

Parameter-dependent Optimal Designs

John Matthews University of Newcastle j.n.s.matthews@ncl.ac.uk

May 2010

・ロト ・同ト ・ヨト ・ヨト

3

Parameter-dependent Optimal Designs

Introduction	Example	Initial design	'Bayesian' optimal design	Design criteria	Proper Bayesian Designs
Introduction					

• Experiments are performed to learn about some system

- Experiments are performed to learn about some system
- Designing such experiments requires knowledge of the system

- Experiments are performed to learn about some system
- Designing such experiments requires knowledge of the system
- This is an inevitable tension in experimental design

- Experiments are performed to learn about some system
- Designing such experiments requires knowledge of the system
- This is an inevitable tension in experimental design
- Satisfactory resolution requires judgment and prior knowledge

- Experiments are performed to learn about some system
- Designing such experiments requires knowledge of the system
- This is an inevitable tension in experimental design
- Satisfactory resolution requires judgment and prior knowledge
- Bayesian ideas are useful but need not entail a Bayesian analysis

- Experiments are performed to learn about some system
- Designing such experiments requires knowledge of the system
- This is an inevitable tension in experimental design
- Satisfactory resolution requires judgment and prior knowledge

イロト イポト イヨト イヨト

= nan

- Bayesian ideas are useful but need not entail a Bayesian analysis
- This talk illustrates some aspects of this using Michaelis-Menten experiments

Rate of reaction in enzyme kinetics determined by the *Michaelis Menten* equation.

$$v = \frac{V_{\max}s}{K+s}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Rate of reaction in enzyme kinetics determined by the *Michaelis Menten* equation.

$$v = \frac{V_{\max}s}{K+s}$$

where

• s is the substrate concentration, v the rate of reaction

Rate of reaction in enzyme kinetics determined by the *Michaelis Menten* equation.

$$v = \frac{V_{\max}s}{K+s}$$

where

- s is the substrate concentration, v the rate of reaction
- *K* is the *Michaelis* parameter;

Rate of reaction in enzyme kinetics determined by the *Michaelis Menten* equation.

$$v = \frac{V_{\max}s}{K+s}$$

where

- s is the substrate concentration, v the rate of reaction
- K is the Michaelis parameter; V_{\max} the maximum rate of reaction

Rate of reaction in enzyme kinetics determined by the *Michaelis Menten* equation.

$$v = \frac{V_{\max}s}{K+s}$$

where

- s is the substrate concentration, v the rate of reaction
- K is the Michaelis parameter; V_{\max} the maximum rate of reaction
- interest focusses on K and other quantities, such as $V_{\rm max}/K$

• Conduct experiment to estimate parameters

- Conduct experiment to estimate parameters
- Observe rate v_i at concentrations s_i , $i = 1, \ldots, N$

- Conduct experiment to estimate parameters
- Observe rate v_i at concentrations s_i , $i = 1, \ldots, N$
- Assume model

$$v_i = \frac{V_{\max}s_i}{K+s_i} + \epsilon_i$$

with the ϵ_i being independent, $N(0, \sigma^2)$

- Conduct experiment to estimate parameters
- Observe rate v_i at concentrations s_i , $i = 1, \ldots, N$
- Assume model

$$v_i = \frac{V_{\max}s_i}{K+s_i} + \epsilon_i$$

with the ϵ_i being independent, $N(0, \sigma^2)$

Not wholly realistic but will serve for present purposes.

- Conduct experiment to estimate parameters
- Observe rate v_i at concentrations s_i , i = 1, ..., N
- Assume model

$$v_i = \frac{V_{\max}s_i}{K+s_i} + \epsilon_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

with the ϵ_i being independent, N(0, σ^2)

- Not wholly realistic but will serve for present purposes.
- Substantial history to fitting this model exists.

Design Problem

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣ぬ⊙

Parameter-dependent Optimal Designs

• How should the substrate concentrations be chosen?

- How should the substrate concentrations be chosen?
- Depends on aim of experiment

- How should the substrate concentrations be chosen?
- Depends on aim of experiment
- Suppose we wish to estimate K as precisely as possible.

