost.
The ability to isolate the effects of the measure on changes in the pattern of casualties is therefore
vital – for assessing the potential impacts of alternative accident remedial measures, selecting
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2 L. Fawcett and N. Thorpe

locations that might benefit from treatment and for evaluating the actual performance of measures
once implemented. As we discuss, the effectiveness of such measures is usually assessed via
observational studies and, as such, can be prone to numerous sources of error; most notably
selection bias, often resulting in regression to the mean (RTM).

1.1 Selection bias in observational studies

The problem of selection bias in observational studies is well known and well documented.
When attempting to assess the effectiveness of a new road safety scheme, for example, sites
selected for treatment are often those that have observed, over some pre-determined baseline
period, an unusually high number of accidents or casualties; in any subsequent time interval, the
accident/casualty count at these sites would probably reduce anyway, even if no treatment was
implemented, simply because baseline counts were abnormally high. In such investigations, both
ethical and economic concerns are often cited as reasons against completely randomised studies;
as a result, post-treatment separation of the true causal effect from any change that would have
occurred anyway, without treatment – the RTM effect – has received much attention. The main
consequence of ignoring RTM is often an exaggerated treatment effect and possibly unjustified
financial investment.

In the road safety literature, an empirical Bayes (EB) approach (see Section 2.1) is usually
employed to quantify the RTM effect. Although the effect is variable, studies typically show a
reduction in casualty frequency owing to RTM of between 20% and 30% [13]; in other words,
estimates which do not account for RTM would typically be biased by 20–30%. In fact, so
widespread is the acceptance of the selection bias phenomenon and the resulting RTM effect that
most studies do very little – if anything at all – to actually check for the presence of selection bias
and the appropriateness of the standard procedure used to quantify the RTM effect.

Figure 1 serves to illustrate the discussion on the effects of selection bias thus far. The four
scenarios show the possible contributions of RTM to any reduction in casualty frequency as a
result of a road safety measure, applied in each scenario at the timepoint shown. In each case, the
counterfactual outcome shown is obtained as a result of assuming the trend in casualty frequency
is the same for locations treated with the safety measure and those that are not (horizontal line at
the bottom of the plot), and this trend is assumed constant across the entire timeframe depicted. In
scenarios 1, 2 and 3, we can see that treatment has been applied at the peak of a possible ‘blip’ in
casualty counts; in these situations, we might expect counts to regress to some underlying average
anyway, even without any treatment intervention. In scenario 2, casualty counts after treatment
have reverted to their underlying mean level, and no further, suggesting a benefit illusion and
no genuine treatment effect. Scenario 1 shows RTM with further reduction, suggesting at least
some genuine treatment effect. In scenario 3, the post-treatment casualty count has not even
reduced to its underlying mean level, possibly suggesting that the intervention has resulted in
an overall increase in casualties. Scenario 4 shows no RTM effect; only here might we expect
simple before/after comparisons to give unbiased estimates of treatment effectiveness, with the
counterfactual outcome being exactly the same as the pre-treatment casualty count.

Of course, RTM is not the only non-treatment effect that can distort the apparent effectiveness
of road safety schemes. For example, trends in risk, and changes in exposure to risk, might also
contribute to any observed change in casualty frequency, as could improved car safety [3]. We
will return to the issue of trend in Section 4.3.

1.2 Road safety camera policy in the UK

In 1996, a government report concluded that road safety cameras (notably speed cameras) could
be an effective weapon in reducing casualty frequencies [14]. However, the relatively high

D
ow

nl
oa

de
d 

by
 [

N
ew

ca
st

le
 U

ni
ve

rs
ity

] 
at

 0
3:

46
 0

9 
Se

pt
em

be
r 

20
13

 



Journal of Applied Statistics 3

*

*

*
*

No treatment

RTM

True benefit

RTM

RTM

Disbenefit

True benefit

Time

C
as

ua
lti

es

Before
Treatment applied

* Counterfactual outcome

After

Figure 1. Hypothetical scenarios showing the possible effects of RTM, and a road safety scheme intervention,
on casualty frequency.

implementation and running costs were felt to prohibit their widespread deployment under pre-
vailing funding mechanisms. In 1998, the government took the decision to allow traffic authorities
to recover the cost of installing and operating speed cameras from the revenues generated from
speeding offences detected by the cameras. As a result of the 1996 report and the introduction
of the cost recovery approach, the government viewed speed cameras as an important part of its
strategy to achieve its casualty reduction targets for 2010 [6]. In April 2000, a two year pilot
programme commenced involving eight road safety camera partnerships. Results at the end of
the first year prompted the government to take an earlier-than-expected decision to introduce
legislation in 2001 to enable national roll-out of safety camera partnerships across Great Britain.
By 2004, almost the entire area of England, Scotland and Wales was covered by 42 safety camera
partnerships operating under the rules of the cost recovery programme introduced in 2001.

The rapid growth in speed camera activity, and subsequent increase in members of the public
being punished for speeding offences, prompted a vigorous and detailed debate over the value
of speed cameras in the national media. Opponents trying to discredit the operation of speed
cameras (e.g. SafeSpeed and Association of British Drivers) focussed on a range of issues in an
attempt to have the scheme abandoned, in particular disputing the claimed effectiveness of speed
cameras as a casualty reduction measure. This tactic brought RTM effects to the forefront of the
public debate to the extent that the impact of RTM was discussed in at least one daily national
newspaper and eventually was incorporated (in 2005) in the official calculations of casualty
reductions at speed camera sites. Cuts in local authority spending have refocussed attention on
the claimed effectiveness – and value for money – of speed cameras, as road safety initiatives
generally come under close scrutiny vis-a-vis other public spending priorities. In August 2010,
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4 L. Fawcett and N. Thorpe

various organisations in favour of safety cameras, including the Royal Society for the Prevention
of Accidents and the AA, issued a speed camera communiqué claiming that speed cameras save
100 lives each year in the UK and actually ‘pay for themselves’; the debate rages on.

1.3 The Northumbria Safety Camera Partnership

The Northumbria Safety Camera Partnership (NSCP) joined the national programme inApril 2003.
In February 2004, the Partnership commissioned a team of researchers to investigate specifically
the impact of operating mobile road safety cameras on the demand for secondary health care at
the region’s hospitals. A mobile camera, as opposed to a fixed speed camera, is a portable unit that
is operated from a Partnership vehicle at one of a number of designated sites. The study group
collected data from 67 such sites in the region from a before period (April 2001–March 2003)
and an after period (April 2004–March 2006).

Following other published studies whose aims were to evaluate the effectiveness of road safety
schemes, the NSCP adopted a standard EB procedure (as outlined in Section 2.1 and demonstrated
in Section 3.2) to separate real treatment effects at each of the 67 sites from the effects of RTM.
The team then attempted to link police accident records to local hospital databases to quantify the
cost savings to local National Health Service (NHS) secondary healthcare providers as a result
of the implementation of the safety camera scheme. In tariff terms, they estimated the total cost
of not having to treat the casualties ‘saved’ by the introduction of the safety cameras at about
£30,000, over the two year treatment period; of course, grossing up to the national level would
significantly increase this figure. For full details, see [4].

