The Storm of the Century! (Statistics of Extremes)

School of Maths \& Stats, Newcastle University

> lee.fawcetecnc, ac. uk

Who am I?

- Lecturer in the School of Maths \& Stats at Newcastle University

Who am I?

- Lecturer in the School of Maths \& Stats at Newcastle University
- Applied statistician

Who am I?

- Lecturer in the School of Maths \& Stats at Newcastle University
- Applied statistician
- Teach: 1st/2nd/4th year students

Who am I?

- Lecturer in the School of Maths \& Stats at Newcastle University
- Applied statistician
- Teach: 1st/2nd/4th year students
- Research: Statistical models for extreme weather events

Who am I?

- Lecturer in the School of Maths \& Stats at Newcastle University
- Applied statistician
- Teach: 1st/2nd/4th year students
- Research: Statistical models for extreme weather events
- Other stuff: Admissions, recruitment, consultancy, Schools...

Background: Statistics of extremes

So many areas of Statistics are interested in what happens on average: Mean,

Background: Statistics of extremes

So many areas of Statistics are interested in what happens on average: Mean, median,

Background: Statistics of extremes

So many areas of Statistics are interested in what happens on average: Mean, median, mode...

Background: Statistics of extremes

So many areas of Statistics are interested in what happens on average: Mean, median, mode...

One area that is different is the field of extreme value theory.

Background: Statistics of extremes

So many areas of Statistics are interested in what happens on average: Mean, median, mode...

One area that is different is the field of extreme value theory.
Why might we be interested in extremes, rather than averages?

Background: Statistics of extremes

Earth Scientists - for example, meteorologists, seismologists, hydrologists and oceanographers -

Background: Statistics of extremes

Earth Scientists - for example, meteorologists, seismologists, hydrologists and oceanographers - predict and assess the likelihood of storms, earthquakes, volcanoes and changes in sea level.

Background: Statistics of extremes

Earth Scientists - for example, meteorologists, seismologists, hydrologists and oceanographers - predict and assess the likelihood of storms, earthquakes, volcanoes and changes in sea level.

We can usually deal with averages here - it is the extremes that cause devastation!

Such scientists require the expertise of mathematicians to help with predictions and calculations.

Background: Statistics of extremes

Earth Scientists - for example, meteorologists, seismologists, hydrologists and oceanographers - predict and assess the likelihood of storms, earthquakes, volcanoes and changes in sea level.

We can usually deal with averages here - it is the extremes that cause devastation!

Such scientists require the expertise of mathematicians to help with predictions and calculations.

In this talk I will focus on how maths/statistics can be used to help oceanographers and civil engineers to predict extreme sea-surges.

Sea-surge

Background

Hurricane Katrina
Data application: Sea surge at New Orleans

Hurricane Sandy: USA, 2012

Lee Fawceff
The Storm of the Century! (Statistics of Extremes)

Hurricane Sandy: USA, 2012

Hurricane Sandy: USA, 2012

Lee Fawceft
The Storm of the Century! (Statistics of Extremes)

Hurricane ????: USA, 2016?

Sea-surge: The Great North Sea Flood, 1953

Sea-surge: The Great North Sea Flood, 1953

- Killed 2,551 people in the UK, Holland and Belgium

Sea-surge: The Great North Sea Flood, 1953

- Killed 2,551 people in the UK, Holland and Belgium
- Estimated as the "Storm of the Century"

Sea-surge: The Great North Sea Flood, 1953

- Killed 2,551 people in the UK, Holland and Belgium
- Estimated as the "Storm of the Century"
- Often referred to as "Europe's Katrina"

Sea-surge: The Great North Sea Flood, 2025?

Sea-surge: The Great North Sea Flood, 2013!

Sea-surge: The Great North Sea Flood, 2013!

Stormy weather in the UK!