Expected information matrix can be written as $\mathscr{I}=N\sigma^{-2}\mathscr{M}$, where

Expected Information

Expected information matrix can be written as $\mathscr{I} = N\sigma^{-2}\mathscr{M}$, where

$$\mathcal{M} = \begin{pmatrix} \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^2} \\ -V_{\max} \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^3} & V_{\max}^2 \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^4} \end{pmatrix}$$

Expected Information

Expected information matrix can be written as $\mathscr{I} = N\sigma^{-2}\mathscr{M}$. where

$$\mathcal{M} = \begin{pmatrix} \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^2} \\ -V_{\max} \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^3} & V_{\max}^2 \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^4} \end{pmatrix}$$

• Usual continuous design framework: N observations at n distinct concentrations s_i ;

Expected information matrix can be written as $\mathscr{I} = N\sigma^{-2}\mathscr{M}$, where

$$\mathcal{M} = \begin{pmatrix} \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^2} \\ -V_{\max} \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^3} & V_{\max}^2 \sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^4} \end{pmatrix}$$

 Usual continuous design framework: N observations at n distinct concentrations s_i;

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

• at s_j make $N\eta_j$ observations: $\eta_j > 0$, $\sum \eta_j = 1$

Introduction	Example	Initial design	'Bayesian' optimal design	Design criteria	Proper Bayesian Designs
D-optimal .					

Let us seek a D-optimal design - i.e. maximise $det(\mathscr{I})$.

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs

D-optimal

Let us seek a D-optimal design - i.e. maximise $det(\mathscr{I})$. Equivalent to maximising $\Delta = det(\mathscr{M})$

$$\Delta = \left(\sum_{j=1}^n \eta_j \frac{s_j^2}{(K+s_j)^2}\right) \left(\sum_{j=1}^n \eta_j \frac{s_j^2}{(K+s_j)^4}\right) - \left(\sum_{j=1}^n \eta_j \frac{s_j^2}{(K+s_j)^3}\right)^2$$

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs

D-optimal

Let us seek a D-optimal design - i.e. maximise $det(\mathscr{I})$. Equivalent to maximising $\Delta = det(\mathscr{M})$

$$\Delta = \left(\sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^2}\right) \left(\sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^4}\right) - \left(\sum_{j=1}^{n} \eta_j \frac{s_j^2}{(K+s_j)^3}\right)^2$$

Depends on design $\xi = (\mathbf{s}, \eta)$ and K but not V_{max} , nor N nor σ^2 .

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs

D-optimal

Let us seek a D-optimal design - i.e. maximise det(\mathscr{I}). Equivalent to maximising $\Delta = det(\mathscr{M})$

$$\Delta = \left(\sum_{j=1}^n \eta_j \frac{s_j^2}{(K+s_j)^2}\right) \left(\sum_{j=1}^n \eta_j \frac{s_j^2}{(K+s_j)^4}\right) - \left(\sum_{j=1}^n \eta_j \frac{s_j^2}{(K+s_j)^3}\right)^2$$

Depends on design $\xi = (\mathbf{s}, \eta)$ and K but not V_{max} , nor N nor σ^2 .

Locally optimal design

Locally D-optimal design:
$$m = 2$$
, write $y_j = s_j/(K + s_j)$.

$$\Delta = \eta_1 \eta_2 y_1^2 y_2^2 (y_1 - y_2)^2$$

na na

Optimal design $\eta_j = rac{1}{2}$, $y_1 = rac{1}{2}$, $y_2 = 1$ i.e. $s_1 = K$, $s_2 = \infty$

K is unknown so find design by maximising $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs 'Bayesian' optimal design

K is unknown so find design by maximising $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ for prior $\pi(K, V_{\max})$

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs 'Bayesian' optimal design

K is unknown so find design by maximising $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ for prior $\pi(K, V_{\max})$ Objective factors as

$$f(N) + f(\sigma^2) + f(V_{\max}) + f(K,\xi)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Parameter-dependent Optimal Designs

K is unknown so find design by maximising $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ for prior $\pi(K, V_{\max})$ Objective factors as

$$f(N) + f(\sigma^2) + f(V_{\max}) + f(K,\xi)$$

So expectation involving ξ depends only on the K-marginal of π .

