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a  b  s  t  r  a  c  t

In this  paper,  we propose  a Bayesian  hierarchical  model  for predicting  accident  counts  in future  years
at  sites  within  a  pool  of potential  road  safety  hotspots.  The  aim  is to inform  road safety  practitioners  of
the  location  of likely  future hotspots  to  enable  a proactive,  rather  than  reactive,  approach  to  road  safety
scheme  implementation.  A  feature  of our model  is  the ability  to  rank  sites  according  to  their  potential  to
exceed,  in  some  future  time  period,  a threshold  accident  count  which  may  be used  as  a  criterion  for  scheme
implementation.  Our  model  specification  enables  the classical  empirical  Bayes  formulation  –  commonly
used  in  before-and-after  studies,  wherein  accident  counts  from  a single  before  period  are  used to  estimate
counterfactual  counts  in  the after  period  – to  be extended  to  incorporate  counts  from  multiple  time
periods.  This  allows  site-specific  variations  in  historical  accident  counts  (e.g. locally-observed  trends)  to
offset  estimates  of  safety  generated  by  a  global  accident  prediction  model  (APM),  which  itself  is used
to  help  account  for  the  effects  of  global  trend  and  regression-to-mean  (RTM).  The  Bayesian  posterior
predictive  distribution  is  exploited  to formulate  predictions  and  to  properly  quantify  our  uncertainty  in
these  predictions.  The  main  contributions  of  our model  include  (i)  the  ability  to allow  accident  counts
from  multiple  time-points  to inform  predictions,  with  counts  in  more  recent  years  lending  more  weight
to predictions  than  counts  from  time-points  further  in  the  past;  (ii)  where  appropriate,  the  ability  to
offset  global  estimates  of  trend  by variations  in  accident  counts  observed  locally,  at  a site-specific  level;

and  (iii)  the  ability  to account  for unknown/unobserved  site-specific  factors  which  may  affect  accident
counts.  We  illustrate  our  model  with  an application  to accident  counts  at 734  potential  hotspots  in  the
German  city  of  Halle;  we  also propose  some  simple  diagnostics  to  validate  the  predictive  capability  of
our  model.  We  conclude  that  our  model  accurately  predicts  future  accident  counts,  with  point  estimates
from  the  predictive  distribution  matching  observed  counts  extremely  well.

Crown  Copyright  © 2016  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction

.1. Overview

The World Health Organization (World Health Organization,
015) reports that 1.24 million fatalities and between 20 and 50
illion non-fatal injuries occur worldwide every year as a result
f road traffic accidents, at huge economic and social cost – typ-
cally between 1 and 3% of a nation’s GDP. Reducing road traffic
ccidents is therefore a global challenge with potentially signifi-
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cant benefits to be realized in terms of national economies, society,
public services (e.g. healthcare provision) and quality of life. Gen-
erally, the current approach for identifying accident hotspots in
many countries is reactive, taking place after accidents have already
occurred and applying remedial treatment at locations observing
counts which overtop some pre-determined threshold. It is argued
here that action should be proactive, to prevent this threshold being
overtopped in the first place, through accurate forecasting of acci-
dent rates in future years (i.e. a process of hotspot prediction).  This
process relies on the analysis of historical accident data, but these
data are prone to confounding effects – principally regression-to-
mean (RTM) and trend. This can mislead and cause scarce resources

to be targeted inefficiently; for example, wrongly treating sites that
are inherently ‘safe’ simply due to a short term ‘blip’ (temporary and
random increase) in accident rates.
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Phenomena such as trend and RTM can vary at a local level,
elative to the effects we might observe globally across the network
s a whole, and we believe any proposed strategy for predicting
ccident counts in future years should have the facility to take such
ifferences into account. Important also, we believe, is the ability
or more recent accident counts to inform model-based estimates
f safety with greater precision than those observed at time-points
urther in the past. Within the context of Bayesian modeling, the
pecification of informative prior distributions provides a means of
ncorporating such features in a way we deem appropriate for the
ataset being studied. We  believe the inclusion of such features sets
ur work apart from recent publications in hotspot identification,
ncluding (for example) Cheng and Washington (2005); Wang et al.
2011); Heydari et al. (2013); and Sacchi et al. (2015).