1.4 Aims of this paper

The primary objectives of the current paper are: (1) to consider the appropriateness of the cur-
rent methodology for estimating the contribution of RTM to casualty reduction, and (2) to find
improvements over the standard EB procedure for modelling casualty frequencies. In Section 2
we describe, generally, the standard EB approach for quantifying RTM, and outline the limitations
of this approach as it is usually applied. The remainder of this paper then focuses on the safety
camera data used in the NSCP-commissioned study. In Section 3, we consider some exploratory
checks of the assumptions implicit in the standard approach for quantifying RTM. We then apply
the standard EB procedure to the safety camera data and compare this to a fully Bayesian treat-
ment, paying particular attention to the estimates of variability of expected casualty frequencies
at each site. We also consider the resulting estimates of cost savings to the NHS, and the wider
society, as a result of implementing the safety camera scheme, again comparing both empirical
and fully Bayesian approaches. In Section 4, we consider some alternative model structures. In
particular, we: assess the sensitivity of our estimates to different prior distributions for the mean
casualty rate at each safety camera site; attempt to construct more realistic prior distributions for
the regression coefficients used to predict the mean casualty rate; identify the contribution of trend
to any change in casualty frequencies at safety camera sites.

2. Statistical modelling: accounting for RTM

2.1 EB approach

To date, most road safety scheme evaluation studies that have attempted to quantify the effects
of RTM have made use of an EB procedure; see, for example, [12,17,22,24,25]. The model
formulation is rather simple and, given a specific choice of prior distribution for the mean casualty
rate at each treated site j, the resulting posterior mean for this rate is – conveniently – a weighted
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Journal of Applied Statistics 5

sum of the abnormally high observed casualty frequency at site j and what we might usually expect
to see at this site. Assuming a Poisson distribution with mean mj for the casualty frequency yj at
site j in any period before the implementation of a road safety scheme, and a gamma distribution
for mj itself, with mean μj and variance μ2

j /γ , the posterior distribution of mj|yj is also of gamma
form:

mj|yj ∼ Gamma

(
γ + yj,

γ

μj
+ 1

)
.

The mean of this posterior is then used as the EB estimate of casualty frequency, i.e.

E(mj|yj) = αjμj + (1 − αj)yj, where (1)

αj = γ

γ + μj
(2)

and 0 ≤ αj ≤ 1. In the studies we refer to above, evaluation of the effectiveness of a particular
road safety scheme at site j is based on a comparison of the observed number of casualties at that
site after scheme implementation (yj,after) with the EB estimate of casualty frequency for that site
given by Equation (1). The percentage change from yj to E(mj|yj) is taken to be the change that
would have happened anyway, even without the implementation of any road safety measure, i.e.
the RTM effect.

Generalised linear modelling is usually adopted to obtain the prior mean μj, i.e.

μ̂j = exp

⎧⎨⎩β̂0 +
np∑

p=1

β̂pxpj

⎫⎬⎭ , (3)

where xpj are variables associated with attributes at site j that could have an effect on the mean
number of casualties at that site (e.g. traffic flow or average vehicular speed) and np is the number
of such variables used. The estimated regression coefficients β̂i, i = 0, . . . , np, are obtained from
a set of reference sites that are representative of the sites at which the road safety scheme has
been implemented – in terms of the explanatory variables xp, but not in terms of their casualty
frequency. Indeed, sites chosen for a road safety scheme are usually done so on the basis of their
unusually high casualty frequency during some baseline period; for μj we require a model that
will give us a more representative prediction of mean casualty frequency at each treated site j.

Estimation of the weight αj also requires specification of the shape parameter γ . The uncon-
ditional distribution of yj is negative binomial with mean μj and variance μj + κμ2

j , where
κ = 1/γ > 0 is the negative binomial dispersion parameter. Thus, if we assume a negative bino-
mial error structure in model (3), maximum-likelihood estimates of βi, i = 0, . . . , np and γ can
be obtained, leading to estimates of μj and αj via Equations (3) and (2), respectively, and hence
EB estimates of casualty frequency at each site j via Equation (1).

2.2 Limitations of the standard EB approach

The EB approach for estimating RTM, as outlined in Section 2.1, has become the standard tool
for practitioners who wish to evaluate the true effectiveness of a road safety scheme. However,
there are several limitations to this approach, as it stands.

2.2.1 Assumption of exchangeability

The standard EB approach is flawed if the set of reference sites (from which the estimated regres-
sion coefficients in Equation (3) are obtained) are not comparable with the sites at which the road
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6 L. Fawcett and N. Thorpe

safety scheme has been implemented (to which Equation (3) is applied). Rigorous testing of this
assumption is not commonplace, and in this paper (Section 3.1) we consider some pre-analysis
exploratory checks of the assumption.

2.2.2 Choice of prior for mj

Although the use of the gamma distribution as a prior for the mean casualty rate mj gives a
convenient and appealing expression for E(mj|yj), this choice of prior distribution is borne out
of mathematical convenience, the gamma distribution being the conjugate prior for the Poisson.
Developments in computer-based simulation procedures since the first use of the EB method in
the 1980s have revolutionised Bayesian modelling, with the result that there is no longer any
need nor advantage of using conjugate or other rather artificial forms of prior distribution for mj.
Using Markov chain Monte Carlo (MCMC), we can now (approximately) simulate directly from
the posterior distribution of interest no matter what the choice of prior distribution for mj. In this
paper (Section 4.1), we consider the sensitivity of the estimated RTM effect to the choice of prior
for mj in a fully Bayesian analysis.

2.2.3 Over-optimistic quantification of variability

By substituting μj in Equation (1) with point estimates obtained from Equation (3) it is implied that
population-level estimates do not contribute to the uncertainty in the estimate of casualty frequency
for a specific site. This is bound to lead to unrealistically low posterior standard deviations for EB
estimates of casualty frequency. A fully Bayesian analysis would assign hyper-prior distributions
to the regression coefficients βi and the prior shape parameter γ ; doing so explicitly recognises
that population-level estimates of casualty frequencies are also uncertain and thus contribute to
the variance of the site-level estimates of mj. In this paper, we compare the standard EB analysis
to fully Bayesian analyses, paying attention to the resulting estimates of posterior variability of
certain quantities of interest. Unlike previous studies, we also consider the effects of using more
informative priors for the regression coefficients in Equation (3).

3. Application to the NSCP safety camera data

At each treated site the number of casualties before, and after, the implementation of the safety
cameras was observed, as well as various explanatory variables collected by the NSCP as part
of their standard reporting procedure: average observed speed (x1 miles per hour); percentage
of drivers exceeding the speed limit (x2); daily traffic flow (x3); speed limit (x4 miles per hour);
eighty-fifth percentile speed (x5 miles per hour); percentage of drivers at least 15 miles per hour
over the limit (x6); and road classification and road type (x7 = A/B/C/Unclassified roads, and
x8 = single/dual/mixed carriageway, respectively).

