Bayesian Designs for Michaelis-Menten kinetics

John Matthews and Gilly Allcock
Department of Statistics
University of Newcastle upon Tyne

j.n.s.matthews@ncl.ac.uk

References etc. on http://www.mas.ncl.ac.uk/~njnsm/talks/titles.htm

Enzymology

- Many biochemical reactions would, of their own accord, proceed at a rate that is far too slow to be of use.
- Enzymes are natural catalysts which greatly increase the rate of reaction.

$$
\begin{aligned}
& \text { Substrate } \quad \text { Enzyme (e.g.G6Pase) } \quad \text { Product } \\
& \text { e.g. glucose-6-phosphate e.g.glucose }
\end{aligned}
$$

Michaelis-Menten equation

For many enzymes the rate of reaction is determined by the Michaelis-Menten equation

$$
v=\frac{V_{\max } s}{K_{M}+s}
$$

Here $V_{\max }$ is the maximum rate at which substrate is turned into product and K_{M} is the Michaelis parameter, the substrate concentration at which the rate of reaction is 50\% of its maximum.

Enzymologists are interested in the values of these parameters, and also in derived quantities such as the specificity constant $V_{\max } / K_{M}$.

Parameter Estimation

- The enzymologist observes the values of v, v_{i}, at a series of substrate concentrations, $s_{i}, i=1, . ., n$.
- Parameters are estimated by fitting the Michaelis-Menten equation to these data
- Will start with the model

$$
v_{i}=\frac{V_{\max } s_{i}}{K_{M}+s_{i}}+\varepsilon_{i}
$$

with ε_{i} a residual with zero mean and constant variance.

- Substantial history to fitting this model, and also some concerns over the use of this model (Ruppert, Cressie and Carroll, 1989; Nelder, 1991; also Cornish-Bowden 1995)

Design Problem

- How should the experimenter choose the substrate concentrations?
- Some work on this: Currie (1982) in Biometrics, also Duggleby (1979) and Endrenyi \& Chan (1981) in enzymology literature
- Depends on the aims of the experiment
- Will be assumed that the aim is to estimate the parameter(s) and to do this with maximal precision.
- Will not consider studies where the aim is to differentiate between different types of reaction.

Expected Information matrix

For the above model the expected information matrix is proportional to

$$
\sigma^{-2} N M=\sigma^{-2} N\left(\begin{array}{c}
\sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{2}} \\
-V_{\max } \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{3}}
\end{array} \quad V_{\max }^{2} \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{4}}\right)
$$

We assume that N observations are made at m distinct substrate concentrations. The number of observations at s_{j} is $N \eta_{j}$, where $\eta_{j} \geq 0, \Sigma \eta_{j}=1$.

Locally D-optimal design

The \log of the determinant of the above can be written as the \log of :
$\Delta=\left(\sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{2}}\right)\left(\sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{4}}\right)-\left(\sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{3}}\right)^{2}$
where terms not involving the design points $\xi=(s, \eta)$ have been omitted
Depends on K_{M} (though not on $V_{\max }$).
For $m=2$ writing $y_{j}=s_{j} /\left(K_{M}+s_{j}\right)$ gives the above as

$$
\eta_{1} \eta_{2} y_{1}^{2} y_{2}^{2}\left(y_{1}-y_{2}\right)^{2}
$$

The optimal design has $\eta_{I}=\eta_{2}=1 / 2$ and $y_{1}=1 / 2$ and $y_{2}=1$, i.e. $s_{1}=K_{M}, s_{2}=\infty$.
(Currie, Duggleby, Endrenyi)

Bayesian D-Optimal design

Find design by maximising $\mathrm{E}_{\text {prior }}\left(\log \operatorname{det}\left(\sigma^{-2} N M\right)\right)$
Specify knowledge about K_{M} through a prior.
Objective factors into $f(N)+f(\sigma)+f\left(V_{\max }\right)+f\left(K_{M}\right.$, design $)$
So no need to specify a prior for $V_{\max }$, only marginal for K_{M}

Convenient to assume prior has finite support on K_{L}, K_{U}. These to be specified by investigator.