.2. General methodology

The research reported here aims to develop and apply appro-
riate statistical methodologies for accounting for the confounding
ffects of RTM and trend in forecasts of future accident rates. The
ame basic principles can also be used to evaluate the impact of
reatment at sites (i.e. in a before-and-after study), again taking
hese confounding effects into account, to provide a more real-
stic ‘value-for-money’ estimate of scheme benefits. Indeed, the
eneral methodology used in the current paper for handling RTM
as its roots in Fawcett and Thorpe (2013), in which the sensitiv-

ty of RTM estimates to various approaches for accounting for this
henomenon, in the context of road safety scheme evaluation stud-

es, is explored. In a classical before-and-after analysis, data from
 single time period (the ‘before’ period) are used alongside fit-
ed values generated by an accident prediction model (APM) to
stimate counterfactual accident counts in the ‘after’ period. Our
odel extends this classical approach to allow the inclusion of data

rom multiple time periods, enabling variations in historical acci-
ent counts to inform predictions of future counts. For example,
lobal trend is incorporated into our analysis by including a corre-
ponding time indicator as a covariate (alongside other variables) in
he APM. Informative prior distributions proposed for some param-
ters within our model then allow local, site-specific adjustments
o this trend, where appropriate; they also allow the inclusion of
ncreased uncertainty for model-based estimates of safety further
n the past, lending predictions greater influence from data in more
ecent time periods. Further, we attempt to account for discrepan-
ies between the APM and our observed accident counts due to
actors for which we have no data (sometimes accounted for using
rash modification factors; for example, see Park et al., 2014).

.3. RTM and trend

Studies assessing the effectiveness of road safety schemes are
otoriously bedeviled by the problem of RTM. In most before-and-
fter studies reported in the road safety literature (e.g. Mountain
t al., 1992; Hirst et al., 2004; Li et al., 2008), remedial measures
ave been deployed after a period of ‘unacceptably high’ acci-
ent counts; in any subsequent period, we might expect these
ounts to regress towards their underlying mean level anyway sim-
ly because they were abnormally high during the ‘before’ period,
andom fluctuation being a significant factor contributing to these
bnormalities. Given that historical counts at treated sites are not
lways readily available, practitioners are often faced with the task
f estimating the underlying mean accident rate at each site – usu-
lly within an “empirical Bayes” or “fully Bayes” framework, in

hich APMs are utilized (see, for example, Miaou and Lord, 2003;

i et al., 2008; Maher and Mountain, 2009; Fawcett and Thorpe,
013). We  argue that the estimation of RTM also has an important
ole to play in road safety hotspot prediction – estimates of future
 Prevention 99 (2017) 262–271 263

accident counts at sites across a network need to be adjusted to
account for RTM in past time periods as investment at locations
based on unadjusted predictions could be unjustified. Previously
observed accident counts might also need to be adjusted for RTM to
help get a clearer picture of the underlying average level of safety at
a location. In the current work, we make use of a global APM within
our Bayesian hierarchical model to help smooth for RTM, although
modeling accident counts across several time-points also helps to
adjust for RTM based on what we  observe locally.

Methods for safety scheme evaluation and hotspot prediction
should also incorporate information on underlying trends in counts,
these trends being a feature of site-specific variation or perhaps
globally-acknowledged changes across the network as a whole.
Changes in accident rates due to general trend could be a result
of many factors such as education programmes (for example driver
retraining), more widespread enforcement of laws and regulations
and improved safety in highway and vehicle design. Trend might be
accounted for by applying a multiplicative factor to the APM (see,
for example, Fawcett and Thorpe, 2013), where this factor repre-
sents changes in counts we might expect between the ‘before’ and
‘after’ period in an evaluation study, after examining local and/or
national statistics on changes across the network or region being
studied. Or, if counts are available annually across several years (for
example), then a time indicator can be used as a covariate in the
APM, allowing the explicit modeling of changes through time (these
changes could be assumed linear or non-linear); see, for exam-
ple, Lord and Persaud (2000). In the current work, we  investigate
the possibility of simultaneously adjusting for globally-identified
trend (through an APM which uses a time indicator as a covariate)
and site-specific trend (through a multiplicative adjustment fac-
tor), enabling both sources of trend to inform our predictions at
individual sites, hopefully improving the accuracy and reliability of
these predictions.