For the purpose of the present paper, we work with a subset of 56 of the 67 mobile camera
sites in the original study (due to missing values and some sites being decommissioned during the
study period). In terms of the explanatory variables listed above, these sites are extremely varied;
however, all sites have in common their unusually high casualty records from the observational
period. The total number of casualties in the before period was 436; after the implementation of
the safety cameras, this reduced to 298. To formulate a regression equation for μj to be used at
each treated site j (Equation (3)), we also have data available for a set of 67 reference sites in the
Northumbria police force area.

3.1 Exploratory analyses to check the RTM assumptions

As discussed in Section 1.1, most published studies make use of the EB procedure without checking
whether or not we can expect RTM to be present. Figure 2 shows total casualty frequencies at
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Journal of Applied Statistics 7

Figure 2. Time series plot of total casualty frequencies at the 56 mobile safety camera sites: 1995, for
example, corresponds to the financial year April 1995 → March 1996.

the safety camera sites for the financial years 1994/1995–2010/2011. As can be seen, the safety
cameras were commissioned after what may have been an unusually high run of casualties.
Implementing Kendall’s turning point test [15] gives a p-value of 0.180 for the hypothesis H0 :
Casualty frequencies are unsystematic, suggesting that what we see in Figure 2 could indeed be
a ‘blip’; the expectation of RTM thus seems feasible.

In Section 2.2.1 we also discussed that the standard procedure for estimating RTM is flawed if the
sites treated with safety cameras cannot be considered exchangeable with sites in the reference set.
We now suggest some simple methods practitioners could use to check this assumption. Consider
the matrix X = (x1, . . . , x8), where xp, p = 1, . . . , 8, are column vectors of observations from the
explanatory variables x1, . . . , x8 (described above) of length 123, with each of the 56 treated and
67 reference sites having a row entry. Combining treated and reference sites into a single data
matrix, we can then perform a multiple factor analysis [10] on X; plotting scores on the first two
dimensions against each other, using different plotting symbols for treated and reference sites,
could help determine whether or not the assumption of exchangeability is plausible. Figure 3
shows this plot (which can be interpreted in the same way as a plot of scores from the first
two principal components in a principal components analysis). As can be seen, there is no clear
distinction between scores for the reference and treated sites.

To further investigate the plausibility of our assumption of exchangeability, we can perform
permutation tests for various statistics that serve to compare the treated and reference sites. For
example, suppose we wish to compare mean values of our explanatory variables at the treated
sites to the corresponding averages observed in the reference set. The absolute differences are
given by

δp = |x̄TRT
p − x̄REF

p |, p = 1, . . . , 8, (4)

where trt and ref denote the treated and reference sets, respectively. If the treated and reference
sites are exchangeable with respect to the explanatory variables, then the values calculated from
Equation (4) would not be significantly different to those obtained after a random allocation of
sites to the treated and reference sets. In a permutation test we find the statistic of interest for every
possible allocation of sites to each of the reference and treatment sets; the exact p-value P for a test
of the null hypothesis H0 : sites are exchangeable, is then found as the proportion of allocations
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8 L. Fawcett and N. Thorpe

Dimension 1 (Explains 31.73% of the variability in the data)
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Figure 3. Multiple factor analysis on X: scores from the first dimension plotted against those from the second
dimension for reference sites (o) and treated sites (+).

for whom the statistic of interest is at least as extreme as that found under the real allocation. In
our example, there are

(123
56

) ≈ 4.68 × 1035 permutations: thus, a Monte Carlo permutation test
can be used, where N permutations are chosen randomly from all of those available. Let �k be
one such random permutation, and let δ(�k)

p be the absolute mean difference for variable xp, as
defined in Equation (4), obtained under permutation �k . Let Ik be an indicator variable such that

Ik =
{

1 if δ(�k)
p ≥ δp,

0 otherwise;

then an estimate of P is given by

P̂ =
N∑

k=1

Ik

N
,

giving E[̂P] = P and var(P̂) = P(1 − P)/N . Performing such Monte Carlo permutation tests
with N = 106 shows only a marginally significant difference between the reference and treated
sets for x5, the eighty-fifth percentile speed: here, the 95% confidence interval for P is (0.048,
0.051). For all other explanatory variables, P � 0.05.

Considering all explanatory variables together, we also perform a Monte Carlo permutation
test on the mean Mahalanobis distance of sites in the treatment set to sites in the reference set
with mean M̄REF = (x̄REF

1 , . . . , x̄REF
8 ) and covariance matrix �, whose (s, t)th entry is given by
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Journal of Applied Statistics 9

cov(xREF
s , xREF

t ), s, t = 1, . . . , 8; that is, we compare

D̄ = 1

56

56∑
j=1

√
(XTRT

j − M̄REF)T�−1(XTRT
j − M̄REF),

where XTRT
j is the jth row of X for those sites treated with a safety camera, to a sample of size N

from the permutation distribution of D̄. Doing so, we get (0.165, 0.173) as the 95% confidence
interval for P, further supporting the assumption of site exchangeability.

3.2 EB analysis

Having checked the assumption of exchangeability between the reference and treated sites, we
now apply the EB method, as outlined in Section 2.1, to the data collected by the NSCP. Fitting the
full model – to include information on all explanatory variables – reveals potential problems of
multicollinearity by including variable x5. After removing x5, and using a backwards elimination
procedure for the selection of suitable explanatory variables, we obtain the following model for
data at the 67 reference sites:

μ̂ = exp

{
1.93
(0.534)

− 0.04x1
(0.015)

− 0.01x2
(0.004)

+ 0.44x3
(0.193)

+ 0.67x4I
(0.382)

+ 0.85x5I
(0.422)

+ 1.06x6I
(0.380)

}
, (5)

where x1, x2 and x3 correspond to the average observed speed (miles per hour), the percentage
of drivers exceeding the speed limit and traffic flow (respectively, as defined earlier), and x4I , x5I

and x6I are indicator variables associated with road classification (variable x7), where: x4I = 1 for
road classification ‘A’, x5I = 1 for road classification ‘B’ and x6I = 1 for road classification ‘C’,
each taking the value 0 otherwise; standard errors for each of the estimated regression coefficients
are given in parentheses underneath. The maximum-likelihood estimate for the negative binomial
dispersion parameter is κ̂ = 0.401 (0.015), giving γ̂ = 1/0.401 = 2.494 (0.774); again, standard
errors are given in parentheses. There were no significant pairwise dependencies between any of
the remaining explanatory variables, suggesting no real problems of multicollinearity at this stage
of the analysis. The usual diagnostic tools for assessing the fit of such regression models can be
used to confirm the adequacy of this model for data collected at the reference group of sites. The
standard EB procedure uses Equation (5) on data x1j , x2j , x3j , x4Ij , x5Ij and x6Ij collected at each
safety camera site j, j = 1, . . . , 56, and treats each resulting μ̂j as the ‘true value’, substituting
this into Equation (1) along with γ̂ and the observed casualty frequency in the before period (yj)
to obtain the EB estimate of casualty frequency at each site j.

