Bayesian Designs for Michaelis-Menten kinetics

John Matthews and Gilly Allcock Department of Statistics University of Newcastle upon Tyne

j.n.s.matthews@ncl.ac.uk References etc. on http://www.mas.ncl.ac.uk/~njnsm/talks/titles.htm

Enzymology

- Many biochemical reactions would, of their own accord, proceed at a rate that is far too slow to be of use.
- Enzymes are natural catalysts which greatly increase the rate of reaction.

Michaelis-Menten equation

For many enzymes the rate of reaction is determined by the *Michaelis-Menten* equation

$$v = \frac{V_{\max}s}{K_M + s}$$

Here V_{max} is the maximum rate at which substrate is turned into product and K_M is the *Michaelis* parameter, the substrate concentration at which the rate of reaction is 50% of its maximum.

Enzymologists are interested in the values of these parameters, and also in derived quantities such as the specificity constant V_{max}/K_M .

Parameter Estimation

- The enzymologist observes the values of *v*, *v_i*, at a series of substrate concentrations, *s_i*, *i*=1,...,*n*.
- Parameters are estimated by fitting the Michaelis-Menten equation to these data
- Will start with the model

$$v_i = \frac{V_{\max}s_i}{K_M + s_i} + \boldsymbol{e}_i$$

with e_i a residual with zero mean and constant variance.

Substantial history to fitting this model, and also some concerns over the use of this model (Ruppert, Cressie and Carroll, 1989; Nelder, 1991; also Cornish-Bowden 1995)

Design Problem

- How should the experimenter choose the substrate concentrations?
- Some work on this: Currie (1982) in *Biometrics*, also Duggleby (1979) and Endrenyi & Chan (1981) in enzymology literature
- Depends on the aims of the experiment
- Will be assumed that the aim is to estimate the parameter(s) and to do this with maximal precision.
- Will not consider studies where the aim is to differentiate between different types of reaction.

Expected Information matrix

For the above model the expected information matrix is proportional to

$$\boldsymbol{s}^{-2} NM = \boldsymbol{s}^{-2} N \left(\begin{array}{c} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{2}} \\ -V_{\max} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{3}} \end{array} \right) V_{\max}^{2} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{4}} \right)$$

We assume that *N* observations are made at *m* distinct substrate concentrations. The number of observations at s_j is $N\mathbf{h}_j$, where $\mathbf{h}_j \ge 0$, $\sum \mathbf{h}_j = 1$.

Locally D-optimal design

The log of the determinant of the above can be written as the log of :

$$\Delta = \left(\sum_{j=1}^{m} \mathbf{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{2}}\right) \left(\sum_{j=1}^{m} \mathbf{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{4}}\right) - \left(\sum_{j=1}^{m} \mathbf{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{3}}\right)^{2}$$

where terms not involving the design points $\mathbf{x} = (\mathbf{s}, \mathbf{h})$ have been omitted Depends on K_M (though not on V_{max}).

For m=2 writing $y_j = s_j/(K_M + s_j)$ gives the above as

$$h_1 h_2 y_1^2 y_2^2 (y_1 - y_2)^2$$

The optimal design has $h_1 = h_2 = \frac{1}{2}$ and $y_1 = \frac{1}{2}$ and $y_2 = 1$, i.e. $s_1 = K_M$, $s_2 = \infty$. (Currie, Duggleby, Endrenyi)

Bayesian D-Optimal design

Find design by maximising $E_{prior}(\log \det(s^{-2}NM))$

Specify knowledge about K_M through a prior.

Objective factors into $f(N)+f(\sigma)+f(V_{max})+f(K_M, \text{design})$

So no need to specify a prior for V_{max} , only marginal for K_M

Convenient to assume prior has finite support on K_L , K_U . These to be specified by investigator.

Some parsimony achieved by scaling: write $s_j = K_U t_j$, $K_M = K_U k$

(with $K_L/K_U = k_L < k < 1$).

Two priors: 1. k uniform over its range 2. log k uniform over its range.