- 5 December 2015: Storm Desmond - more than a month's rain in parts of Cumbria, flooding in Carlisle

Stormy weather in the UK!

- 5 December 2015: Storm Desmond - more than a month's rain in parts of Cumbria, flooding in Carlisle
- 22 December 2015: Further flooding in Cumbria

Stormy weather in the UK!

- 5 December 2015: Storm Desmond - more than a month's rain in parts of Cumbria, flooding in Carlisle
- 22 December 2015: Further flooding in Cumbria
- Christmas Day: Storm Eva - 106 flood alerts in UK

Stormy weather in the UK!

- 5 December 2015: Storm Desmond - more than a month's rain in parts of Cumbria, flooding in Carlisle
- 22 December 2015: Further flooding in Cumbria
- Christmas Day: Storm Eva - 106 flood alerts in UK
- New Year: Storm Frank - Scotland, northeast England, North Yorkshire

Hurricane Katrina: New Orleans, August 2005

Hurricane Katrina: New Orleans, August 2005

Some facts

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage
- Most damage/loss of life caused by storm surge

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage
- Most damage/loss of life caused by storm surge
- Storm surge reached 14.4 feet above sea level

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage
- Most damage/loss of life caused by storm surge
- Storm surge reached 14.4 feet above sea level
- Lowest air pressure 902 mb

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage
- Most damage/loss of life caused by storm surge
- Storm surge reached 14.4 feet above sea level
- Lowest air pressure 902 mb
- Political controversy

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage
- Most damage/loss of life caused by storm surge
- Storm surge reached 14.4 feet above sea level
- Lowest air pressure 902 mb
- Political controversy
- Billed as the "storm of the century"

Hurricane Katrina: New Orleans, August 2005

Some facts

- Category 5 Hurricane (Category 3 when it made landfall)
- Killed 1833 people
- Caused $\$ 108$ bn worth of damage
- Most damage/loss of life caused by storm surge
- Storm surge reached 14.4 feet above sea level
- Lowest air pressure 902 mb
- Political controversy
- Billed as the "storm of the century"

Hurricane Katrina

Data application: Sea surge at New Orleans

Hurricane Katrina: New Orleans, August 2005

Lee Fawceft
The Storm of the Century! (Statistics of Extremes)

Hurricane Katrina: New Orleans, August 2005

Lee Fawceft

Hurricane Katrina

Data application: Sea surge at New Orleans

Hurricane Katrina: New Orleans, August 2005

Lee Fawceft

Hurricane Katrina: New Orleans, August 2005

Lee Fawcett

Hurricane Katrina

Data application: Sea surge at New Orleans

Hurricane Katrina: New Orleans, August 2005

Lee Fawceft
The Storm of the Century! (Statistics of Extremes)

Data application: Sea surges at New Orleans

Below are the annual maximum sea-surge levels observed at New Orleans over a 50 year period before Hurricane Katrina:

Data application: Sea surges at New Orleans

Below are the annual maximum sea-surge levels observed at New Orleans over a 50 year period before Hurricane Katrina:

8.5	8.9	9.1	8.9	8.4	9.7	9.1	9.6	8.7	9.3
9.6	9.3	8.7	9.0	8.8	8.9	8.9	12.2	7.8	7.7
8.3	8.1	7.3	6.8	6.7	7.3	7.6	8.2	8.6	9.8
9.5	7.4	7.3	10.2	10.3	10.4	8.8	9.7	10.0	10.8
11.1	12.7	11.5	11.8	12.6	13.0	10.5	10.5	10.0	9.4

Data application: Sea surges at New Orleans

Suppose you are the mathematician on the team of scientists working on a new section of flood defence system in New Orleans.

Data application: Sea surges at New Orleans

Suppose you are the mathematician on the team of scientists working on a new section of flood defence system in New Orleans.

One of the civil engineers asks you to work out some exceedance probabilities for her.