1.4. Aim and structure of this paper

The main aim of this paper is to describe the development and
testing of a Bayesian hierarchical modeling procedure for the pre-
diction of road traffic accident hotspots. Section 2 describes our
general template for modeling, and the practical role of the vari-
ous components we  include within this template. In Section 3 we
describe the application of our model with specific reference to
annual accident counts, and associated covariate information, col-
lected at 734 sites in the city of Halle, Germany. In particular, we
describe the construction of the APM and some informative prior
distributions, our Bayesian sampling scheme and the formulation
of the posterior predictive distribution, before presenting some
results from our fitted model and outlining some simple valida-
tion diagnostics. Finally, Section 4 identifies key conclusions and
potential avenues for future research.

2. Hotspot prediction: a Bayesian hierarchical model for
accident counts

2.1. General model structure

Generally, our proposed method provides an extension to the
classical empirical Bayes framework for analysis, as commonly used
in before-and-after studies (e.g. Miaou and Lord, 2003; Li et al.,
2008; Maher and Mountain, 2009; Fawcett and Thorpe, 2013), to
allow the inclusion of data from multiple time periods in the anal-

ysis. We  assume that, for each potential hotspot site j, we have data
on accident counts yj(t), t being a discrete time indicator with t = 0
representing the current time period. For example, if annual counts
are available at each site j, then yj(t = 0) represents counts in the
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atest year for which complete data are available and yj(t < 0) rep-
esents counts in previous years; yj(t = 1) would represent counts
or next year, in which we have an interest in making predictions,
nd yj(t > 1) for subsequent years. As is usually the case, we assume
urrent and future counts yj(t ≥ 0) to be Poisson-distributed with
ate, and hence variance, �j(t). Similarly, for previous years an acci-
ent rate of �j(t) is assumed; however, we allow a larger variance
or yj(t < 0). Specifically, the aim is to model historical counts at

 < 0 with variance �j(t)c(t), c(t) > 0, for two reasons: (i) to allow
ore recent counts to inform our predictions with more certainty,

nd (ii) when adjusting past counts for RTM and trend, it seems
ensible for us to be more certain about model-based estimates
t more recent historical time-points than for those further in the
ast. For example, it might be the case that infrastructure changes
ave occurred at a site level over the observation period, perhaps

mplying less certainty about the contribution of the observed val-
es to the model-based estimate of accident rates for t < 0. To allow
or this extra-Poisson variability for yj(t < 0) we assume a negative
inomial (NegBin) distribution here, giving:

j(t)|�j(t)∼

⎧⎪⎨
⎪⎩

Poisson(�j(t)), t ≥ 0;

NegBin

(
r = �j(t)

c(t) − 1
,  p = 1

c(t)

)
, t < 0;

(t) = exp{−t�}, t < 0, � > 0,

here the chosen parameterization of the negative binomial
istribution has expectation and variance r(1–p)/p = �j(t) and
(1–p)/p2 = �j(t)c(t) respectively, as desired, and the choice of the
unction for c ensures a variance which is increasingly inflated as t
ecreases; a suitable choice of prior distribution for � can give an

nflation factor which is deemed suitable for the data being ana-
yzed. To allow for trend and RTM in the mean accident rate, we
et

j(t) =aj�j(t)exp{bjt},aj > 0; −∞ <bj< ∞;t  ≤ 0, (1)

here �j(t) is estimated from a global APM (here, we use a rela-
ively simple log-linear model – see Section 3.2 – although any form
f APM could be used), the inclusion of which allows the incorpo-
ation of prior beliefs about the underlying mean level of accident
ounts in time period t at site j. If this APM allows for a change
n accident rates through time, then the posterior distribution for
j(t) has the potential to adjust for both RTM and trend. The role
f aj in Eq. (1) is to account for discrepancies between the APM
nd our observed accident counts due to factors for which we  have
ot, or cannot, collect data (e.g. poor visibility conditions due to
ermanent obstacles at the site). In the absence of any site-specific
nowledge relating to such factors, a largely uninformative prior
ould be assigned to this parameter. The inclusion of the exp{bjt}
erm in Eq. (1) allows any observed site-specific trend to adjust the
lobal trend modeled in the APM. A carefully selected prior formu-
ation for bj can give a priori weight to the local trend, relative to
he global trend, as we see fit. Please see Section 3.2 for our specific
hoice of priors for �, aj and bj .