Some parsimony achieved by scaling: write $s_{j}=K_{U} t_{j}, K_{M}=K_{U} \kappa$ (with $K_{L} / K_{U}=\kappa_{L}<\kappa<1$).

Two priors: 1. κ uniform over its range
2. $\log \kappa$ uniform over its range.

Optimal Bayesian 2-point design

A bit of an indulgence, but analytical progress can be made here.
Designs all give equal weight to both points.
Larger concentration is at infinity
Smaller concentration t_{1} is at the solution to $\mathrm{E}_{\pi}\left(\frac{\kappa-t_{1}}{\kappa+t_{1}}\right)=0$
An approximate solution is therefore $t_{1}=\mathrm{E}_{\pi}(\kappa)$, which fits with locally optimal solution. Also, Jensen's inequality shows that in fact $t_{1} \leq \mathrm{E}_{\pi}(\kappa)$.

For prior $1, t_{1}$ is $0.397\left(\kappa_{L}=0\right)$; for prior $2, t_{1}=\sqrt{ } \kappa_{L}$.

Optimal Bayesian designs

- Search numerically for optimal design for $m=3,4, \ldots$
- Use NAG software for quadrature and optimisation.
- Search for $0 \leq t_{j} \leq T$, and $\eta_{j} \geq 0, \Sigma \eta_{j}=1$, where T is just some 'large' scaled concentration, arbitrarily set at 10 (sensitivity to choice can be explored)

Optimal designs

κ_{L}	t							η				
Uniform on κ												
0	0.02	0.39	10			0.02	0.49	0.49				
Uniform on $\log \kappa$												
10^{-2}	0.04	0.33	10			0.26	0.30	0.44				
10^{-5}	4.4E-5	4.9E-4	3.8E-3	2.9E-2	$2.9 \mathrm{E}-1$	10	0.12	0.10	0.11	0.14	0.23	0.30

All of these can be confirmed to be optimal from the 'derivative' plots
$d(t)=\mathrm{E}_{\pi}\left[\operatorname{tr} M(\xi *)^{-1} m(t, \kappa)\right]$, is ≤ 2 if $\xi *$ is optimal and $=2$ only at points in
ξ^{*}

Alternative criteria

There may be interest in simply finding designs which are good for estimating K_{M} or alternatively $V_{\max } / K_{M}$.

For former, criterion is to minimise

$$
\log \left[\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{2}}{\left(\kappa+t_{j}\right)^{2}}\right]-\log f(\kappa ; \xi, m)
$$

where $f(. ;$.) denotes the determinant in the preceding criterion.
Locally optimum design ($\kappa=1$), gives $s_{1}=K_{M} / \sqrt{ } 2, s_{2}=\infty ; \eta_{1}=1 / \sqrt{ } 2$.

For specificity ratio, $V_{\max } / K_{M}$ optimal designs are based on

$$
\begin{aligned}
& \log \left[\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{4}}{\left(\kappa+t_{j}\right)^{4}}\right] \\
& -\log \left[\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{2}}{\left(\kappa+t_{j}\right)^{2}} \sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{4}}{\left(\kappa+t_{j}\right)^{4}}-\left(\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{3}}{\left(\kappa+t_{j}\right)^{3}}\right)^{2}\right]
\end{aligned}
$$

Locally optimum design has same design points as for K_{M} but different weights.

s_{j}	$K_{M} / \sqrt{ } 2$	∞
K_{M}	$1 / \sqrt{ } 2$	$1-1 / \sqrt{ } 2$
$V_{\max } / K_{M}$	$1 / 2(1+1 / \sqrt{ } 2)$	$1 / 2(1-1 / \sqrt{ } 2)$

Optimal Designs

| κ_{L} | t | | | | | | η | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Optimal designs for $\operatorname{var}\left(\hat{K}_{M}\right)$ | | | | | | | | | | | | |
| 10^{-2} | 0.029 | 0.269 | 10.0 | | 0.451 | 0.319 | 0.230 | | | | | |
| 10^{-5} | $4.0 \mathrm{E}-5$ | $4.5 \mathrm{E}-4$ | $3.6 \mathrm{E}-3$ | $2.7 \mathrm{E}-2$ | $2.4 \mathrm{E}-1$ | 10 | 0.22 | 0.17 | 0.16 | 0.16 | 0.18 | 0.12 |

- Designs need greater weight at lower concentrations than for D-optimal designs.
- Intuitively reasonable as the relative importance of information about $V_{\max }$ is less important.