Data application: Sea surges at New Orleans

Suppose you are the mathematician on the team of scientists working on a new section of flood defence system in New Orleans.

One of the civil engineers asks you to work out some exceedance probabilities for her.

In particular, she wants to know the probability that, this year, the annual maximum sea surge at New Orleans will

Data application: Sea surges at New Orleans

Suppose you are the mathematician on the team of scientists working on a new section of flood defence system in New Orleans.

One of the civil engineers asks you to work out some exceedance probabilities for her.

In particular, she wants to know the probability that, this year, the annual maximum sea surge at New Orleans will
(1) exceed 8.75 feet;

Data application: Sea surges at New Orleans

Suppose you are the mathematician on the team of scientists working on a new section of flood defence system in New Orleans.

One of the civil engineers asks you to work out some exceedance probabilities for her.

In particular, she wants to know the probability that, this year, the annual maximum sea surge at New Orleans will
(1) exceed 8.75 feet;
(2) exceed 11.25 feet;

Data application: Sea surges at New Orleans

Suppose you are the mathematician on the team of scientists working on a new section of flood defence system in New Orleans.

One of the civil engineers asks you to work out some exceedance probabilities for her.

In particular, she wants to know the probability that, this year, the annual maximum sea surge at New Orleans will
(1) exceed 8.75 feet;
(2) exceed 11.25 feet;
(3) exceed 14 feet.

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

Part A: The relative frequency approach
Part B: A probability model for extremes Part C: Application to structural design

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Then,

Part A: The relative frequency approach
Part B: A probability model for extremes Part C: Application to structural design

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Then,
$\boldsymbol{P}($ sea-surge exceeds 8.75 feet $)=$

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Then,
$\boldsymbol{P}($ sea-surge exceeds 8.75 feet $)=$

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Then,

$$
\boldsymbol{P}(\text { sea-surge exceeds } 8.75 \text { feet })=\frac{33}{50}=
$$

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Then,

$$
\boldsymbol{P}(\text { sea-surge exceeds } 8.75 \text { feet })=\frac{33}{50}=\frac{66}{100}=
$$

Part A: The relative frequency approach

You will have used this approach to probability in your maths at School.

It helps if the data are re-written in ascending order:

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Then,

$$
\boldsymbol{P}(\text { sea-surge exceeds } 8.75 \text { feet })=\frac{33}{50}=\frac{66}{100}=0.66
$$

Part A: The relative frequency approach

Using the relative frequency approach, work out the other two exceedance probabilities:

Part A: The relative frequency approach

Using the relative frequency approach, work out the other two exceedance probabilities:

- \boldsymbol{P} (sea-surge exceeds 11.25 feet)
- \boldsymbol{P} (sea-surge exceeds 14 feet)

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 11.25 feet $)=$

Part A: The relative frequency approach Part B: A probability model for extremes Part C: Application to structural design

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 11.25 feet $)=$

Part A: The relative frequency approach Part B: A probability model for extremes Part C: Application to structural design

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 11.25 feet $)=\frac{\mathbf{6}}{50}=$

Part A: The relative frequency approach Part B: A probability model for extremes Part C: Application to structural design

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 11.25 feet $)=\frac{\mathbf{6}}{50}=0.12$

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 14 feet $)=$

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 14 feet $)=\frac{\mathbf{0}}{50}=$

Part A: The relative frequency approach

6.7	6.8	7.3	7.3	7.3	7.4	7.6	7.7	7.8	8.1
8.2	8.3	8.4	8.5	8.6	8.7	8.7	8.8	8.8	8.9
8.9	8.9	8.9	9.0	9.1	9.1	9.3	9.3	9.4	9.5
9.6	9.6	9.7	9.7	9.8	10.0	10.0	10.2	10.3	10.4
10.5	10.5	10.8	11.1	11.5	11.8	12.2	12.6	12.7	13.0

$\boldsymbol{P}($ sea-surge exceeds 14 feet $)=\frac{\mathbf{0}}{50}=0$

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Impossible!

