Developing *Shiny* web applications to facilitate research-informed learning and teaching

Lee Fawcett^{+a}, Keith Newman^a and Amy C. Green^b ^aSchool of Mathematics, Statistics and Physics; ^bSchool of Engineering; [†]lee.fawcett@ncl.ac.uk

Aims

- Use the *Shiny* web-based application framework for the popular statistical programming language **R** to build "Shiny apps", to promote student interaction / engagement with a hot research topic in Statistics
- Use the *Shiny* apps to help incorporate **research**ulletinformed learning and teaching (RILT) activities into the undergraduate classroom / outreach sessions
- In undergraduate teaching, support the use of *Shiny* ulletapps with **dedicated research tutorials**
- **Evaluate** the success of our *Shiny* apps, and RILT activities more generally
- **Dissemination** at conferences and through publications in the Statistics Education literature

RILT

Students as Participants

Students as audience

Fig. 1: Interpretation of research-informed learning and teaching and the research/teaching nexus; after Levy and Petrulis (2007)

Assessed project – Part A: open-ended data response; Part B: critique of a paper

The storm of the century!

MAS8306

Stage 4 Statistics course One lecture per week replaced with research tutorial – **no formal**

teaching, students work in groups reading papers/implementing methods with *Shiny* apps

- Main goal: Estimate the hurricane-induced seasurge we'd expect to see once every 100 years
- Hurricane Katrina: "Storm of the Century"
- Extreme Value Theory (EVT): taught in **module MAS8306** and demonstrated in school outreach activities

Outreach

- Various activities based on EVT/Katrina
- **Year 6** activity: plotting
- Year 8 Royal Institute Masterclass series: simple modelling ideas
- Year 12 outreach: **Basics of EVT**
- Shiny apps allow quick interaction with techniques

Our Shiny applications

Evaluation and dissemination

Fig. 3: MAS8306 project grades *in 2016, c.f. 2014 (no* Shiny *apps)*

- ulletwhich was really cool"
- Education

5. 2004 (inclusion) accorded in Chall Departs Lewisians.		Jaka opoid Acadive requercy Probability woold	Comparisons
Pearl River Sidell (Californian Strein Bay St. Louis Sidell (Californian St.	Probability Model		
den lite	Two-parameter Gumbel Model Generali	ised Extreme Value Model Normal Model Exponential M	lodel Gamma Model
and the second second	Two parameter Gumb	al Model	
	Two-parameter Gumbe	ermoder	
® Shell Beach	How probability is calculated using a pro	stability model:	
2000 Contraction Contraction	The probability of a wave height exceeding a	a threshold <i>x</i> is given by the formula,	$((x-\mu))$
		$\Pr(X > x) = 1 - \exp[-$	$-\exp\{-\left(\frac{1}{\sigma}\right)\}].$
Bohemia	 <i>u</i> is the <i>location</i> parameter. 		
Port Sulphur	+ σ is the scale parameter, - X is our random variable,		
Goo glephre Boras Triumph Max data 62018 Google; (16,01 Terms of Use	x is the value of our random variable, exp is the exponential function.		
	Include Standard Errors		
3 9.6 9.3 8.7 9.0 8.8 7 7.3 7.6 8.2 8.6 9.8	For the data you provided, we have found th	at $\mu=8.636$ and $\sigma=1.275$ (Both values given to 3 decimal j	places).
a 11.1 12.7 11.5 11.8 12.6			
	Table of probabilities	Plot of probabilities	
L 8.2 8.3 8.4 8.5 8.6 L 9.1 9.3 9.3 9.4 9.5	x Probability of exceeding x	1.09-	
10.5 10.5 10.8 11.1 11.5	6.00 1.00		
	6.50 1.00	0.75	
	7.00 0.97		
6.70 8.43 9.10 10.15 13./	00 8.00 0.81	ensity	
allowed together the state of the state	8.50 0.67	20.50- 1000	
	9.00 0.53	bid	
	10.00 0.29	0.25-	
	10.50 0.21		
	11.00 0.14		
	12.00 0.07	0.00- 6	8 10 12 14
	12.50 0.05		wave Height (ft)
	13.50 0.02		
	14.00 0.01		
	14.50 0.01		
	Calculate a probability from	m this model	How extreme could it get?
	Choose an extreme wave height to	find the probability of exceeding it:	Choose how rare the event should be:
			2 100 1000
			1 2 112 202 502 602 502
	The probability of observing a wave height g	reater than $x = 9.1$ ft every is given by	
	$\Pr(X > 9.1) = 1 - \exp\left\{-\left(\frac{9.1}{2}\right)\right\}$	$\left(\frac{1-8.636}{1.275}\right)$ = 0.5009 (to 4 significant figures).	A once in a 100 event corresponds to an exceedance probability $p = 0.01$ (to 4 significant figures).
		1.215 7 7 1	The required height x of the wall can be calculated as,
* *			$z_{100} = 8.636 - 1.275 \log \left[-\log \left(1 - \frac{1}{100} \right) \right] = 14.5 \text{ ft} (\text{to 2 decimal places}).$
			Include Standard Error

Fig. 2: Screenshots taken from the "Extreme Value Explorer" Shiny app

MAS8306: Significant improvement in project grades c.f. students from 2014

Students showed an appreciation for current literature in exam responses

"Without Shiny I wouldn't have been confident enough" (MAS8306 STUDENT) to try non-lecture stuff in my project"

"We were able to do cutting edge stuff with the apps (YEAR 12 STUDENT)

Presented at the RSS 2017 Conference Published in Fawcett (2018), Journal of Statistics