Optimal Bayesian 2-point design

A bit of an indulgence, but analytical progress can be made here. Designs all give equal weight to both points.

Larger concentration is at infinity

Smaller concentration
$$t_1$$
 is at the solution to $\mathbf{E}_{\boldsymbol{p}}\left(\frac{\boldsymbol{k}-t_1}{\boldsymbol{k}+t_1}\right) = 0$

An approximate solution is therefore $t_1 = \mathbf{E}_{\boldsymbol{p}}(\boldsymbol{k})$, which fits with locally optimal

solution. Also, Jensen's inequality shows that in fact $t_1 \leq E_p(\mathbf{k})$.

For prior 1, t_1 is 0.397 ($\mathbf{k}_L = 0$); for prior 2, $t_1 = \sqrt{\mathbf{k}_L}$.

Optimal Bayesian designs

- Search numerically for optimal design for m = 3, 4, ...
- Use NAG software for quadrature and optimisation.
- Search for $0 \le t_j \le T$, and $h_j \ge 0$, $\sum h_j = 1$, where *T* is just some 'large' scaled concentration, arbitrarily set at 10 (sensitivity to choice can be explored)

Optimal designs

k_L			t				h				
Unifor	m on k				0		1	I			
0	0.02	0.39	10		0.02	0.49	0.49)			
Unifor	m on log	g k	1		U.		1				
10 ⁻²	0.04	0.33	10		0.26	0.30	0.44	-			
10 ⁻⁵	4.4E-5 4	.9E-4 3.8	E-3 2.9E-	2 2.9E-1	10	0.12	0.10	0.11	0.14	0.23	0.30

All of these can be confirmed to be optimal from the 'derivative' plots

 $d(t) = \mathbf{E}_{p} [trM(\mathbf{x}^{*})^{-1}m(t,\mathbf{k})], \text{ is } \le 2 \text{ if } \mathbf{x}^{*} \text{ is optimal and } = 2 \text{ only at points in}$ \mathbf{x}^{*}

Alternative criteria

There may be interest in simply finding designs which are good for estimating K_M or alternatively V_{max}/K_M .

For former, criterion is to minimise

$$\log \left[\sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{t_{j}^{2}}{(\boldsymbol{k}+t_{j})^{2}} \right] - \log f(\boldsymbol{k};\boldsymbol{x},m)$$

where f(.;.) denotes the determinant in the preceding criterion.

Locally optimum design ($\mathbf{k}=1$), gives $s_1 = K_M/\sqrt{2}$, $s_2 = \infty$; $\mathbf{h}_1 = 1/\sqrt{2}$.

For specificity ratio, V_{max}/K_M optimal designs are based on

$$\log \left[\sum_{j=1}^{m} \mathbf{h}_{j} \frac{t_{j}^{4}}{(\mathbf{k}+t_{j})^{4}} \right] - \log \left[\sum_{j=1}^{m} \mathbf{h}_{j} \frac{t_{j}^{2}}{(\mathbf{k}+t_{j})^{2}} \sum_{j=1}^{m} \mathbf{h}_{j} \frac{t_{j}^{4}}{(\mathbf{k}+t_{j})^{4}} - \left(\sum_{j=1}^{m} \mathbf{h}_{j} \frac{t_{j}^{3}}{(\mathbf{k}+t_{j})^{3}} \right)^{2} \right]$$

Locally optimum design has same design points as for K_M but different weights.

S _j	$K_M/\sqrt{2}$	∞
K _M	$1/\sqrt{2}$	1-1/\(\sqrt{2})
V_{max}/K_M	$\frac{1}{2}(1+1/\sqrt{2})$	$\frac{1}{2}(1-1/\sqrt{2})$

Optimal Designs

k_L					t			h						
Optimal designs for $var(\hat{K}_M)$														
10 ⁻²			0.029	0.26	9 10	.0		0.451	().319	0	.230		
10-5	4.0E-5	4.5E-4	3.6E-3	2.7E-2	2.4E-1	10		0.22	0.17	0.1	6	0.16	0.18	0.12

- Designs need greater weight at lower concentrations than for D-optimal designs.
- Intuitively reasonable as the relative importance of information about V_{max} is less important.