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

Think about the probability scale:

Part A: The relative frequency approach

What is wrong with the exceedance probability associated with a sea-surge of 14 feet?

Part A: The relative frequency approach

What is wrong with the exceedance probability associated with a sea-surge of 14 feet?

Our answer suggests a sea-surge of more than 14 feet is impossible - however, this did happen during Hurricane Katrina (sea-surges reached 14.4 feet!).

Part A: The relative frequency approach

What is wrong with the exceedance probability associated with a sea-surge of 14 feet?

Our answer suggests a sea-surge of more than 14 feet is impossible - however, this did happen during Hurricane Katrina (sea-surges reached 14.4 feet!).

Probability models provide a way forward here.

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

| Sea-surge | No. of exceedances | Exceedance probability |
| :--- | :--- | :--- | 6.5

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
$\mathbf{6 . 5}$	50	$50 / 50=1.00$
$\mathbf{7 . 0}$		

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
$\mathbf{6 . 5}$	50	$50 / 50=1.00$
$\mathbf{7 . 0}$	48	

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
7.0	48	$48 / 50=0.96$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
7.0	48	$48 / 50=0.96$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
7.0	48	$48 / 50=0.96$
7.5	44	

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
7.0	48	$48 / 50=0.96$
7.5	44	$44 / 50=0.88$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
$\mathbf{6 . 5}$	50	$50 / 50=1.00$
$\mathbf{7 . 0}$	48	$48 / 50=0.96$
7.5	44	$44 / 50=0.88$
$\mathbf{8 . 0}$	41	$41 / 50=0.82$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
$\mathbf{7 . 0}$	48	$48 / 50=0.96$
$\mathbf{7 . 5}$	44	$44 / 50=0.88$
8.0	41	$41 / 50=0.82$
8.5	36	$36 / 50=0.72$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
7.0	48	$48 / 50=0.96$
$\mathbf{7 . 5}$	44	$44 / 50=0.88$
8.0	41	$41 / 50=0.82$
8.5	36	$36 / 50=0.72$
9.0		
9.5		
10.0		
$\mathbf{1 0 . 5}$	5	$7 / 50=0.14$
$\mathbf{1 1 . 0}$	4	$5 / 50=0.10$
$\mathbf{1 1 . 5}$	3	$4 / 50=0.08$
$\mathbf{1 2 . 0}$		$3 / 50=0.06$
$\mathbf{1 2 . 5}$		

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
6.5	50	$50 / 50=1.00$
7.0	48	$48 / 50=0.96$
7.5	44	$44 / 50=0.88$
8.0	41	$41 / 50=0.82$
8.5	36	$36 / 50=0.72$
$\mathbf{9 . 0}$	$\mathbf{2 6}$	$\mathbf{2 6} / \mathbf{5 0}=\mathbf{0 . 5 2}$
$\mathbf{9 . 5}$	$\mathbf{2 0}$	$\mathbf{2 0} / 50=\mathbf{0 . 4 0}$
$\mathbf{1 0 . 0}$	$\mathbf{1 3}$	$\mathbf{1 3} / 50=\mathbf{0 . 2 6}$
$\mathbf{1 0 . 5}$	$\mathbf{8}$	$\mathbf{8 / 5 0}=\mathbf{0 . 1 6}$
11.0	7	$7 / 50=0.14$
11.5	5	$5 / 50=0.10$
12.0	4	$4 / 50=0.08$
12.5	3	$3 / 50=0.06$

Part B: A probability model for extremes

Before we thing about probability models, first of all let's consider exceedance probabilities for a range of values:

Sea-surge	No. of exceedances	Exceedance probability
$\mathbf{6 . 5}$	50	$50 / 50=\mathbf{1 . 0 0}$
$\mathbf{7 . 0}$	48	$48 / 50=\mathbf{0 . 9 6}$
$\mathbf{7 . 5}$	44	$44 / 50=\mathbf{0 . 8 8}$
$\mathbf{8 . 0}$	41	$41 / 50=\mathbf{0 . 8 2}$
$\mathbf{8 . 5}$	36	$36 / 50=\mathbf{0 . 7 2}$
$\mathbf{9 . 0}$	26	$26 / 50=\mathbf{0 . 5 2}$
$\mathbf{9 . 5}$	20	$20 / 50=\mathbf{0 . 4 0}$
$\mathbf{1 0 . 0}$	13	$13 / 50=\mathbf{0 . 2 6}$
$\mathbf{1 0 . 5}$	8	$8 / 50=\mathbf{0 . 1 6}$
$\mathbf{1 1 . 0}$	7	$7 / 50=\mathbf{0 . 1 4}$
$\mathbf{1 1 . 5}$	5	$5 / 50=\mathbf{0 . 1 0}$
$\mathbf{1 2 . 0}$	4	$4 / 50=\mathbf{0 . 0 8}$
$\mathbf{1 2 . 5}$	3	$3 / 50=\mathbf{0 . 0 6}$

Part B: A probability model for extremes

Part B: A probability model for extremes

Between 1920 and the mid-1950s, some eminent mathematicians developed probability models for extremes.

Part B: A probability model for extremes

Between 1920 and the mid-1950s, some eminent mathematicians developed probability models for extremes.

The aim was to provide a mathematical formula that could "predict" the exceedance probabilities of real-life extremes, as in the table we've just drawn up for the New Orleans data.

Part B: A probability model for extremes

Between 1920 and the mid-1950s, some eminent mathematicians developed probability models for extremes.

The aim was to provide a mathematical formula that could "predict" the exceedance probabilities of real-life extremes, as in the table we've just drawn up for the New Orleans data.

One of these mathematicians was Emil Julius Gumbel.

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

where

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

where

- μ is the "location" parameter

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

where

- μ is the "location" parameter
- σ is the "scale" parameter

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

where

- μ is the "location" parameter
- σ is the "scale" parameter
- X is our "variable"

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

where

- μ is the "location" parameter
- σ is the "scale" parameter
- X is our "variable"
- x is the value of our variable

Part B: A probability model for extremes

The so-called Gumbel model for the exceedance probabilities of extremes is given by the following formula:

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right]
$$

where

- μ is the "location" parameter
- σ is the "scale" parameter
- X is our "variable"
- x is the value of our variable
- "exp" is the exponential function (button on calculator)

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Doing so, gives

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Doing so, gives

$$
\mu=8.536 \quad \text { and } \quad \sigma=1.2
$$

for our dataset.

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Doing so, gives

$$
\mu=8.536 \quad \text { and } \quad \sigma=1.2
$$

for our dataset. Plugging these into Gumbel's formula gives

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Doing so, gives

$$
\mu=8.536 \quad \text { and } \quad \sigma=1.2
$$

for our dataset. Plugging these into Gumbel's formula gives

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right]
$$

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Doing so, gives

$$
\mu=8.536 \quad \text { and } \quad \sigma=1.2
$$

for our dataset. Plugging these into Gumbel's formula gives

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right]
$$

Then we can work out the exceedance probabilities for particular values x. For example, for $x=7.5$, we get:

Part B: A probability model for extremes

Using techniques students learn about at University, we can use the data to estimate the values of the location and scale parameters.