.2. Inference

Inference first proceeds by estimating �j(t) in Eq. (1) via an APM,
hich itself might be estimated from a pool of reference data; alter-
atively, ‘off-the-shelf’ APMs are sometimes used to estimate �j(t),
uch as COBA models in the UK (Department for Transport (DfT),

006) or Ripcord-Iserest models in other parts of Europe (Ripcord-
serest, 2005). If the APM itself is to be estimated, interest at this
tage might lie in the identification of significant covariates and
he nature of the dependence between accident counts and these
 Prevention 99 (2017) 262–271

covariates. In particular, the significance of a global trend in acci-
dent counts can be ascertained at this stage through the inclusion
of t as a covariate. Standard regression methods can be employed
to find maximum likelihood estimates for parameters in the APM,
or a full Markov chain Monte Carlo (MCMC) procedure could be
used to make inferences within the Bayesian framework, given a
suitable prior specification (details on MCMC  are now extensively
published; see (for example) Smith and Roberts, 1993). Then, after
a suitable choice of prior distributions for �, aj and bj (and hyper-
parameters therein), standard MCMC  methods can be employed to
simulate approximate draws from the marginal posteriors for these
parameters and hence the mean accident rates �j(t). The MCMC
output for �j(t) can then be used to approximate the posterior pre-
dictive distribution for future accident rates at each site; that is, f
(yj(t = T) = y | yj) for future time-point T at site j given all past acci-
dent counts at this site yj . Please see Section 3.3 for a more detailed
description of the MCMC  methods we  employ in our data appli-
cation, and Section 3.4 for a detailed discussion of the posterior
predictive distribution.

3. Model application: accident counts in Halle, Germany

3.1. The data

The data used to demonstrate the approach consist of annual
accident counts at 734 sites in the city of Halle, Germany, for the
years 2004–2012 inclusive. We reserve data from 2012 for predic-
tion validation purposes (see Section 3.6), so that we have {yj(t);
t = –7, . . .,  −1, 0; j = 1, . . .,  734} for years 2004, . . .,  2010, 2011,
using the notation established in Section 2.1. All 734 sites might be
considered as candidate road safety hotspots. Accompanying these
figures are observations on several covariates. Specifically, for each
site j = 1, . . .,  734, we  have:

• x1,j: Traffic volume (average number of vehicles passing through
the site per day in the year).

• x2,j: Traffic volume from the major road of the intersection (= x1,j
if not an intersection).

• x3,j: Traffic volume from the minor road of the intersection (= 0 if
not an intersection).

• x4,j: Speed limit at the site.
• x5,j: = 1 if the site is in an urban area; 0 otherwise.
• x6,j: = 1 if the site is at an intersection; 0 otherwise.
• x7,j: = 1 if the site is at a signalised junction; 0 otherwise.
• x8,j: = 1 if the site is on a major road; 0 otherwise.
• x9,j: = 1 if the site is at a major intersection; 0 otherwise.
• x10,j: = 1 if the site is at a four-legged junction; 0 otherwise.

Fig. 1 shows time series plots for four of the sites over the eight
year recording period (2004–2011 inclusive). Table 1 gives some
numerical summaries for the variables. The plots in Fig. 1 have been
selected to demonstrate the features we are attempting to acknowl-
edge within our analysis; i.e. sites 309 and 706 suggest evidence
of temporal trend, and sites 163 and 677 indicate potential RTM
effects after ‘blips’ in the year 2008. Mean accident counts across
all sites, as shown in Table 1, could be indicative of a global neg-
ative trend in counts across the network, particularly from 2007.

In practice, care should be taken of any multicollinearity between
the covariates we might use to construct an APM; here, we  have
no significant correlations (at the 5% level of significance) between
any of our covariates.
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Fig. 1. Time series plots of accidents at sites 163, 309, 677 and 706 (2004–2011).

Table 1
Basic numerical summaries of accident counts (annually, across all 734 sites) and covariates (across all 734 sites). A full description of the covariates can be found in Section
3.1. ‘S.D.’ refers to the standard deviation, ‘Max.’ refers to the maximum and ‘Prop.’ is the proportion of sites taking certain characteristics.

Yearly Accident Totals (y) Flow (Av. Vehicles/day)

‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 x1 x2 x3

Mean 3.7 3.7 3.6 3.7 3.6 3.6 3.3 3.1 7432 5759 1673
S.D.  21.4 24.5 25.7 24.9 20.4 23.0 19.3 19.4 11045 8373 4324
Max.  29 35 38 52 29 39 41 48 65484 54919 40141

Categorical Variables

Speed Limit (km/h) (x4) x5 x6 x7 x8 x9 x10

30 45 50 60 70 80
0.07 

3

E
d

�

w
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d
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Prop. 0.37 0.12 0.22 0.18 0.04 