Why the point at 10?

- In all designs found so far, some weight has been given to a point at the upper limit of the range for the (scaled) substrate concentrations.
- This gives information about V_{max} : essential even when interest is focussed solely on K_M .
- Also, designs apply to all priors on (V_{max}, K_M) , including those with very specific prior knowledge about V_{max} .
- If there is good prior knowledge about V_{max} , why the point at 10?

Answer is that criterion

$$E_{p}\left(\log \det \left[\boldsymbol{s}^{-2} N \left(\sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{2}} - V_{\max} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{3}} - V_{\max}^{2} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{4}} \right) \right]$$

does not take prior information into account in the *analysis*. To do so requires criterion to be modified to:

$$E_{p}\left(\log \det \left[\boldsymbol{s}^{-2} N \left(\sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{2}} - V_{\max} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{3}} - V_{\max}^{2} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{s_{j}^{2}}{(K_{M} + s_{j})^{4}} + R \right] \right)$$

 R^{-1} being the dispersion matrix of the prior.

Prior Precision Matrix, R

Reasonable to take the priors for V_{max} and K_M to be independent.

$$R = \begin{pmatrix} 1/\operatorname{var}(V_{\max}) \\ 0 & 1/\operatorname{var}(K_M) \end{pmatrix} = \begin{pmatrix} \boldsymbol{s}_V^{-2} \\ 0 & K_U^{-2} \operatorname{var}(\boldsymbol{k})^{-1} \end{pmatrix}$$

Optimal design now depends on s and N. However, write R^* as:

$$R^* = \frac{\boldsymbol{s}^2}{N} R = \begin{pmatrix} 1/(N\boldsymbol{l}) \\ 0 & \boldsymbol{s}^2/(N\operatorname{var}(K_M)) \end{pmatrix} = \begin{pmatrix} 1/(N\boldsymbol{l}) \\ 0 & \boldsymbol{s}^2K_U^{-2}\operatorname{var}(\boldsymbol{k})^{-1}/N \end{pmatrix}$$

where $\mathbf{l} = \mathbf{s}_V^2 / \mathbf{s}^2$ is the prior variance of V_{max} in units of the RMS. New criterion is expectation over prior of log of

$$\Delta = \left(\sum_{j=1}^{m} h_{j} \frac{t_{j}^{2}}{(\boldsymbol{k}+t_{j})^{2}} + \frac{1}{N\boldsymbol{l}}\right) \left(\sum_{j=1}^{m} h_{j} \frac{t_{j}^{2}}{(\boldsymbol{k}+t_{j})^{4}} + \frac{1}{N\boldsymbol{l}\,\widetilde{V}^{2}\,\operatorname{var}(\boldsymbol{k})}\right) - \left(\sum_{j=1}^{m} h_{j} \frac{t_{j}^{2}}{(\boldsymbol{k}+t_{j})^{3}}\right)^{2}$$

where \tilde{V} is V_{max} scaled by its prior SD.

Prior specification

Prior for V_{max} is $N(V_0 \boldsymbol{s}_V, \boldsymbol{s}_V^2)$, {so for \tilde{V} is $N(V_0, 1)$ }.

Prior for **k** is either the prior of the associated uniform disn. or improper, $var(\mathbf{k})^{-1}=0$. Note that if improper prior used for **k** then objective function does not depend on *V*, except through $1/(N\mathbf{l})$, so expectation is a one-dimensional integral.

Designs obtained for Improper Prior

All have *N*=5

	$\kappa = 0.01$							
t	h	1						
0.036	0.27							
0.33	0.31	10						
10	0.42							
0.036	0.33							
0.34	0.37	1						
10	0.31							
0.037	0.48							
5.0	0.52	0.1						

$\kappa = 0.001$							
t	h	1					
0.004	0.20						
0.04	0.16	10					
0.30	0.28						
10	0.37						
0.004	0.23						
0.04	0.20	1					
0.32	0.33						
10	0.24						
0.006	0.46						
0.18	0.54	0.1					

A Glimpse of other error models

Ruppert *et al.* (1989) discussed constant variance assumption and a weighting/transformation approach.