Table 1 shows numerical results for some of the individual safety camera sites (chosen because
their observed casualty frequencies and estimated RTM effects give a good indication of the

Table 1. Results of the EB analysis to account for RTM for four sites treated with safety cameras, as
well as totals for all 56 safety camera sites.

EB method Difference

yj μj αj E(mj|yj) SD(mj|yj) yj,after Observed After RTM

Site j = 2 4 1.43 0.63 2.38 0.936 0 −4 −2.38
Site j = 13 12 1.71 0.59 5.95 1.564 2 −10 −3.95
Site j = 39 7 1.31 0.65 3.29 1.069 2 −5 −1.29
Site j = 47 16 7.84 0.24 14.06 3.273 5 −11 −9.06
Total 436 321 298 −138 −23
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10 L. Fawcett and N. Thorpe

range of values observed across all treated sites), as well as overall totals for all sites in the NSCP
study. For example, at site 13 there was an observed reduction in casualties from 12 in the before
period to 2 in the after period; however, the EB estimate suggests that this would have reduced
to about 6 anyway, giving a more realistic reduction, after RTM, of just 4 casualties. Across all
56 safety camera sites, the total observed reduction of 138 casualties between the before and
after periods is reduced to just 23 after taking RTM into account. This suggests an RTM effect
of 100(

∑
∀j E(mj|yj) − yj)/

∑
∀j yj = −26.4%, towards the middle of the range reported in [13],

discussed in Section 1.1.

3.3 Fully Bayesian analysis

We now formulate a fully Bayesian (FB) modelling framework to assess the effectiveness of the
safety cameras. In this section, we work with exactly the same Poisson–Gamma hierarchy as
outlined in Section 2.1. However, we now unify the entire modelling procedure by assigning prior
distributions to the regression coefficients βi, i = 0, . . . , 6, and the negative binomial dispersion
parameter κ . We use diffuse, independent priors:

βi ∼ N(0, 100), i = 0, . . . , 6 and

ρ = log(κ) ∼ N(0, 100),

working with the natural logarithm of the negative binomial dispersion parameter to retain the
positivity of κ . Inference proceeds by initialising each of the regression coefficients βi and ρ =
log(κ) at their prior means, and then using a random walk Metropolis–Hastings scheme (with data
from the reference set) to update the chains. At each iteration R in the MCMC, the current values
of the regression coefficients β

(R)
i are used to obtain the posterior draw μ

(R)
j for each safety camera

site j via Equation (3); the current values μ
(R)
j and γ (R) = exp{−ρ(R)} are then used as the mean

and shape (respectively) of the gamma prior distribution for mj. Since the gamma distribution is
the conjugate prior for the Poisson distribution, Gibbs sampling can then be used to sample from
the full conditional for mj. After initial pilot runs to tune the efficiency of the sampler, the MCMC
was run for 500,000 iterations, and various starting values for βi and ρ were used to help assess
convergence.

Table 2 shows some posterior summaries after the removal of the burn-in period (the first 5000
iterations).Also shown are the corresponding posterior summaries for μj and mj for the four safety
camera sites we reported in the EB analysis (Table 1). At each iteration R we have also computed
the total expected casualties T (R) across all 56 sites, given by

T (R) =
56∑

j=1

m(R)
j |yj.

The posterior means for the regression coefficients (βi) match up quite closely to the MLEs for
these parameters as given in Equation (5); none of the 95% credible intervals for these parameters
include zero, which also agrees with the earlier frequentist analysis in which the regression
coefficients were all significant. The posterior means for βi are all quite close to the medians,
indicating fairly symmetric marginal posteriors. The posterior means for mj for the four sites
reported here also compare quite closely to the posterior means for mj obtained in the EB analysis
and reported in Table 1; however, as can be seen when comparing the standard deviations for mj

in Table 2 to those from the EB analysis in Table 1, posterior variability is substantially greater
in the FB analysis. This is, of course, because we have now acknowledged the variability of the
regression parameters βi and hence the mean casualty rate μj, j = 1, . . . , 56, through the prior
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Journal of Applied Statistics 11

Table 2. Posterior summaries for a fully Bayesian analysis to account for RTM.

Posterior

Mean St. dev. Median 95% Credible interval

β0 1.981 0.544 1.981 (0.900, 3.044)
β1 −0.042 0.016 −0.042 (−0.074, −0.012)
β2 −0.013 0.004 −0.013 (−0.021, −0.005)
β3 0.476 0.218 0.474 (0.063, 0.912)
β4 0.648 0.437 0.651 (0.012, 1.506)
β5 0.840 0.451 0.839 (0.043, 1.733)
β6 1.059 0.400 1.058 (0.284, 1.845)

γ = exp{−ρ} 2.281 0.756 2.146 (1.201, 4.111)

Site j = 2 1.534 0.639 1.416 (0.649, 3.105)
μj Site j = 13 1.903 0.908 1.716 (0.725, 4.209)

Site j = 39 1.411 0.601 1.301 (0.586, 2.907)
Site j = 47 8.195 1.767 7.986 (5.355, 12.245)

Site j = 2 2.465 1.188 2.255 (0.780, 5.369)
mj Site j = 13 6.283 2.447 5.946 (2.502, 12.039)

Site j = 39 3.475 1.527 3.239 (1.232, 7.133)
Site j = 47 14.225 3.466 11.032 (8.320, 21.842)

Total T 322 23.833 308 (289.92, 369.97)

Notes: The posterior means and medians of the regression parameters βi are comparable to
the MLEs from the empirical Bayes analysis; posterior summaries for the casualty rate at site
j (mj) and its corresponding mean (μj) for the four sites reported here can also be compared
to those from the earlier empirical Bayes analysis.

distributions for βi. Although our prior distributions for the regression coefficients are rather
vague, and so probably act to over-state these sources of variability, this is still potentially more
attractive than assuming that the MLEs for βi (and hence μj) are the true values, as is the case in
the EB approach.

The positive skew of the marginal posteriors for mj is noticeable when we inspect the posterior
draws from the FB analysis; for four sites in particular, this gives a substantial difference between
the posterior mean and median (site 47, as reported in Table 2, is one such site). Studies that we
are aware of in the road safety literature do not consider any posterior summary other than the
mean given by Equation (1). Clearly, for locations such as site 47, this could be misleading. Of
course, this is not to say that other posterior summaries from an EB analysis cannot be obtained;
rather, in a typical EB analysis the posterior mean is taken as the estimate of mean casualty
frequency, without any regard to the shape of the posterior distribution itself. Working within a
fully Bayesian framework gives access to any posterior summary via our MCMC sample. Figure 4
shows posterior summaries for mj for all 56 safety camera sites. The effect of using the mean at
the sites with a relatively large mean/median discrepancy (as is done in a typical EB approach)
could be to understate the effect of RTM at those sites: as the bottom row of Table 2 shows, when
we sum casualty frequencies for all sites at each iteration in the MCMC, the posterior median
total expected casualty frequency is just 308, compared to a mean of 322 (and an analytical mean,
as found in the EB analysis, of 321, as given in Table 1).