.2. The APM and prior specification

We  impose the following log-linear APM to estimate �j(t) in
q. (1), assuming a negative binomial error structure with over-
ispersion � :

j(t) = exp

{
ˇ0 + ˇtt +

np∑
p=1

ˇpxp,j

}
, (2)

here xp,j represents covariate information at site j and np (=10 in
ur case) is the number of such covariates based purely on the infor-
ation available. Although this form of APM is rather simplistic, we

se Eq. (2) here to simply demonstrate our overall modeling proce-

ure. A more sophisticated APM could of course be used, according
o the user’s preference, perhaps incorporating relevant geometric
esign features and/or link length for the non-intersection sites;

 mixture of different APMs could also be used for different site
0.91 0.86 0.27 0.63 0.20 0.24

types. Alternatively, techniques based on propensity score match-
ing (PSM; see, for example, Li et al., 2013) could, in principle, be
employed to construct site-resembling APMs for subsets of sites.

Analyses such as those in Fawcett and Thorpe (2013), aimed at
evaluating road safety countermeasures via before-and-after stud-
ies, often use sites from a separate reference pool to estimate (ˇt ,
ˇ0, ˇp) in Eq. (2), before then applying the fitted model to covari-
ate information (tj , xp,j) at site j. However, given a large enough
pool of sites of interest, in the context of hotspot prediction we
argue that fitting Eq. (2) using data at these sites themselves, and
using the fitted values from this model as estimates of �j(t), is a
suitable approach. Moreover, in before-and-after studies there is
usually reason to suspect that accident counts at the treated sites

are from the tail of the distribution of counts across the network
generally, and so a separate reference pool is essential for building
an APM which will yield realistic fitted values; in the current work,
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e assume that none of the 734 sites in Halle have been treated –
ll sites are candidate hotspots.

We  obtain estimates of the regression coefficients in Eq. (2),
s well as the negative binomial over-dispersion parameter � ,
ia maximum likelihood, although in the spirit of a truly fully
ayesian analysis prior distributions could be specified for these
arameters and posterior inferences made. For example, essen-
ially objective priors, with large variances, could be assigned to
he regression coefficients (e.g. independent N(0, 100) priors); or
ith careful thought it might be possible to specify more infor-
ative priors here, as in Yu and Abdel-Aty (2013). However,

here is a trade-off between a full prior specification, perhaps
iving a more realistic assessment of uncertainty in parameter
stimation in our model generally, and the computational bur-
en required to incorporate this additional layer of complexity;

n our case, with 734 sites and eight years of data, short pilot
CMC  runs on the APM suggested this would not be worth-
hile.

With reference to the covariates described in Table 1, the most
ignificant in terms of their impact on accident rates were x3, x5, x6,
7, x9 and x10, all of these having coefficients significantly greater
han 0 at the 0.1% level of significance; the time indicator t was  also
ighly significant, its coefficient indicating a negative (linear) trend

n accident counts across the network generally.
After an extensive prior elicitation session, including simula-

ions and a feedback and refinement process, the following prior
or � was settled upon:

 ∼ Gamma(2,  20),

hich we believe returns a suitable time-dependent inflation of the
egative binomial variance for yj(t) as t decreases. In the absence
f any knowledge about site-specific crash modification factors, we
se:

j ∼ Gamma(�,�).

This ensures that the mean of our prior distribution for the
ccident counts is that suggested by the APM, since E[aj] = 1; also,
he variance of the prior distribution for these counts at time t = 0
s�2

j
(t)/� , in keeping with the analyses in Fawcett and Thorpe

2013). Specifically, this particular prior specification ensures that
hen we have historical data from just one time-point t = 0, the

ame model structure as that used in a typical before-and-after
mpirical Bayes analysis is recovered, giving us a generalization of
uch an analysis under our approach with data from multiple time
eriods. The term bj is designed to adjust any trend identified by
he global APM based on site-specific observations of trend. Here,
his is modeled such that:

j = bNbZ,

here:

N∼N(0, 0.1) and bZ∼Bernoulli(0.5).  (3)

he prior distribution for the zero-inflation component bZ in (3)
n effect penalizes the global trend detected by the APM in Eq. (2)
n accordance with our beliefs about site-specific accident trends
bserved in the city of Halle. Of course, given data from just a single
ime-point t = 0, we would be unable to ascertain any local trend,
nd so we would set bj = 0 to ensure a strictly zero local trend con-
ribution to the mean accident rate in Eq. (1).
.3. Summary and Bayesian sampling

To summarize, there are two main stages in our data analysis:
 Prevention 99 (2017) 262–271

1. The first stage uses an APM (Eq. (2) in our analysis), applied to
annual accident counts and associated covariates across all sites
in the Halle network, to obtain model-based estimates of acci-
dent counts at each site via the fitted values from the APM. Global
trend is captured by the APM through the inclusion of time as
a covariate. The main result here is the estimation of �j(t) for
each site j and each time period t = {–7, . . .,  0}, as well as the
over-dispersion parameter � .