Doing so, gives

$$
\mu=8.536 \quad \text { and } \quad \sigma=1.2
$$

for our dataset. Plugging these into Gumbel's formula gives

$$
\boldsymbol{P}(X>x)=1-\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right]
$$

Then we can work out the exceedance probabilities for particular values x. For example, for $x=7.5$, we get:

$$
\boldsymbol{P}(X>7.5)=1-\exp \left[-\exp \left\{-\left(\frac{7.5-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 9 0 7}
$$

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

$$
\boldsymbol{P}(X>10)=1-\exp \left[-\exp \left\{-\left(\frac{10-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 2 6}
$$

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

$$
\begin{aligned}
\boldsymbol{P}(X>10)= & 1-\exp \left[-\exp \left\{-\left(\frac{10-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 2 6} \\
& (=0.26 \text { from the data })
\end{aligned}
$$

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

$$
\begin{aligned}
\boldsymbol{P}(X>10)= & 1-\exp \left[-\exp \left\{-\left(\frac{10-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 2 6} \\
& (=0.26 \text { from the data })
\end{aligned}
$$

$\boldsymbol{P}(X>11.5)=1-\exp \left[-\exp \left\{-\left(\frac{11.5-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 0 8}$

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

$$
\begin{aligned}
\boldsymbol{P}(X>10)= & 1-\exp \left[-\exp \left\{-\left(\frac{10-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 2 6} \\
& (=0.26 \text { from the data })
\end{aligned}
$$

$$
\boldsymbol{P}(X>11.5)=1-\exp \left[-\exp \left\{-\left(\frac{11.5-8.536}{1.2}\right)\right\}\right]=\mathbf{0} .08
$$

$$
(=0.1 \text { from the data })
$$

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

$$
\begin{aligned}
\boldsymbol{P}(X>10)= & 1-\exp \left[-\exp \left\{-\left(\frac{10-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 2 6} \\
& (=0.26 \text { from the data })
\end{aligned}
$$

$$
\boldsymbol{P}(X>11.5)=1-\exp \left[-\exp \left\{-\left(\frac{11.5-8.536}{1.2}\right)\right\}\right]=\mathbf{0} .08
$$

$$
(=0.1 \text { from the data })
$$

$$
\boldsymbol{P}(X>14)=1-\exp \left[-\exp \left\{-\left(\frac{14-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 0 1}
$$

Part B: A probability model for extremes

We can compare the values from Gumbel's formula to those we obtained from the data itself. For example:

$$
\begin{aligned}
\boldsymbol{P}(X>10)= & 1-\exp \left[-\exp \left\{-\left(\frac{10-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 2 6} \\
& (=0.26 \text { from the data })
\end{aligned}
$$

$$
\boldsymbol{P}(X>11.5)=1-\exp \left[-\exp \left\{-\left(\frac{11.5-8.536}{1.2}\right)\right\}\right]=\mathbf{0} .08
$$

$$
\text { (}=0.1 \text { from the data) }
$$

$$
\boldsymbol{P}(X>14)=1-\exp \left[-\exp \left\{-\left(\frac{14-8.536}{1.2}\right)\right\}\right]=\mathbf{0 . 0 1}
$$

$$
\text { (= } 0 \text { from the data - impossible!) }
$$

Part B: A probability model for extremes

We could use Gumbel's formula for lots of different values of x and then plot them on the same graph as the real data.

Part B: A probability model for extremes

We could use Gumbel's formula for lots of different values of x and then plot them on the same graph as the real data.

What do you notice when we do this?

Part B: A probability model for extremes

We could use Gumbel's formula for lots of different values of x and then plot them on the same graph as the real data.

What do you notice when we do this?
The Gumbel model is not the only model to choose from:

Part B: A probability model for extremes

We could use Gumbel's formula for lots of different values of x and then plot them on the same graph as the real data.

What do you notice when we do this?
The Gumbel model is not the only model to choose from:

- The Fréchet model

Part B: A probability model for extremes

We could use Gumbel's formula for lots of different values of x and then plot them on the same graph as the real data.

What do you notice when we do this?
The Gumbel model is not the only model to choose from:

- The Fréchet model
- The Weibull model

Part B: A probability model for extremes

Part B: A probability model for extremes

The Gumbel model does really well at predicting the sea-surge exceedance probabilities at New Orleans!