3.4 Implications for the demand on secondary healthcare

One of the aims of the original NSCP study was to estimate the financial consequences of the
implementation of the safety cameras for local NHS secondary healthcare providers. A large,
multi-stage data linking exercise took place in the NSCP study to link police collision data
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12 L. Fawcett and N. Thorpe

Figure 4. Posterior means (circles) and medians (crosses) from the fully Bayesian analysis: along with 95%
credible intervals, for each safety camera site (top); plotted against the corresponding EB estimate of casualty
frequency (bottom).

from the before period to NHS casualty data. This was attempted using unique identifiers which
are collected by both the police, at the scene of the accident, and the hospital involved. Rather
disappointingly, it was only possible to match about 44% of casualties in the before period to
corresponding hospital records. However, as pointed out in [4], this is in line with matching
rates obtained in other studies that have attempted to link police records to hospital databases; for
example, in a similar exercise, Simpson [26] achieved a 46% success rate. Reasons for differences
between hospital and police data, which can lead to low matching rates, are suggested in [5].

NHS Accident and Emergency (A&E) patients fall into one of eight Health Resource Group
(HRG) categories depending on the severity of their injuries and the extent of treatment required.
TheseA&E HRGs range from high cost categories which include computerised tomography scans
and magnetic resonance imaging scans, to relatively low cost categories, involving more routine
urine/bacteriological investigations. SomeA&E patients would then require admission to hospital
for inpatient treatment; inpatients are allocated to one of some 700 inpatient HRGs (see [4] for full
details). Each A&E HRG has an associated financial tariff, as does each inpatient HRG. Overall
individual inpatient tariffs are calculated as a function of time, and so instead of considering the
700 inpatient HRGs themselves we discretise the inpatient tariffs into groups of £500 (where £0
is used for A&E admissions not requiring inpatient treatment).

Each hospital admission will fall into one of our A&E HRG/inpatient tariff category combina-
tions τ ; thus, we consider each τ , with associated combinedA&E/inpatient financial tariff £Cτ , as
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Journal of Applied Statistics 13

a multinomial outcome whose probabilities pτ are just the observed proportions falling into each
τ in the before period. The estimated saving to the NHS by implementing the safety cameras can
then be obtained, in the EB analysis, by multiplying the total change in casualty frequency after
RTM by each pτ ; these expected frequencies are then converted into expected financial savings
by multiplying by the financial tariff associated with each corresponding category τ , and so the
total expected financial saving £S is found as

E(S) =
⎛⎝ 56∑

j=1

{
E(mj|yj) − yj,after

}⎞⎠ ∑
∀τ

pτ Cτ . (6)

The A&E contributions to each Cτ take a fixed value; however, since we have partitioned the
inpatient tariffs into groups of £500, we use the minimum, midpoint and maximum values of
each inpatient tariff to obtain a combined tariff £Cτ for each τ . Here, we assume that casualties
involving the police, but not requiring any hospital treatment at all, cost £Cτ = 0; below, we
discuss an alternative approach which attempts to incorporate the cost of hospital treatment with
all other costs that we might expect to be incurred, per casualty.

In the FB analysis we can obtain posterior draws for the expected number of casualties falling
into each category τ , by multiplying each posterior draw for the total change in casualty frequency
by the corresponding pτ . Then, posterior draws for the expected financial saving to the NHS can
be obtained by multiplying each expected frequency by the associated financial tariff for category
τ , giving, at each iteration R,

S(R) =
⎛⎝T (R) −

56∑
j=1

yj,after

⎞⎠ ∑
∀τ

pτ Cτ . (7)

Table 3 compares results from the standard EB analysis to posterior summaries from the FB
approach. Of course, all values represent cost savings to the NHS over the two year operational
period of the safety cameras in this study. Although it could be the case that there is an association
between the severity of a casualty, and whether or not the police/hospital records of this casualty
are successfully matched, it is difficult to understand the effect this might have on estimates of
S: there is no direct relationship between the police classification of casualty severity and the
associated HRG tariff category τ .

Since 1993, the valuation of casualties has been based on a consistent willingness to pay
approach, which encompasses all aspects of the valuation of casualties, including police costs,
human costs (representing pain, grief and suffering to the casualty and their relatives/friends) and
loss of output due to injury. When combined with the direct cost of medical treatment, the UK
DfT [7] puts the average total cost of a road casualty at £52,850. Thus, replacing

∑
∀τ pτ Cτ in

Table 3. Estimates of total expected financial savings to the NHS (£S thousand), and total
value of prevention including human costs and lost output (£S∗ thousand), owing to the
implementation of the safety camera scheme in Northumbria: April 2004–March 2006.

Full Bayes: Posterior

Thousand £ EB Mean St. dev. Median 95% credible interval

Midpoint 25.6 24.9 13.2 24.4 (0.3, 57.5)
S Minimum 23.5 22.8 12.1 22.3 (0.1, 52.5)

Maximum 27.7 27.1 14.4 26.5 (0.6, 62.5)
S∗ 1215.6 1529.8 786.3 1479.8 (45.6, 4122.3)
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14 L. Fawcett and N. Thorpe

Equations (6) and (7) with 52850 will give an EB estimate/posterior draws (respectively) of S∗,
the total (average) value of prevention owing to the implementation of the safety cameras in the
Northumbria region. The value of £52,850 per prevented casualty is, of course, an average; this
will vary depending on the severity of the casualty’s injuries, and the type of road user (e.g. car
occupant, goods vehicle occupant, motorcycle user etc.). Results for S∗ are given in the bottom
row of Table 3.

4. Further modelling considerations

In the previous section, the standard EB procedure was used to estimate the contribution of RTM
to the reduction in casualty frequency at 56 sites treated with safety cameras. Relative to an
FB analysis, the standard EB approach was shown to be over-optimistic in its estimation of the
variability of casualty frequency at each site. We provided a like-for-like comparison between the
typical EB approach for estimating the RTM effect and an FB analysis. We now investigate the
sensitivity of our results from this FB treatment to the choice of prior distributions for mj. We
then investigate the use of more informative priors for the regression coefficients in Equation (3),
giving some thought to the issue of variable selection in the Bayesian framework. We also quantify
the contribution of trend to the reduction in casualty figures after the implementation of the safety
cameras.

4.1 Sensitivity to other forms of prior distribution for mj

We now assess the sensitivity of the results in Section 3 to the choice of prior distribution for mj.
Recall that the gamma prior mean and variance for mj were μj and μ2

j /γ , respectively. We now
use the lognormal (mean = λj, variance = σ 2) and Weibull (shape = ω, scale = νj) distributions
as priors, keeping the mean and variances the same as in the original gamma prior to allow relative
comparisons of the effects of using these different priors. This gives

λj = log(μj) − 1
2 log(1 + γ −1) and

σ 2 = log(1 + γ −1)

for the lognormal prior. For the Weibull prior, we solve

ω
�(2ω−1)

�2(ω−1)
= 1

2
(1 + γ −1)

for ω and then use

νj = μj

�(1 + ω−1)
.