2. The second stage assumes a Poisson/negative binomial model for
accident counts at each site for time periods t ≥0/t < 0, respec-
tively, where the Poisson/negative binomial mean is informed
by the APM estimates from the first stage in the analysis, but
can be adjusted by significant local deviations from the globally-
observed trend (through the parameter bj) and discrepancies
between the APM estimates and our observed values due to fac-
tors for which we have not collected data (through the parameter
aj , which is constant across each site). We  also impose a variance
inflation device for observations at increasingly distant histori-
cal time periods to capture our uncertainty about model-based
estimates of safety as we  move further back in time (controlled
by our parameter �). The main aim of this stage of the analysis is
to make inferences on (aj , bj , �) via MCMC,  leading to posterior
inference on the mean accident rates �j(t) themselves.

We  use the function glm.nb within the R package MASS (Ripley,
2016) to estimate �j(t) (for each site j = 1, 2, . . .,  734 and each time
period t = {–7, . . .,  0}) and the over-dispersion parameter � in stage
1 of the analysis. For stage 2 we  use R-JAGS (Plummer, 2016) to
make inferences on (aj , bj , �), and the mean accident rates �j(t), via
MCMC.  Specifically, at each iteration i a Metropolis-within-Gibbs
MCMC  sampler is used to update the parameter vector:

�(i)
j =

{
aj, bj, �j, �j (t)

}(i)
, j = 1, ..., 734; t = −7, . . .,  0,

with random walk proposals used for the separate updating of each
element within �j . Details on MCMC  sampling schemes for hierar-
chical Bayesian models are now widely reported: thus, we  do not
give full details on the implementation of the sampler for draw-
ing inferences from our model here and the reader is referred to
Smith and Roberts (1993) for more information. We  run the sam-
pler for 105 iterations after discarding the burn-in period. Serial
correlation in the samples is removed by thinning to every 10th
observation, and the resulting trace plots suggest good mixing and
apparent good convergence. Convergence was  checked by multi-
ple runs of the chain from various starting-points for each element
in �j, demonstrating multiple convergence to the same limit for all
parameters. The resulting chains for each element in �j are assumed
to be samples from the marginal posterior distributions for each of
these parameters.

3.4. Prediction

The model structure outlined thus far attempts to adjust current
and previous observations on accident counts at each site for RTM
and trend. However, the main focus of this research is on prediction:
based on predicted counts for future years, the aim is for a proactive
approach to road safety scheme implementation. Working within
the Bayesian framework provides a suitable vehicle for this via the

posterior predictive distribution. Recall that time index t, t = {1, 2,
. . .}, corresponds to ‘future’ years {2012, 2013, . . .}. Suppose we
assume a Poisson distribution with mean �j(t) for accident counts
yj(t) at site j for t = {1, 2, . . .}, just as we  do for the current time
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Table  2
MCMC  and predictive summary for the four sites shown in Fig. 1 for past years 2008 and 2011 and ‘future’ year 2012. Shown are the posterior/predictive means, with 95%
credible intervals in parentheses; values shown for �j are the fitted values from the APM in Eq. (2).

aj bj 2008 2011 2012

site Observed �j(t = −4)
(APM)

�j(t = −4) Observed �j(t = 0)
(APM)

�j(t = 0) Prediction
(t = 1)

163 2.62
(1.43, 3.64)

−0.01
(−0.13, 0.02)

15 2.37 6.44
(4.56, 8.57)

3 2.17 5.72
(3.46, 7.87)

5.50
(1, 11)

309  1.61
(0.94, 2.61)

−0.10
(−0.20, 0.00)

19 8.23 19.40
(15.49, 23.60)

10 7.54 13.30
(8.55,
19.69)

10.93
(3, 22)

677  2.96
(1.80, 4.16)

−0.01
(−0.10, 0.05)

0 1.90 5.71
(3.95, 7.73)

