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Enzymology

- Many biochemical reactions would, of their own accord, proceed at arate that is far
too slow to be of use.

- Enzymes are natural catalysts which greatly increase the rate of reaction.
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Michaelis-M enten equation

For many enzymes the rate of reaction is determined by the Michaelis-Menten

eguation

Vimay S
y = max
Km TS

Here V. IS the maximum rate at which substrate is turned into product and Ky, is the
Michaelis parameter, the substrate concentration at which the rate of reaction is 50%

of its maximum.

Enzymologists are interested in the values of these parameters, and also in derived

guantities such as the specificity constant Vya,/Kw.



Parameter Estimation

- The enzymologist observes the values of v, v;, at a series of substrate concentrations,
s, 1=1,..,n.

- Parameters are estimated by fitting the Michaelis-Menten eguation to these data

- Will start with the model

V. = VmaXS| + e.
| KM +S |

with e aresidual with zero mean and constant variance.

- Substantial history to fitting this model, and also some concerns over the use of this
model (Ruppert, Cressie and Carroll, 1989; Nelder, 1991, also Cornish-Bowden
1995)



Design Problem
- How should the experimenter choose the substrate concentrations?

- Some work on this; Currie (1982) in Biometrics, also Duggleby (1979) and Endrenyi
& Chan (1981) in enzymology literature

- Depends on the aims of the experiment

- Will be assumed that the aim is to estimate the parameter(s) and to do this with

maximal precision.

- Will not consider studies where the aim is to differentiate between different types of

reaction.



Expected Information matrix

For the above model the expected information matrix is proportional to
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We assume that N observations are made at m distinct substrate concentrations.

number of observations at 5 isNh;, whereh; 3 0, ah; = 1.
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L ocally D-optimal design

Thelog of the determinant of the above can be written as the log of :
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where terms not involving the design points X = (s, h) have been omitted
Depends on Ky, (though not on V).
For m=2 writing y; = s/(Ku + §) gives the above as

2.2 2
hihoyryo (Y1 - Y2)
Theoptimal design hash;=h, =% andy;, =Y2andy, =1, 1.e. 5 =Ky, S = ¥.
(Currie, Duggleby, Endrenyi)



Bayesian D-Optimal design
Find design by maximising E,io(l0g det(s “NM))
Specify knowledge about K, through a prior.
Objective factors into f(N)+f(s)+f(Vima) (K, design)
S0 no need to specify aprior for Vi, only margina for Ky,

Convenient to assume prior has finite support on K, Ky. These to be specified
by investigator.

Some parsimony achieved by scaling: write s = Kytj, Ky = Kyk

(with K|/Ky =k <k <1).

Two priors. 1. k uniformoveritsrange 2. log k uniform over its range.



Optimal Bayesian 2-point design
A bit of an indulgence, but analytical progress can be made here.

Designs all give equal weight to both points.

Larger concentration is at infinity

o | aK -0
Smaller concentration t; is at the solution to Ep C =0
ek +11 g

An approximate solution is therefore t; = Ejy (K ), which fits with locally optimal

solution. Also, Jensen’s inequality shows that infact t; £ Ej (K ).

For prior 1, t; is 0.397 (k. = 0); for prior 2, t; = Ck,.



Optimal Bayesian designs

- Search numerically for optimal designfor m=3, 4, ...

- Use NAG software for quadrature and optimisation.

- Searchfor O£t £ T,and h; 3 0, ah; =1, where T isjust some ‘large’ scaled

concentration, arbitrarily set at 10 (sensitivity to choice can be explored)
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Optimal designs

K. t h

Uniform on k

0 0.02 |0.39 10 0.02 |049 |0.49

Uniform on log k

10° |0.04 |0.33 |10 026 |0.30 |0.44

10° |4.4E-5|4.9E-4[38E-3|29E-2[29E-1/10 [0.12 |0.10 |0.11 10.14 10.23 10.30

All of these can be confirmed to be optimal from the ‘derivative’ plots

d(t) = E, [trM (x*)"*m(t,k )], is£ 2if x* is optimal and = 2 only a pointsin

X*
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Alternativecriteria
There may be interest in ssimply finding designs which are good for estimating Ky, or
aternatively V /K.
For former, criterion isto minimise
énm t2 U
Iog@_z‘-’i h; >U- log f (k;x,m)
al=1 (k +tj) 0

where f(.;.) denotes the determinant in the preceding criterion.

Locally optimum design (k=1), gives s; = Ky/CR, s, = ¥; h; = 1/C.

For specificity ratio, Va/Ky optimal designs are based on
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L ocally optimum design has same design points as for Ky, but different weights.