A summary of results based on the lognormal and Weibull priors for mj is shown in Table 4,
along with the results for the gamma prior from Section 3. There is clearly some agreement
between results obtained using the original gamma prior and the Weibull prior. However, using
the lognormal prior gives a considerably higher total number of expected casualties. For example,
the posterior mean total casualties is 355; comparing this with the number of observed casualties in
the after period (298) would suggest the safety cameras had been more effective than if we had used
the gamma or Weibull priors, with less contribution to any change in casualty frequency attributed
to RTM. In fact, the 95% credible interval for the effect of RTM when using the lognormal prior
does not include the value given in the EB analysis, or indeed the posterior summaries of average
from the analyses using the other two forms of prior for mj. This is reflected in the estimation of
S and S∗ with, for example, the median total value of prevention due to the safety cameras, when
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Journal of Applied Statistics 15

Table 4. Posterior summaries for: the total expected number of casualties (T ); the RTM; the expected financial
savings to the NHS secondary healthcare providers as a result of implementing the safety cameras (S); and
the total average value of prevention including human costs and lost output (S∗).

Gamma Lognormal Weibull

Mean Median Mean Median Mean Median
EB (95% credible interval) (95% credible interval) (95% credible interval)

T 321 322 308 355 338 317 303
(290, 370) (309, 394) (296, 371)

RTM (%) −26.4 −26.5 −29.7 −18.9 −22.8 −27.6 −30.8
(−35.6 , −14.2) (−26.3, −9.0) (−39.3, −15.3)

S (Thousand £) 25.6 24.9 24.4 29.3 29.3 25.3 24.9
(0.3, 57.5) (6.1, 73.5) (0.7, 70.9)

S∗ (Thousand £) 1215.6 1529.8 1479.8 2803.0 2801.0 986.3 951.3
(45.6, 4122.3) (581.4, 5126.5) (69.1, 4910.9)

using the lognormal prior (about £2.8 million), being almost twice that when using the gamma
prior (£1.5 million) and even greater still than when using the Weibull prior (less than £1 million).

The deviance information criterion (DIC), as discussed in [27], can be used to compare the
three model formulations tried here. The DIC is akin to the Akaike information criterion and is
based on an estimate of the log-likelihood, but includes a penalty for the number of parameters;
hence, it can be used to compare alternative models. For the Poisson–gamma, Poisson–lognormal
and Poisson–Weibull, we have a DIC of 693.3, 787.2 and 645.6 (respectively), suggesting the
Weibull prior for mj might be the most appropriate distribution (of the three tried) to use here.
In practical terms, the lognormal prior might be the least suitable because of its heavy upper tail
relative to the other two priors tried. For example, taking γ̂ = 2.494 (as estimated in Section 3.2)
and μ̂47 = 7.84 (as estimated for site 47 in Table 1), gives a value for Pr(mj > 40) under the
lognormal prior that is 7 times larger than that under the gamma prior, and 77 times larger than
that under the Weibull prior! Even for a relatively high casualty frequency site like site 47, it
would be extremely unusual to observe a mean casualty rate of more than 40, and so we might
trust most the prior with smaller tail probabilities (the Weibull).

4.2 Choice of prior distribution for the regression coefficients

The FB analysis in Section 3.3 used independent Normal priors with large variances for the
regression coefficients βi. We now consider prior specifications for the regression coefficients that
more suitably capture the variability of these parameters, as well as any dependencies between
them. We consider two forms of prior for the regression coefficients: a genuinely informative prior
developed by eliciting priors for the mean number of casualties at observed levels of covariates,
known as a conditional mean prior (CMP); and a data augmentation prior (DAP), making use
of the covariate values themselves.

4.2.1 Using a DAP

An attractive method for augmenting a Bayesian analysis in the absence of any external or expert
prior information is to adopt a DAP. For Poisson regression, Ntzoufras [23] suggests the following
np-variate Normal DAP for β\0,np

, the np-dimensional parameter vector of regression coefficients
βi excluding β0:

β\0,np
∼ Nnp(0, n(XT

np
Xnp)

−1). (8)
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16 L. Fawcett and N. Thorpe

Here, Xnp is the design matrix without the first column that corresponds to the constant β0, 0 is
the zero vector (of length np) and n is the sample size. Ntzoufras [23] suggests using a vague
prior for β0 such as that previously used, e.g. a zero mean Normal with large variance. Using
the prior for β\0,np

given in Equation (8), and using gamma, lognormal and Weibull priors for mj,
j = 1, . . . , 56, gives DIC values of 733.4, 813.7 and 685.4 (respectively), indicating, as before,
that the Poisson–Weibull structure provides the best fit. The columns in Table 6 labelled ‘DAP’
summarise the MCMC runs for the Poisson–Weibull model; as before, the chains were allowed
to run for 500,000 iterations, and the first 5000 were discarded as burn-in. Comparing inferences
for the regression coefficients βi to those in Table 2, where independent zero-mean Normal priors
with large variances were used, we see a reduction in posterior variability. This follows through to
inferences for the total number of expected casualties (T ), as well as the RTM effect, both of these
having narrower 95% credible intervals than when the non-informative priors were used (see the
right-hand side of Table 4); similarly, the 95% credible intervals for S and S∗ are narrower when
using the DAP.

4.2.2 Using a CMP

We now attempt to construct a truly informative prior for the vector of regression coefficients
β\0,np

. Following [2], we elicit a prior on M̃ = (M̃1, . . . , M̃np) where the M̃p’s are mean responses

at covariates xp, p = 1, . . . , np. We denote by X̃ the np × np non-singular matrix with xT
p in the

pth row (see Section 3.1). Following the notation of Bedrick et al. [2], G and G−1 are vector
transformations that apply g and g−1 to each element; for example, g(·) = log(·) and g(·) = logit(·)
for Poisson and logistic regression, respectively. Assessing the M̃p’s independently, the CMP is

π0(M̃) =
np∏

p=1

π0p(M̃p).

Writing

M̃ = G−1(X̃β\0,np
) and β\0,np

= X̃−1G(M̃)

induces a prior on β\0,np
of the form

π(β\0,np
) =

∏np

p=1 π0pg
−1(x̃T

p β\0,np
)

|X̃−1| ∏np

p=1 ġ(M̃p)
,

where, generically, ḟ (x) = ∂f (x)/∂x.
Using the same four covariates as in the original analyses in Section 3 requires us to elicit priors

on M̃ = (M̃1, . . . , M̃6), since road classification is a factorial variable requiring three indicators.
A regression analysis from a previous study of casualty frequencies at another group of sites in
the Northumbria region gives a regression equation of the form in Equation (5); covariates xp,
p = 1, . . . , 6, at six of these sites can be used to suggest means ap and variances bp for each
M̃p. Suitable priors for M̃p can then be proposed – for example, gamma distributions with means
and variances ap and bp (respectively), or indeed lognormal or Weibull distributions as used in
Section 4.1. For six sites used in this previous study, we obtain means and variances as reported in
the first two columns of Table 5. Using these means and variances we can obtain hyper-parameters
for the priors on M̃p: these are also given in Table 5 for the three priors we consider.