7 1.75 5.18
(3.32, 7.17)

5.07
(1, 10)

706  0.63
(0.29, 1.20)

−0.12
(−0.25, 0.00)

6 8.61 8.39
(6.05, 11.03)

4 7.90 5.50
(2.89, 9.44)

4.42
(0, 11)
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ig. 2. Observed accidents (black); posterior means for APM estimates (blue); po
redicted future value (predictive mean) with 95% prediction intervals (green; dot f
eferences to colour in this figure legend, the reader is referred to the web  version o

eriod; then the predictive probability function for the future count
j(t = 1) is given by(

y|yj

)
=

∫
�

f
(

y|�j(t = 1)
)

�(�j|yj)d�j (4)

here �(�j|yj) represents our posterior distribution for all param-
ters in our model, given all of the data to date (yj), and � is the
arameter space for �j . Although the right-hand-side of (4) is ana-

ytically intractable, it can be approximated using our MCMC  chains
or �j . Specifically, for each site j an estimate of �j(t = 1) is obtained
ia Eq. (2) with t = 1; then, at each iteration i in the MCMC,  the pos-
erior draws for aj and bj are used to obtain a draw for �j(t = 1).

 draw from the posterior predictive distribution for yj(t = 1) = y is
hus given by
(
�(i)

j
(t = 1)

)y

exp{−�(i)
j

(t = 1)}
y!

, y = 0, 1, . . .
r means for model estimate (red solid), with 95% credible intervals (red dotted);
 mean, with the line representing the prediction interval). (For interpretation of the

 article.)

Repeating at all iterations in the MCMC  gives a com-
plete (approximate) sample from the predictive distribution for
yj(t = 1) = y, the mean of which can be used as a point estimate.
The full predictive distribution for yj(t = 1) can then be explored for
y ∈ N

0. Sites in our study can then be ranked, and perhaps scored,
in terms of their posterior predictive probability of exceeding some
pre-determined accident frequency threshold which practitioners
might use to help inform safety scheme implementation decisions.

3.5. Results

The model can be estimated, and predictions made, for each

of the 734 sites in the Halle dataset. Here, we  focus on the four
individual sites already introduced in Section 3.1 to demonstrate
how our approach manages the confounding issues of RTM and
trend.
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Table 2 shows that our zero-inflated trend parameter leads to
ite-specific trend being identified over and above that observed
lobally at sites 309 and 706, with wholly negative 95% credible

ntervals for bj at these sites. This is evident also in the plots for
hese sites in Fig. 2, with the model-based estimates of accident
ates decreasing at a faster rate than the global APM. Conversely,
t the other two sites the model-based estimates of accident rates
gure legend, the reader is referred to the web  version of this article.)

are almost parallel to those suggested by the APM, and the corre-
sponding posterior means for bj are very close to zero here. Both
Table 2 and Fig. 2 highlight the ability of our model to adjust for

RTM. For example, in 2008, the unusually high accident count at
site 163 has been down-weighted considerably in our model by
the APM, to bring it more in-line with what we might expect to
see at this site in this year, with similar observations being made
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redicted counts; MSE is the mean squared error; and sd(error) is the standard dev

n 2008 (and perhaps 2009) for site 677. Also shown in Fig. 2 are
stimates of accident counts in the prediction year 2012, with 95%
rediction intervals. Although these intervals appear rather wide,
e would expect these to shrink as more historical data comes

n-line year-on-year. Fig. 3 shows the full posterior predictive dis-
ributions for the year 2012 at each of our four sites of interest,
nd a plot of the predictive probabilities of exceeding a range of
ccident frequencies in this year.

Plots such as these illustrate the potential application of our

otspot predictive model. For example, practitioners could deter-
ine the probability of exceeding a given number of accidents

he following year and hence use this to aid the decision-making
rocess for implementing preventative measures. To illustrate,
f equality. In each plot, r is the correlation coefficient between the observed and
 of the errors.

if an annual count of ten accidents at a particular location is
deemed high enough to warrant action, then according to our
analysis – for the four sites we show results for in this paper
– we predict that site 309 is by far the most worthy of treat-
ment, followed by sites 163, 706 and 677; see Fig. 3, in which
the plot of estimated exceedance probabilities indicates that it is
very unlikely that this threshold will be over-topped next year
at sites 163, 706 and 677. Specifically, the posterior predictive
probabilities of exceeding ten accidents in 2012 for sites 309,

