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Enzymology

• Many biochemical reactions would, of their own accord, proceed at a rate that is far

too slow to be of use.

• Enzymes are natural catalysts which greatly increase the rate of reaction.

glucose e.g.

Product

phosphate-6-glucose e.g.

Substrate )6..(  → PaseGgeEnzyme
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Michaelis-Menten equation
For many enzymes the rate of reaction is determined by the Michaelis-Menten

equation

sK

sV
v

M +
= max

Here Vmax is the maximum rate at which substrate is turned into product and KM is the

Michaelis parameter, the substrate concentration at which the rate of reaction is 50%

of its maximum.

Enzymologists are interested in the values of these parameters, and also in derived

quantities such as the specificity constant Vmax/KM.
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Parameter Estimation

• The enzymologist observes the values of v, vi, at a series of substrate concentrations,

si, i=1,..,n.

• Parameters are estimated by fitting the Michaelis-Menten equation to these data

• Will start with the model

i
iM

i
i sK

sV
v ε+

+
= max

with εi a residual with zero mean and constant variance.

• Substantial history to fitting this model, and also some concerns over the use of this

model (Ruppert, Cressie and Carroll, 1989; Nelder, 1991; also Cornish-Bowden

1995)
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Design Problem

• How should the experimenter choose the substrate concentrations?

• Some work on this: Currie (1982) in Biometrics, also Duggleby (1979) and Endrenyi

& Chan (1981) in enzymology literature

• Depends on the aims of the experiment

• Will be assumed that the aim is to estimate the parameter(s) and to do this with

maximal precision.

• Will not consider studies where the aim is to differentiate between different types of

reaction.



6

Expected Information matrix
For the above model the expected information matrix is proportional to
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We assume that N observations are made at m distinct substrate concentrations.  The

number of observations at sj is Nηj, where ηj ≥ 0, ∑ηj = 1.
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Locally D-optimal design
The log of the determinant of the above can be written as the log of :
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where terms not involving the design points ξ = (s, ηη) have been omitted

Depends on KM (though not on Vmax).

For m=2 writing yj = sj/(KM + sj) gives the above as
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The optimal design has η1=η2 = ½ and y1 = ½ and y2 = 1, i.e. s1 = KM, s2 = ∞.

(Currie, Duggleby, Endrenyi)
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Bayesian D-Optimal design

Find design by maximising Eprior(log det(σ-2NM))

Specify knowledge about KM through a prior.

Objective factors into f(N)+f(σ)+f(Vmax)+f(KM, design)

So no need to specify a prior for Vmax, only marginal for KM

Convenient to assume prior has finite support on KL, KU.  These to be specified

by investigator.

Some parsimony achieved by scaling: write sj = KUtj,  KM = KUκ

(with KL/KU = κL < κ < 1).

Two priors:  1.  κ uniform over its range 2. log κ uniform over its range.
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Optimal Bayesian 2-point design
A bit of an indulgence, but analytical progress can be made here.

Designs all give equal weight to both points.

Larger concentration is at infinity

Smaller concentration t1 is at the solution to 0E
1

1 =
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An approximate solution is therefore t1 = )(E κπ , which fits with locally optimal

solution.  Also, Jensen’s inequality shows that in fact t1 ≤ )(E κπ .

For prior 1, t1 is 0.397 (κL = 0); for prior 2, t1 = √κL.
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Optimal Bayesian designs

• Search numerically for optimal design for m = 3, 4, …

• Use NAG software for quadrature and optimisation.

• Search for 0 ≤ tj ≤ T, and ηj ≥ 0, ∑ηj = 1, where T is just some ‘large’ scaled

concentration, arbitrarily set at 10 (sensitivity to choice can be explored)
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Optimal designs

κL t ηη

Uniform on κ

0 0.02 0.39 10 0.02 0.49 0.49

Uniform on log κ

10-2 0.04 0.33 10 0.26 0.30 0.44

10-5 4.4E-5 4.9E-4 3.8E-3 2.9E-2 2.9E-1 10 0.12 0.10 0.11 0.14 0.23 0.30

All of these can be confirmed to be optimal from the ‘derivative’ plots

)],(*)([E)( 1 κξπ tmtrMtd −= , is ≤ 2 if ξ* is optimal and = 2 only at points in

ξ*
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Alternative criteria
There may be interest in simply finding designs which are good for estimating KM or

alternatively Vmax/KM.

For former, criterion is to minimise
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where f(.;.) denotes the determinant in the preceding criterion.

Locally optimum design (κ=1), gives s1 = KM/√2, s2 = ∞; η1 = 1/√2.