Using the DIC to assess fit when using gamma, lognormal and Weibull distributions for π0p

and mj, p = 1, . . . , 6 and j = 1, . . . , 56, once again suggests the Poisson–Weibull structure is best.
Thus, Table 6 also reports posterior summaries from a Poisson–Weibull analysis using the CMP for
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Journal of Applied Statistics 17

Table 5. Elicited prior parameters for M̃p, as used in the CMP prior for β\0,np
.

Gamma Lognormal Weibull

ap bp Shape Scale Mean Variance Shape Scale

M̃1 9.93 11.63 8.48 0.85 2.24 0.11 3.20 11.09
M̃2 2.77 1.64 4.68 1.69 0.92 0.19 2.29 3.13
M̃3 3.59 3.10 4.16 1.16 1.17 0.22 2.15 4.05
M̃4 3.12 1.87 5.21 1.67 1.05 0.18 2.43 3.52
M̃5 8.19 6.25 10.73 1.31 2.06 0.09 3.64 9.08
M̃6 5.42 3.79 7.75 1.43 1.63 0.12 3.04 6.07

Table 6. Posterior summaries for: the regression coefficients βp; the total expected number of casualties
across all safety camera sites T ; the RTM; the estimated financial savings to NHS secondary healthcare
providers as a result of implementing the safety cameras (£S thousand); and the total average value of
prevention including human costs and lost output (£S∗ thousand).

Posterior

Mean St. dev. Median 95% Credible interval

DAP CMP DAP CMP DAP CMP DAP CMP

β0 1.785 1.543 0.463 0.521 1.790 1.549 (0.86, 2.69) (0.51, 2.58)
β1 −0.038 −0.025 0.014 0.013 −0.038 −0.025 (−0.07, −0.01) (−0.05, 0.00)
β2 −0.012 −0.013 0.004 0.004 −0.012 −0.013 (−0.02, −0.01) (−0.02, −0.01)
β3 0.464 0.318 0.217 0.188 0.458 0.313 (0.06, 0.90) (0.04, 0.70)
β4 0.701 0.799 0.426 0.412 0.701 0.802 (0.01, 1.55) (0.03, 1.61)
β5 0.886 0.913 0.442 0.432 0.882 0.913 (0.03, 1.77) (0.06, 1.76)
β6 1.101 1.142 0.385 0.395 1.097 1.140 (0.35, 1.87) (0.37, 1.93)

γ 2.194 2.083 0.725 0.671 2.072 1.969 (1.16, 3.95) (1.12, 3.71)
T 327 327 23.316 25.528 314 313 (286, 352) (285, 354)
RTM % −25.3 −25.3 6.265 5.855 −28.3 −28.5 (−35.3, −26.0) (−36.6, −23.6)

S 31.4 30.9 15.128 14.092 31.0 30.9 (0.9, 61.9) (0.9, 58.5)
S∗ 1584.9 1541.5 448.4 349.1 1547.7 1541.7 (73.4, 4507.3) (72.6, 4183.2)

Notes: Results are shown for the data augmentation prior (DAP) and the conditional mean prior (CMP) for β\0,np
, using

Weibull priors on mj .

β\0,np
(columns labelled ‘CMP’). As when using the DAP, we see that we have smaller posterior

standard deviations for the regression coefficients than in the analysis using non-informative
priors; again, this follows through to give greater posterior precision to our estimates of RTM and
T , S and S∗.

4.2.3 Issues of model selection

In all the analyses performed so far, only four of the original eight predictor variables have
been used to estimate μj. These four were selected in the original EB analysis using frequentist
regression techniques. In a Bayesian setting, the DAP, given by Equation (8), can be used to aid
variable selection. If the full model, defined by design matrix Xnp , has the prior for β\0,np

given
in Equation (8), then for any submodel defined by a reduced design matrix Xn′

p
,

β\0,n′
p
∼ Nn′

p
(0, n(XT

n′
p
Xn′

p
)−1),
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18 L. Fawcett and N. Thorpe

where n′
p < np. Then models including/excluding each covariate can be compared by the com-

putation of associated predictive probabilities. Our full model has 11 possible covariates (recall
that two of the original eight covariates – road classification and road type – require three and
two indicators respectively) giving 211 = 2048 possible models. The marginal log-likelihoods are
calculated for each model; the model with the largest marginal log-likelihood is then identified
as the ‘best’. The R package LearnBayes [1] can be used to implement this method of model
selection. Doing so reveals that the model with the largest associated marginal log-likelihood is
that which includes exactly the same covariates as identified in the EB analysis.

Some might argue that in a truly Bayesian analysis, there is no fundamental reason why any
of the predictors should be removed. In fact, it might be argued that it is not coherent for a
Bayesian to believe that their predictions will be improved by ignoring some information. Thus,
the default Bayesian position might be to use all covariates in the log-linear model forμj. Repeating
the analyses in Sections 4.2.1 and 4.2.2 but using information on all covariates barely changes
inferences on the effects of RTM, S and S∗.

4.3 Accounting for trend

In the original NSCP report [4] nothing was done to allow for other non-treatment effects such as
general trends in casualty frequencies over time. To account for this, we now specify the following
modified form for μj:

μj = ξ exp

⎧⎨⎩β0 +
np∑

p=1

βpxpj

⎫⎬⎭ , (9)

where ξ is a trend effect constant across all sites j. Reports detailing the number of casualties
as a result of road traffic accidents, for sites in the Northumbria region not treated with safety
cameras, suggest that casualty frequencies fell by (on average) 4.7% per year during our after
period. Since the after period is two years long (April 2004–March 2006), we adopt the following
uniform prior for ξ :

ξ ∼ U(0.906, 1.000).

Although rather simple, we believe this prior represents fairly our uncertainty about whether to
relate changes in casualty frequencies at the treated sites to overall regional figures, or to figures
from our before period (no reduction per year), or to something in between.

Table 7. Comparison of posterior distributions for: the total number of expected casualties at sites
treated with safety cameras (T ); expected financial saving to the NHS as a result of implementing
the safety cameras (£S thousand); and the total average value of prevention (£S∗ thousand), when
accounting for RTM both with and without trend.

Posterior

Mean St. dev. Median 95% Credible interval

T Without trend 327 25.528 313 (285, 354)
With trend 319 25.716 306 (271, 340)

S Without trend 30.9 14.092 30.9 (0.9, 58.5)
With trend 26.5 14.195 26.7 (0.9, 56.2)

S∗ Without trend 1541.5 349.136 1541.7 (72.6, 4183.2)
With trend 1096.5 358.728 1201.3 (67.2, 3978.1)

Notes: Results are shown for an analysis using the conditional mean prior for β and Weibull priors for mj .
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Table 7 reports posterior summaries for the total number of expected casualties across the safety
camera sites (T ), the expected financial saving to the NHS as a result of implementing the safety
camera scheme in the Northumbria region (S) and the total average value of prevention (S∗), now
accounting for trend through the modified form for μj given in Equation (9). A Poisson–Weibull
model structure was used, with the CMP for β as outlined in Section 4.2.2. Also shown in Table 7,
for comparison, are the corresponding posterior summaries when trend has not been accounted
for, as given in Table 6. The effect of including the trend parameter ξ is obvious: the median
number of expected total casualties decreases from 313 to 306 (a mean decrease from 327 to
319), with corresponding decreases in expected values of prevention (both S and S∗).