Part B: A probability model for extremes

The Gumbel model does really well at predicting the sea-surge exceedance probabilities at New Orleans!

We can also estimate probabilities of events more extreme than those we have observed via extrapolation.

Part B: A probability model for extremes

We can use our graph, or the values calculated using Gumbel's formula, to estimate the probability that, this year, the sea-surge at New Orleans will:

Part B: A probability model for extremes

We can use our graph, or the values calculated using Gumbel's formula, to estimate the probability that, this year, the sea-surge at New Orleans will:
(1) exceed 8.75 feet;

Part B: A probability model for extremes

We can use our graph, or the values calculated using Gumbel's formula, to estimate the probability that, this year, the sea-surge at New Orleans will:
(1) exceed 8.75 feet;
(2) exceed 11.25 feet;

Part B: A probability model for extremes

We can use our graph, or the values calculated using Gumbel's formula, to estimate the probability that, this year, the sea-surge at New Orleans will:
(1) exceed 8.75 feet;
(2) exceed 11.25 feet;
(3) exceed 14 feet.

Part B: A probability model for extremes

Part B: A probability model for extremes

So we get:

Part B: A probability model for extremes

So we get:

Probabilities	Exceeds		
	8.75 feet	11.25 feet	14 feet
Data alone	0.66	0.12	0
Gumbel model	0.575	0.1	0.01

Part B: A probability model for extremes

So we get:

Probabilities	Exceeds		
	8.75 feet	11.25 feet	14 feet
Data alone	0.66	0.12	0
Gumbel model	0.575	0.1	$\mathbf{0 . 0 1}$

Can you see why Katrina was billed as the "storm of the century"?

Part C: Application to structural design

As you might remember from the first part of this session, during Hurricane Katrina sea-surges exceeded 14 feet and parts of the sea wall system protecting the city were breached.

Part C: Application to structural design

As you might remember from the first part of this session, during Hurricane Katrina sea-surges exceeded 14 feet and parts of the sea wall system protecting the city were breached.

A new flood defence system is to be built; as the mathematician, you are asked how tall the sea wall should be to protect against the storm we might expect to see, on average, once every 500 years.

Part C: Application to structural design

Use the Gumbel model to help estimate the height of the new sea wall.

Part C: Application to structural design

Use the Gumbel model to help estimate the height of the new sea wall.

We want x such that

$$
\boldsymbol{P}(\text { Sea-surge }>x)=\frac{1}{500}
$$

Part C: Application to structural design

Use the Gumbel model to help estimate the height of the new sea wall.

We want x such that

$$
\boldsymbol{P}(\text { Sea-surge }>x)=\frac{1}{500}
$$

Using Gumbel's formula, this gives

Part C: Application to structural design

Use the Gumbel model to help estimate the height of the new sea wall.

We want x such that

$$
\boldsymbol{P}(\text { Sea-surge }>x)=\frac{1}{500}
$$

Using Gumbel's formula, this gives

$$
1-\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right]=\frac{1}{500}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right]=\frac{499}{500}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =\ell_{n}\left(\frac{499}{500}\right)
\end{aligned}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =-\ell_{n}\left(\frac{499}{500}\right)
\end{aligned}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =-\ell_{n}\left(\frac{499}{500}\right) \\
-\left(\frac{x-8.536}{1.2}\right) & =\ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right]
\end{aligned}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =-\ell_{n}\left(\frac{499}{500}\right) \\
\frac{x-8.536}{1.2} & =-\ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right]
\end{aligned}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =-\ell_{n}\left(\frac{499}{500}\right) \\
\frac{x-8.536}{1.2} & =-\ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right] \\
x-8.536 & =-1.2 \times \ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right]
\end{aligned}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =-\ell_{n}\left(\frac{499}{500}\right) \\
\frac{x-8.536}{1.2} & =-\ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right] \\
x-8.536 & =-1.2 \times \ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right] \\
x & =-1.2 \ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right]+8.536
\end{aligned}
$$