For specificity ratio, Vmax/KM optimal designs are based on
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Locally optimum design has same design points as for KM but different weights.

sj KM/√2 ∞

KM 1/√2 1-1/√2

Vmax/KM ½ (1+1/√2) ½ (1-1/√2)
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 Optimal Designs

κL t ηη
Optimal designs for )ˆvar( MK

10-2 0.029 0.269 10.0 0.451 0.319 0.230

10-5 4.0E-5 4.5E-4 3.6E-3 2.7E-2 2.4E-1 10 0.22 0.17 0.16 0.16 0.18 0.12

• Designs need greater weight at lower concentrations than for D-optimal designs.

• Intuitively reasonable as the relative importance of information about Vmax is less

important.
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Why the point at 10?

• In all designs found so far, some weight has been given to a point at the upper limit

of the range for the (scaled) substrate concentrations.

• This gives information about Vmax: essential even when interest is focussed solely on

KM.

• Also, designs apply to all priors on (Vmax, KM), including those with very specific

prior knowledge about Vmax.

• If there is good prior knowledge about Vmax, why the point at 10?
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Answer is that criterion
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does not take prior information into account in the analysis.  To do so requires

criterion to be modified to:









































+





















++
−

+

∑∑

∑

==

=− R

sK

s
V

sK

s
V

sK

s

NE
m

j jM

j
j

m

j jM

j
j

m

j jM

j
j

1 4

2
2

max
1 3

2

max

1 2

2

2

)()(

)(
detlog

ηη

η

σπ

R-1 being the dispersion matrix of the prior.
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Prior Precision Matrix, R
Reasonable to take the priors for Vmax and KM to be independent.
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Optimal design now depends on σ and N.  However, write R* as:
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where 22 σσλ V=  is the prior variance of Vmax in units of the RMS.  New criterion is
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where V~ is Vmax scaled by its prior SD.
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Prior specification

Prior for Vmax is ),( 2
0 VVVN σσ , {so for V~ is N(V0,1)}.

Prior for κ is either the prior of the associated uniform disn. or improper, var(κ)-1=0.

Note that if improper prior used for κ  then objective function does not depend on V,

except through 1/(Nλ), so expectation is a one-dimensional integral.
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Designs obtained for Improper Prior
All have N=5

κ = 0.01 κ = 0.001
t ηη λλ t ηη λλ
0.036 0.27 0.004 0.20
0.33 0.31 10 0.04 0.16 10
10 0.42 0.30 0.28
0.036 0.33 10 0.37
0.34 0.37 1 0.004 0.23
10 0.31 0.04 0.20 1
0.037 0.48 0.32 0.33
5.0 0.52 0.1 10 0.24

0.006 0.46
0.18 0.54 0.1
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A Glimpse of other error models
Ruppert et al. (1989) discussed constant variance assumption and a

weighting/transformation approach.

Nelder (1991) suggested application of extended quasi-likelihood to explore models

with ςµσ 2)( =yVar  with a data-determined value for ζ (in Nelder’s example a

value between 1 and 2 was obtained)

We explore the cases ζ = 1 and 2

Information matrix is 
β
µ

µ
β
µ
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Information matrix
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D-Optimal designs for ζ = 1 and searching using T = 10 gives

κL t ηη
Uniform on κ
0 0.16 10 0.5 0.5
Uniform on log κ
10-2 0.02 0.16 10 0.32 0.22 0.46

10-5 3.0E-5 5.7E-4 7.7E-3 1.1E-1 10 0.16 0.13 0.15 0.23 0.33
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For ζ = 2 determinant of information matrix becomes

∑∑ ∑∑
== ==

−=







+

−
+

m

j
wjj

m

j

m

j
j

j

m

j
j

jj zz
tt 1

2

1

2

11
2 )(

)(
1

)(
1

η
κ

η
κ

ηη

1)( −+= jj tz κ

This is maximised by a two-point design, with concentrations at 0 and T, equally

weighted (for any prior)
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Some Efficiencies
Duggleby suggested equal numbers of observations at each of

KM/4, KM/2, KM, 2KM, 4KM.

What is efficiency of this design?

We have a prior for κ, and it seems reasonable to use the mean of the prior to compare

Bayesian designs with Duggleby’s design.  Scaling this suggests comparing optimal

designs with tj’s equal to:

κ /4, κ /2, κ , 2κ , 4κ
Criterion is exp(E/p) where p is no. parameters and

[ ] [ ]))(det(logE)*)(det(logE 11 −− −= DugglebyMME ξξ ππ
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κL D-optimal KM

Uniform
0 0.51 0.4
Log-Uniform
10-2 0.52 0.38
10-5 0.26 0.08

Amended designs

κL D-optimal KM

Uniform
0 0.81 0.73
Log-Uniform
10-2 0.85 0.74
10-5 0.39 0.14
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General remarks

• Optimal designs can have few points

• Reliant on idea that there is a single purpose behind the study

• Using a prior distribution increases the number of points in the design, as a ‘hedge’

against the uncertainty around the values of the parameters