4.4 Further modelling of count data

4.4.1 Generalised linear mixed models

Throughout Section 4 we have investigated the sensitivity of the RTM effect, and the corresponding
monetary value of prevention of the safety cameras, to the choice of prior for the Poisson mean
and the associated regression coefficients. More sophisticated modelling of the casualty counts
themselves could also be considered. For example, writing the linear predictor in matrix form,
we might replace the terms inside the braces in Equation (9) with

η = XDβ + ZU.

Here, XD is the full design matrix (1, x1, . . . , xnp) and β = (β0, . . . , βnp)
T; the matrix Z includes

some – or all – of the covariates in XD, whilst U is a vector of unobservable random effects
associated with the covariates in Z. Often, U is taken to be multivariate Normal with mean 0 and
covariance �, the elements of which are estimated.

Such generalised linear mixed models (GLMMs) can be used to account for correlation and/or
heterogeneity in the data. For example, in a study of accident prediction models for road corridors
in Vancouver [9], sites are partitioned into homogeneous groups based on districts; they then
account for corridor variation by allowing random intercept and parameter terms for each group,
using MCMC within a fully Bayesian analysis to estimate the variances of these random effects.
Of course, GLMMs could be considered within the fully Bayesian analyses of Sections 4.1–4.3,
provided we adopt suitable priors for the elements of �. However, since we only have aggregate
casualty counts for each camera site, we would need to group our sites as in [9] to incorporate
random group effects, or disaggregate in an attempt to incorporate random effects for the cameras
themselves.

4.4.2 Zero-inflation

There are now several examples in the road safety literature of studies modelling vehicle accident
frequencies using zero-inflated models; e.g. [19]. These models provide a way of accounting for
zeros in excess of what we might expect using a Poisson model, for example. They operate under
the assumption of two states existing for the data – the ‘zero’ state and the ‘normal’ count state,
occurring with probabilities ϕ and 1 − ϕ (respectively); thus, if ϕ = 0 the zero-inflated model
reduces to the standard Poisson set-up. Under the normal count state, modelling could proceed as
throughout this paper. For our data in the reference set, about 16% of sites have zero casualties;
under a Poisson assumption with an observed mean of 4.28 casualties per site, we would expect
to see far fewer zeros (about 1.4% of sites) and so, naively, we may expect zero-inflation to be
a problem. In fact, a fully Bayesian analysis as performed in Section 3.3, but now allowing for
zero-inflation, gives a 95% credible interval for ϕ of (0.393, 0.557).

However, comparing the posterior predictive distribution of zeros from the standard model (as
used in Section 3.3) to the observed number of zeros, suggests a zero-inflated model may not be
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required: the posterior predictive distribution covers the observed number comfortably, and this
coverage only improves when we move to a Weibull prior for mj (see Section 4.1). Practitioners
can perform such checks for zero-inflation easily using the standard MCMC output. If the posterior
predictive distribution of zeros is not consistent with the observed number of zeros, then models
allowing for zero-inflation can be investigated. However, care should be taken to check that the
source of the problem is indeed zero-inflation, and not an inappropriate distribution to describe the
overdispersion. Of course, zero-inflated GLMMs can be used to accommodate both overdispersion
and zero-inflation; see, for example, [11].

4.4.3 Further considerations

For the 56 camera sites reported in this study, mobile safety units were deployed for two hour slots
across the intervention period. It is possible that the time of day could contribute to variability
in our data; it is also possible that casualty frequencies could change during periods when the
cameras are in operation. Although difficult to investigate given the data we were provided with,
as far as we are aware little is known of such effects and this could provide an interesting avenue
for future research.

In Figure 1, and the associated discussion in Section 1.1, we acknowledge that RTM might
not necessarily be a feature of any observational study. In our modelling approach we assume
it is, and through the exploratory analyses of Section 3.1 we provide some justification for this
assumption. However, any apparent RTM effect could instead be the result of errors-in-variables,
whereby measurement error in the explanatory variables results in estimation bias of the regression
coefficients in the linear predictor of μj. Instrumental variables can be constructed to overcome
this problem and help identify the treatment effect. Such approaches are now commonplace in
the econometrics literature; see, for example, [28]. These instrumental variable techniques could
be used within the DAP of Section 4.2.1.

5. Conclusions

In this paper, we have illustrated the shortcomings of the standard tool for assessing the effec-
tiveness of road safety schemes, using a case-study of mobile safety cameras in the UK. We
have shown the EB method – the ‘gold standard’ in road safety scheme evaluation [16] – to be
over-optimistic in its assessment of variability of estimates of casualty frequency at individual
sites treated with mobile safety cameras. A fully Bayesian treatment can be used to appropriately
account for all sources of variability by specifying prior distributions for the regression coeffi-
cients βi, giving a more realistic assessment of the variability of casualty frequency estimates,
as well as the value of prevention, in monetary terms, owing to the implementation of the safety
cameras.

Using MCMC techniques within a fully Bayesian framework also gives the practitioner much
more flexibility – both in terms of the prior distributions used and the way in which the resulting
posteriors are summarised. For too long, assessment of the effectiveness of road safety schemes
has relied on a Poisson–gamma structure, using only the resulting closed-form expression for
the associated posterior mean as the counterfactual estimate. In fact, as we show, estimates of
casualty frequency and RTM can be sensitive to the choice of prior used for the Poisson mean;
other prior distributions can provide a better fit to the data, and the posterior mean might not
always be the most appropriate summary of casualty frequency to use. We have also shown that
the extra variability induced by a fully Bayesian treatment can be reduced by implementing more
informative priors in our analysis.

After accounting for trend, we have shown that we might expect the total number of casualties
to have reduced from 436 to about 306 anyway (posterior median in Table 7), even if the safety
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cameras had not been used. Comparing the posterior distribution for the total number of expected
casualties T with the number of casualties in the period after implementation gives a median
total value of prevention of just over £1.2 million for the 56 sites in this study, over the two year
treatment period.

Applying fully Bayesian techniques opens up a field of opportunities for those required to assess
the effectiveness of road safety schemes although, as we discuss, any assumptions underpinning
the approach used should be carefully checked. Although the dispute between empirical and full
Bayes is not new, relatively few authors in the transport field have given fully Bayesian techniques
the attention they deserve – though [18,20,21] all make for accessible reading in this area. More
realistic model structures can be used in the fully Bayesian framework that could otherwise prove
difficult to draw inferences from; obtaining more accurate estimates of the impacts of road safety
measures is crucial for guiding increasingly limited investment opportunities.
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