Why the point at 10 ?

- In all designs found so far, some weight has been given to a point at the upper limit of the range for the (scaled) substrate concentrations.
- This gives information about $V_{\max }$: essential even when interest is focussed solely on K_{M}.
- Also, designs apply to all priors on $\left(V_{\max }, K_{M}\right)$, including those with very specific prior knowledge about $V_{\max }$.
- If there is good prior knowledge about $V_{\max }$, why the point at 10 ?

Answer is that criterion
$E_{\pi}\left(\log \operatorname{det}\left[\sigma^{-2} N\left(\begin{array}{c}\sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{2}} \\ -V_{\max } \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{3}}\end{array} V_{\max }^{2} \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{4}}\right)\right]\right)$
does not take prior information into account in the analysis. To do so requires criterion to be modified to:
$\left.E_{\pi}\left(\log \operatorname{det}\left[\sigma^{-2} N\left(\begin{array}{c}\sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{2}} \\ -V_{\max } \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{3}}\end{array} V_{\max }^{2} \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2}}{\left(K_{M}+s_{j}\right)^{4}}\right)\right]+R\right]\right)$
R^{-1} being the dispersion matrix of the prior.

Prior Precision Matrix, \boldsymbol{R}

Reasonable to take the priors for $V_{\max }$ and K_{M} to be independent.
$R=\left(\begin{array}{cc}1 / \operatorname{var}\left(V_{\max }\right) & \\ 0 & 1 / \operatorname{var}\left(K_{M}\right)\end{array}\right)=\left(\begin{array}{cc}\sigma_{V}^{-2} & \\ 0 & K_{U}^{-2} \operatorname{var}(\kappa)^{-1}\end{array}\right)$
Optimal design now depends on σ and N. However, write R^{*} as:
$R^{*}=\frac{\sigma^{2}}{N} R=\left(\begin{array}{cc}1 /(N \lambda) & \\ 0 & \sigma^{2} /\left(N \operatorname{var}\left(K_{M}\right)\right)\end{array}\right)=\left(\begin{array}{cc}1 /(N \lambda) & \\ 0 & \sigma^{2} K_{U}^{-2} \operatorname{var}(\kappa)^{-1} / N\end{array}\right)$
where $\lambda=\sigma_{V}^{2} / \sigma^{2}$ is the prior variance of $V_{\max }$ in units of the RMS. New criterion is expectation over prior of \log of
$\Delta=\left(\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{2}}{\left(\kappa+t_{j}\right)^{2}}+\frac{1}{N \lambda}\right)\left(\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{2}}{\left(\kappa+t_{j}\right)^{4}}+\frac{1}{N \lambda \tilde{V}^{2} \operatorname{var}(\kappa)}\right)-\left(\sum_{j=1}^{m} \eta_{j} \frac{t_{j}^{2}}{\left(\kappa+t_{j}\right)^{3}}\right)^{2}$
where \tilde{V} is $V_{\max }$ scaled by its prior SD.

Prior specification

Prior for $V_{\max }$ is $N\left(V_{0} \sigma_{V}, \sigma_{V}^{2}\right)$, $\left\{\right.$ so for \tilde{V} is $\left.N\left(V_{0}, 1\right)\right\}$.
Prior for κ is either the prior of the associated uniform disn. or improper, $\operatorname{var}(\kappa)^{-1}=0$. Note that if improper prior used for κ then objective function does not depend on V, except through $1 /(N \lambda)$, so expectation is a one-dimensional integral.

Designs obtained for Improper Prior

All have $N=5$

$\kappa=0.01$		
t	η	λ
0.036	0.27	10
0.33	0.31	
10	0.42	
0.036	0.33	1
0.34	0.37	
10	0.31	
0.037	0.48	0.1
5.0	0.52	

$\kappa=0.001$		
\boldsymbol{t}	η	λ
0.004	0.20	
0.04	0.16	10
0.30	0.28	
10	0.37	
0.004	0.23	
0.04	0.20	1
0.32	0.33	
10	0.24	
0.006	0.46	
0.18	0.54	0.1

A Glimpse of other error models

Ruppert et al. (1989) discussed constant variance assumption and a weighting/transformation approach.