Kwm 1o 1-1/C2

Vool Ky 15 (1+1/CP) Y2 (1-1/Cp)




Optimal Designs

K. t h
Optimal designsfor var(K,, )
107 0.029 [0.269 |10.0 0.451 0.319 |0.230
10° |4.0E-5|4.5E-4 |3.6E-3|2.7E-2 | 2.4E-1 |10 0.22 10.17 1016 10.16 10.18 0.12

- Designs need greater weight at lower concentrations than for D-optimal designs.

- Intuitively reasonable as the relative importance of information about V., iSless

Important.
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Why the point at 10?

- Inall designs found so far, some weight has been given to apoint at the upper limit
of the range for the (scaled) substrate concentrations.

- This gives information about V. essential even when interest is focussed solely on
Ky.

- Also, designs apply to all priorson (Vima, Kum), including those with very specific
prior knowledge about V.

- If there is good prior knowledge about V., Why the point at 10?
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Answer isthat criterion
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does not take prior information into account in the analysis. To do so requires

criterion to be modified to:
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R* being the dispersion matrix of the prior.
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Prior Precison Matrix, R
Reasonabl e to take the priors for Vo and Ky, to be independent.
:Sé/var(\/max) 6_28y° 9

0 Uvar(Ky)g &0 Kj2vark) g
Optimal design now dependson s and N. However, write R* as:

52 _ @AIN) 0_ad/(Nl') o)
R*=—R=¢ =C 21, -2 SIS
N e O S /(Nvar(KM))g & 0 s “Ky“var(k) " /Ny

where | = s\?/s 2 isthe prior variance of Vi in units of the RMS. New criterion is
expectation over prior of log of
té 1 oeem té 1 0 &m tf 0

D= Gah J J T -Gah;—
811 (k+t) N| é;l (k+tj) NI V2 var(k)z &i=t - (k +t5)° 5

whereV is V. scaled by its prior SD.
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Prior specification
Prior for Vina is N(VgSy,Sv7 ), {0 for V is N(Vo,1)} .
Prior for k is either the prior of the associated uniform disn. or improper, var(k)™*=0.

Note that if improper prior used for k then objective function does not depend on V,

except through 1/(Nl ), so expectation is a one-dimensional integral.
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Designs obtained for |mproper Prior

All have N=5
k =0.01
t h I
0.036 0.27
0.33 0.31 10
10 0.42
0.036 0.33
0.34 0.37 1
10 0.31
0.037 0.48
5.0 0.52 0.1

k =0.001
t h |
0.004 0.20
0.04 0.16 10
0.30 0.28
10 0.37
0.004 0.23
0.04 0.20 1
0.32 0.33
10 0.24
0.006 0.46
0.18 0.54 0.1
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A Glimpse of other error models

Ruppert et al. (1989) discussed constant variance assumption and a

weighting/transformation approach.
Nelder (1991) suggested application of extended quasi-likelihood to explore models

with Var (y) =s °m’ with a data-determined value for z (in Nelder's example a

value between 1 and 2 was obtained)

We explorethecasesz =1 and 2

.
Information matrix isS ~* %T_EW diag(mv)%
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| nformation matrix

v,y & S :

max 211 2-V N

C iz (K + Sj) _
¢ 1-v M sz-v 2-y M sz-v N
g Vinal é_hj 3V max .é_hj av £

=t (Ky *+5)) it (Ky +5)7 5

D-Optimal designsfor z = 1 and searching using T = 10 gives

Kk, t h

Uniform on k

0 0.16 |10 0.5 0.5

Uniform on log k

10 |0.02 |0.16 |10 032 022 |0.46

10° [3.0E-5 |5.7E-4 | 7.7E-3 [ 1.1E-1 | 10 0.16 |0.13 |0.15 |0.23 |0.33
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For z = 2 determinant of information matrix becomes

1 & 1 O m
oh —_ oh. . 2
DN T M vy TAE 2
z, =(k +t,)"

Thisis maximised by atwo-point design, with concentrations at O and T, equally

weighted (for any prior)
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Some Efficiencies

Duggleby suggested equal numbers of observations at each of
K4, Knl2, Ky, 2Ky, 4K
What is efficiency of this design?
We have aprior for k, and it seems reasonable to use the mean of the prior to compare
Bayesian designs with Duggleby’ s design. Scaling this suggests comparing optimal
designs with tj’ s equal to:
K/4,K/2, K, 2K, 4k

Criterion is exp(E/p) where p is no. parameters and

E = Ep [logdet(M (*) ™) Ep [logdet(M (X puggieny) ™)
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Kk, D-optimal Kwm
Uniform

0) 0.51 0.4
Log-Uniform

10 0.52 0.38
107 0.26 0.08
Amended designs

Kk, D-optimal Kwm
Uniform

0) 0.81 0.73
Log-Uniform

10 0.85 0.74
107 0.39 0.14
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General remarks

- Optimal designs can have few points
- Reliant on ideathat there is a single purpose behind the study

- Using aprior distribution increases the number of pointsin the design, as a ‘ hedge’

against the uncertainty around the values of the parameters
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