163, 706 and 677 are 0.435, 0.039, 0.032 and 0.022 (respec-
tively).
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.6. Validation of predictions

Recall that our accident counts across the Halle network in 2012
ere reserved for prediction validation purposes. In an attempt to

alidate our model’s predictive capability, we obtain full predictive
istributions for all 734 sites in the year 2012, as shown for our four

llustration sites in Fig. 3. Plots of predicted accident counts (which
e take to be the mean of the posterior predictive distributions)

gainst their observed counterparts are given in Fig. 4, along with
ummary statistics; we show results when all eight years of data
ave been used (2004–2011 inclusive), but also for when five years
f data have been used (2007–2011 inclusive) and when just a sin-
le year of data has been used (2011 only, essentially giving results
nalogous to an empirical Bayes analysis). All plots show a strong
ssociation between our predictions and the observations, with
igh correlations and points scattered around the line of equal-

ty. However, we see a general improvement in our predictions
s the number of years of data included in the analysis increases:
he correlation between predictions and observed values increases,
nd the mean squared errors and standard deviations of the errors
etween observed and predicted values decreases. Although not
pparent from these plots, the precision of our predictions also
ncreases with the number of years of included data.

As a more detailed validation exercise, for each site we also
ompare the percentile of the predictive distribution for 2012 cor-
esponding to the observed value in that year. Over the full sample
f sites, these percentiles should cover the full range from 0 to 100%.
lthough not shown here, for each of our three analyses using eight
ears, five years and one year of data, these percentiles do indeed
over this range, suggesting validity in our predictions. Further to
his, our 95% prediction intervals for each prediction made were
ound to capture the observed value on 97.89% of occasions, with
imilar levels of agreement observed for other intended prediction
nterval coverages.

. Conclusions and further work

In this paper we have outlined a novel Bayesian approach to
oad traffic hotspot prediction. Specifically, our model allows both
ocally- and globally-observed trend effects to inform predictions
nd adjust historical model-based estimates of safety, at each site
ithin a pool of candidate road safety hotspots, whilst also smooth-

ng through observed values to account for the confounding effect
f RTM. Further, we allow a variance inflation device to afford
reater precision to model-based estimates of accident counts in
ore recent years. Where practically possible, and appropriate,

nformative prior distributions are elicited to help maximize the
recision of estimates from our model.

Demonstrating our model by fitting to data observed at 734
ocations in the city of Halle, we exploit the posterior predictive
istribution so that our predictions of accident counts in future
ears take into account uncertainty in parameter estimation and
andomness in future observations. We  propose simple meth-
ds to validate predictions from our model, and for the Halle
ataset we have shown that our model predicts well. Results
btained from fitting the model can be displayed in different
ays. For example, the full predictive distribution can be viewed

raphically, or summarized using a point estimate (perhaps the
ean) with a prediction interval (usually the interval with 95%

overage); focusing more on potential road safety scheme imple-
entation, we can also examine the predictive probability of
xceeding a threshold accident count in future years. At this point,
e should note that a ranked list of sites according to their pre-
icted hotspot potential could, of course, be sensitive to the choice
f point estimate used to summarize the posterior predictive dis-
 Prevention 99 (2017) 262–271

tribution or – if an accident frequency exceedance probability
approach is to be used – the choice of threshold. Our results in
Figs. 2 and 3 illustrate various approaches, but this is something
we feel could warrant further investigation and input from practi-
tioners.

In the future we aim to improve the accuracy of our APM by
reducing the size of the reference pool it is built from, perhaps mov-
ing from a global APM to one which is much more tailor-made for
each site in question, using only a subset of the most similar sites
to build the APM for this site. For example, separate APMs could be
used for intersections and links; relevant geometric design features
could be incorporated as covariates in the APM, and for links, other
important features such as link length could be used as covariates.
The purpose of the current work is to illustrate our Bayesian hierar-
chical model and its predictive power, and not get distracted with
issues of APM selection – hence the use of a rather simple log-linear
form for our APM in Eq. (2). However, we  acknowledge that a better
approach to the APM construction could be used, and the benefits
of using more sophisticated/potentially better-fitting APMs within
the context of our model is something we are currently investigat-
ing. Indeed, a key area of our on-going research is the investigation
of an extension to the APM to account for potential spatial depen-
dencies between accident counts. We  believe such an extension
will be of interest to road safety practitioners as it has the poten-
tial to indicate any hotspot areas or geographic regions,  rather than
individual site-specific results as are currently returned.
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