Nelder (1991) suggested application of extended quasi-likelihood to explore models with $Var(y) = s^2 m^V$ with a data-determined value for z (in Nelder's example a value between 1 and 2 was obtained)

We explore the cases z = 1 and 2

Information matrix is
$$\mathbf{S}^{-2} \frac{\partial \mathbf{m}^{T}}{\partial \mathbf{b}} diag(\mathbf{m}^{V}) \frac{\partial \mathbf{m}}{\partial \mathbf{b}}$$

Information matrix

$$\begin{pmatrix} V_{\max}^{-V} \sum_{j=1}^{m} h_{j} \frac{s_{j}^{2-V}}{(K_{M} + s_{j})^{2-V}} \\ -V_{\max}^{1-V} \sum_{j=1}^{m} h_{j} \frac{s_{j}^{2-V}}{(K_{M} + s_{j})^{3-V}} V_{\max}^{2-V} \sum_{j=1}^{m} h_{j} \frac{s_{j}^{2-V}}{(K_{M} + s_{j})^{4-V}} \end{pmatrix}$$

D-Optimal designs for z = 1 and searching using T = 10 gives

\boldsymbol{k}_L			t				h			
Uniform	n on k									
0		0.16	10			0.5	0.5			
Uniform	n on log	g k								
10^{-2}	0.02	0.16	10		0.32	0.22	0.46			
10-5	2 05 5			1 1 1 1	10	0.16	0.10	0.15	0.00	0.00
10-5	3.0E-5	5./E-4	7.7E-3	1.1E-1	10	0.16	0.13	0.15	0.23	0.33

For z = 2 determinant of information matrix becomes

$$\sum_{j=1}^{m} \boldsymbol{h}_{j} \sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{1}{(\boldsymbol{k}+\boldsymbol{t}_{j})^{2}} - \left(\sum_{j=1}^{m} \boldsymbol{h}_{j} \frac{1}{(\boldsymbol{k}+\boldsymbol{t}_{j})}\right)^{2} = \sum_{j=1}^{m} \boldsymbol{h}_{j} (\boldsymbol{z}_{j} - \boldsymbol{\overline{z}}_{w})^{2}$$
$$\boldsymbol{z}_{j} = (\boldsymbol{k}+\boldsymbol{t}_{j})^{-1}$$

This is maximised by a two-point design, with concentrations at 0 and *T*, equally weighted (for any prior)

Some Efficiencies

Duggleby suggested equal numbers of observations at each of

 $K_M/4, K_M/2, K_M, 2K_M, 4K_M.$

What is efficiency of this design?

We have a prior for k, and it seems reasonable to use the mean of the prior to compare Bayesian designs with Duggleby's design. Scaling this suggests comparing optimal designs with t_i 's equal to:

 \mathbf{k} /4, \mathbf{k} /2, \mathbf{k} , 2 \mathbf{k} , 4 \mathbf{k}

Criterion is $\exp(E/p)$ where *p* is no. parameters and

$$E = \mathbf{E}_{\boldsymbol{p}} \left[\log \det(M(\boldsymbol{x}^*)^{-1}) \right] - \mathbf{E}_{\boldsymbol{p}} \left[\log \det(M(\boldsymbol{x}_{Duggleby})^{-1}) \right]$$

\mathbf{k}_{L}	D-optimal	K_M
Uniform		
0	0.51	0.4
Log-Uniform		
Log-Uniform	0.52	0.38
10 ⁻⁵	0.26	0.08

Amended designs

\mathbf{k}_{L}	D-optimal	K_M
Uniform		
0	0.81	0.73
Log-Uniform		
Log-Uniform	0.85	0.74
10 ⁻⁵	0.39	0.14

General remarks

- Optimal designs can have few points
- Reliant on idea that there is a single purpose behind the study
- Using a prior distribution increases the number of points in the design, as a 'hedge' against the uncertainty around the values of the parameters