Introduction	Example	Initial design	'Bayesian' optimal design	Design criteria	Proper Bayesian Designs
Prior for <i>K</i>					

• Convenient to assume finite support on $[K_L, K_U]$

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

$$\mathbf{0} \ \mathbf{s}_j = K_U t_j$$

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

1
$$s_j = K_U t_j$$

2 $K = K_U \kappa$

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

(1)
$$s_j = K_U t_j$$

(2) $K = K_U \kappa$
(3) $\kappa_L = K_L / K_U < \kappa < 1$

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

1
$$s_j = K_U t_j$$

2 $K = K_U \kappa$
3 $\kappa_L = K_L/K_U < \kappa < 1$
• Assume either

1 κ uniform on its range or

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

•
$$s_j = K_U t_j$$

• $K = K_U \kappa$
• $\kappa_L = K_L/K_U < \kappa < 1$
• Assume either

- n k uniform
 - **1** κ uniform on its range or
 - 2 $\log \kappa$ uniform on its range

- Convenient to assume finite support on $[K_L, K_U]$
- Some parsimony in specification if we scale:

•
$$s_j = K_U t_j$$

• $K = K_U \kappa$
• $\kappa_L = K_L/K_U < \kappa < 1$
• Assume either

- n k uniform
 - **1** κ uniform on its range or
 - 2 $\log \kappa$ uniform on its range

• Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

Two-point 'Bayesian' design

 $\eta_1 = \eta_2 = \frac{1}{2}$

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

$$\eta_1 = \eta_2 = \frac{1}{2}$$
$$t_2 = \infty$$

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

$$\eta_1 = \eta_2 = \frac{1}{2}$$

 $t_2 = \infty$
 t_1 is solution of:

$$\mathbb{E}_{\pi}\left(\frac{\kappa-t_1}{\kappa+t_1}\right)=0$$

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

$$\begin{split} \eta_1 &= \eta_2 = \frac{1}{2} \\ t_2 &= \infty \\ t_1 \text{ is solution of:} \\ & \mathbb{E}_{\pi} \left(\frac{\kappa - t_1}{\kappa + t_1} \right) = 0 \\ \text{So } t_1 &\approx \mathbb{E}(\kappa). \end{split}$$

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

Two-point 'Bayesian' design

 $\eta_1 = \eta_2 = \frac{1}{2}$ $t_2 = \infty$ t_1 is solution of:

$$\mathbb{E}_{\pi}\left(rac{\kappa-t_1}{\kappa+t_1}
ight)=0$$

So $t_1 \approx \mathbb{E}(\kappa)$. Also Jensen's inequality $\Rightarrow t_1 \leq \mathbb{E}(\kappa)$

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

Two-point 'Bayesian' design

 $\eta_1 = \eta_2 = \frac{1}{2}$ $t_2 = \infty$ t_1 is solution of:

$$\mathbb{E}_{\pi}\left(\frac{\kappa-t_1}{\kappa+t_1}\right)=0$$

So $t_1 \approx \mathbb{E}(\kappa)$. Also Jensen's inequality $\Rightarrow t_1 \leq \mathbb{E}(\kappa)$ $\kappa \sim \text{Unif.} \ \kappa_I = 0, \ t_1 \approx 0.397$:

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

Two-point 'Bayesian' design

 $\eta_1 = \eta_2 = \frac{1}{2}$ $t_2 = \infty$ $t_1 \text{ is solution of:}$

$$\mathbb{E}_{\pi}\left(\frac{\kappa-t_1}{\kappa+t_1}\right)=0$$

So $t_1 \approx \mathbb{E}(\kappa)$. Also Jensen's inequality $\Rightarrow t_1 \leq \mathbb{E}(\kappa)$ $\kappa \sim \text{Unif.} \ \kappa_L = 0, \ t_1 \approx 0.397$: for log $\kappa \sim \text{Unif.}, \ t_1 = \sqrt{\kappa_L}$

- Need to maximise $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ numerically
- Can find optimal 'Bayesian' two-point design explicitly.
- A bit of an indulgence but... (also often need a lot prior uncertainty to persuade m > p)

Two-point 'Bayesian' design

 $\eta_1 = \eta_2 = \frac{1}{2}$ $t_2 = \infty$ $t_1 \text{ is solution of:}$

$$\mathbb{E}_{\pi}\left(\frac{\kappa-t_1}{\kappa+t_1}\right)=0$$

So $t_1 \approx \mathbb{E}(\kappa)$. Also Jensen's inequality $\Rightarrow t_1 \leq \mathbb{E}(\kappa)$ $\kappa \sim \text{Unif.} \ \kappa_L = 0, \ t_1 \approx 0.397$: for log $\kappa \sim \text{Unif.}, \ t_1 = \sqrt{\kappa_L}$ Example