Part C: Application to structural design

Rearranging for x, we get:

$$
\begin{aligned}
\exp \left[-\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\}\right] & =\frac{499}{500} \\
\exp \left\{-\left(\frac{x-8.536}{1.2}\right)\right\} & =-\ell_{n}\left(\frac{499}{500}\right) \\
\frac{x-8.536}{1.2} & =-\ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right] \\
x-8.536 & =-1.2 \times \ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right] \\
x & =-1.2 \ell_{n}\left[-\ell_{n}\left(\frac{499}{500}\right)\right]+8.536 \\
& =15.99233 \approx 16 \text { feet. }
\end{aligned}
$$

Further study in Maths

Why take Maths any further than GCSE?

Further study in Maths

Why take Maths any further than GCSE?

- A level Maths gives you further "grounding" in the basics, and is seen as a 'prestigious' A level to have!

Further study in Maths

Why take Maths any further than GCSE?

- A level Maths gives you further "grounding" in the basics, and is seen as a 'prestigious' A level to have!
- Doing a degree in Maths/Statistics can be more "interesting":

Further study in Maths

Why take Maths any further than GCSE?

- A level Maths gives you further "grounding" in the basics, and is seen as a 'prestigious' A level to have!
- Doing a degree in Maths/Statistics can be more "interesting":
- Lecturers are also (usually) researchers

Further study in Maths

Why take Maths any further than GCSE?

- A level Maths gives you further "grounding" in the basics, and is seen as a 'prestigious' A level to have!
- Doing a degree in Maths/Statistics can be more "interesting":
- Lecturers are also (usually) researchers
- Real-life research problems brought into the classroom

Further study in Maths

Why take Maths any further than GCSE?

- A level Maths gives you further "grounding" in the basics, and is seen as a 'prestigious' A level to have!
- Doing a degree in Maths/Statistics can be more "interesting":
- Lecturers are also (usually) researchers
- Real-life research problems brought into the classroom
- Excellent employment prospects if you do well!

Further study in Maths

Why take Maths any further than GCSE?

- A level Maths gives you further "grounding" in the basics, and is seen as a 'prestigious' A level to have!
- Doing a degree in Maths/Statistics can be more "interesting":
- Lecturers are also (usually) researchers
- Real-life research problems brought into the classroom
- Excellent employment prospects if you do well!
- All areas of science require good mathematicians!

Other talks and references

- Other talks

Other talks and references

- Other talks
- How to crack codes!

Other talks and references

- Other talks
- How to crack codes!
- The lie detector test

Other talks and references

- Other talks
- How to crack codes!
- The lie detector test
- The bridges of Königsberg

Other talks and references

- Other talks
- How to crack codes!
- The lie detector test
- The bridges of Königsberg
- How heavy is the Universe?

Other talks and references

- Other talks
- How to crack codes!
- The lie detector test
- The bridges of Königsberg
- How heavy is the Universe?
- References

Other talks and references

- Other talks
- How to crack codes!
- The lie detector test
- The bridges of Königsberg
- How heavy is the Universe?
- References
- Fawcett, L. and Newman, K. (2016). The Storm of the Century! Promoting Student Enthusiasm for Practical Statistics. Teaching Statistics, in press.

Other talks and references

- Other talks
- How to crack codes!
- The lie detector test
- The bridges of Königsberg
- How heavy is the Universe?
- References
- Fawcett, L. and Newman, K. (2016). The Storm of the Century! Promoting Student Enthusiasm for Practical Statistics. Teaching Statistics, in press.
- Fawcett, L. and Walshaw, D. (2016). Sea-surge and Wind Speed Extremes: Optimal Estimation Strategies for Planners and Engineers. Stochastic Environmental Research and Risk Assessment, 30, pp. 463-480.