Nelder (1991) suggested application of extended quasi-likelihood to explore models with $\operatorname{Var}(y)=\sigma^{2} \mu^{\varsigma}$ with a data-determined value for ζ (in Nelder's example a value between 1 and 2 was obtained)

We explore the cases $\zeta=1$ and 2
Information matrix is $\sigma^{-2} \frac{\partial \mu^{T}}{\partial \beta} \operatorname{diag}\left(\mu_{i}^{\varsigma}\right) \frac{\partial \mu}{\partial \beta}$

Information matrix

$$
\left(\begin{array}{ll}
V_{\max }^{-\zeta} \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2-\varsigma}}{\left(K_{M}+s_{j}\right)^{2-\zeta}} \\
-V_{\max }^{1-\varsigma} \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2-\varsigma}}{\left(K_{M}+s_{j}\right)^{3-\varsigma}} & V_{\max }^{2-\varsigma} \sum_{j=1}^{m} \eta_{j} \frac{s_{j}^{2-\varsigma}}{\left(K_{M}+s_{j}\right)^{4-\varsigma}}
\end{array}\right)
$$

D-Optimal designs for $\zeta=1$ and searching using $T=10$ gives

κ_{L}	t						η			
Uniform on κ										
0		0.16	10			0.5	0.5			
Uniform on $\log \mathrm{\kappa}$										
10^{-2}	0.02	0.16	10		0.32	0.22	0.46			
10^{-5}	$3.0 \mathrm{E}-5$	5.7E-4	7.7E-3	$1.1 \mathrm{E}-1$	10	0.16	0.13	0.15	0.23	0.33

For $\zeta=2$ determinant of information matrix becomes

$$
\begin{aligned}
& \sum_{j=1}^{m} \eta_{j} \sum_{j=1}^{m} \eta_{j} \frac{1}{\left(\kappa+t_{j}\right)^{2}}-\left(\sum_{j=1}^{m} \eta_{j} \frac{1}{\left(\kappa+t_{j}\right)}\right)^{2}=\sum_{j=1}^{m} \eta_{j}\left(z_{j}-\bar{z}_{w}\right)^{2} \\
& z_{j}=\left(\kappa+t_{j}\right)^{-1}
\end{aligned}
$$

This is maximised by a two-point design, with concentrations at 0 and T, equally weighted (for any prior)

Some Efficiencies

Duggleby suggested equal numbers of observations at each of

$$
K_{M} / 4, K_{M} / 2, K_{M}, 2 K_{M}, 4 K_{M} .
$$

What is efficiency of this design?
We have a prior for κ, and it seems reasonable to use the mean of the prior to compare Bayesian designs with Duggleby's design. Scaling this suggests comparing optimal designs with t_{j} 's equal to:

$$
\bar{\kappa} / 4, \bar{\kappa} / 2, \bar{\kappa}, 2 \bar{\kappa}, 4 \bar{\kappa}
$$

Criterion is $\exp (E / p)$ where p is no. parameters and

$$
E=\mathrm{E}_{\pi}\left\lfloor\log \operatorname{det}\left(M\left(\xi^{*}\right)^{-1}\right)\right\rfloor-\mathrm{E}_{\pi}\left\lfloor\log \operatorname{det}\left(M\left(\xi_{\text {Duggleby }}\right)^{-1}\right)\right\rfloor
$$

κ_{L}	D-optimal	K_{M}
Uniform		
0	0.51	0.4
Log-Uniform		
10^{-2}	0.52	0.38
10^{-5}	0.26	0.08

Amended designs

κ_{L}	D-optimal	K_{M}
Uniform		
0	0.81	0.73
Log-Uniform		
10^{-2}	0.85	0.74
10^{-5}	0.39	0.14

General remarks

- Optimal designs can have few points
- Reliant on idea that there is a single purpose behind the study
- Using a prior distribution increases the number of points in the design, as a 'hedge' against the uncertainty around the values of the parameters