Finding Optimal 'Bayesian' Design, m > 2

• Search Numerically, successively $m = 3, 4, \ldots$

Parameter-dependent Optimal Designs

Finding Optimal 'Bayesian' Design, m > 2

- Search Numerically, successively $m = 3, 4, \ldots$
- Search for $t_j \in [0, T]$ and $\eta_j \ge 0$, $\sum \eta_j = 1$

Parameter-dependent Optimal Designs

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Finding Optimal 'Bayesian' Design, m > 2

- Search Numerically, successively $m = 3, 4, \ldots$
- Search for $t_i \in [0, T]$ and $\eta_i \ge 0$, $\sum \eta_i = 1$
- T some arbitrary 'large' scaled concentration herein T = 10

Optimal 'Bayesian' Design

		$\kappa \sim {\sf Unif}$	$\kappa_L = 0$
t	0.02	0.39	10
η	0.02	0.49	0.49

Optimal 'Bayesian' Design

		$\kappa \sim Unif$	$\kappa_L = 0$	
t	0.02	0.39	10	
η	0.02	0.49	0.49	
		$\log \kappa \sim Unif$	$\kappa_L = 10^{-2}$	
t	0.04	0.33	10	
η	0.26	0.30	0.44	

Optimal 'Bayesian' Design

		$\kappa \sim Unif$	$\kappa_L = 0$			
t	0.02	0.39	10			
η	0.02	0.49	0.49			
		$\log \kappa \sim Unif$	$\kappa_L = 10^{-2}$			
t	0.04	0.33	10			
η	0.26	0.30	0.44			
		$\log \kappa \sim Unif$	$\kappa_L = 10^{-5}$			
t	4.4e-5	4.9e-4	3.8e-3	0.029	0.29	10
η	0.12	0.10	0.11	0.14	0.23	0.30

• All designs ascribe some weight (quite a lot usually) to t = T = 10

- All designs ascribe some weight (quite a lot usually) to t = T = 10
- Gives information about $V_{
 m max}$

Parameter-dependent Optimal Designs

- All designs ascribe some weight (quite a lot usually) to t = T = 10
- Gives information about $V_{
 m max}$
- Essential even when interest in focussed on K

- All designs ascribe some weight (quite a lot usually) to t = T = 10
- Gives information about $V_{
 m max}$
- Essential even when interest in focussed on K
- Applies whatever the prior for $V_{
 m max}$

- All designs ascribe some weight (quite a lot usually) to t = T = 10
- Gives information about $V_{
 m max}$
- Essential even when interest in focussed on K
- Applies whatever the prior for $V_{
 m max}$
- So what happens if $\pi(V_{\text{max}})$ is very concentrated?

• The criterion $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ was introduced rather casually - what is its provenance?

- The criterion E_π(log det(𝒴)) was introduced rather casually what is its provenance?
- Formal Bayesian design was introduced by Lindley (1956) using utility functions

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs
Is the criterion right?

- The criterion $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ was introduced rather casually what is its provenance?
- Formal Bayesian design was introduced by Lindley (1956) using utility functions
 - Specific utilities matched to aims of the experiment should be identified

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs
Is the criterion right?

- The criterion $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ was introduced rather casually what is its provenance?
- Formal Bayesian design was introduced by Lindley (1956) using utility functions
 - Specific utilities matched to aims of the experiment should be identified
 - For inference about a parameter $\boldsymbol{\theta}$ Lindley made extensive use of Shannon information

Introduction Example Initial design 'Bayesian' optimal design Design criteria Proper Bayesian Designs
Is the criterion right?

- The criterion $\mathbb{E}_{\pi}(\log \det(\mathscr{I}))$ was introduced rather casually what is its provenance?
- Formal Bayesian design was introduced by Lindley (1956) using utility functions
 - Specific utilities matched to aims of the experiment should be identified
 - For inference about a parameter $\boldsymbol{\theta}$ Lindley made extensive use of Shannon information
 - This work was later formailised by Bernardo (1979)

• Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$

- Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$
- Perform an experiment ξ and observe data ${\bf x}$

Introduction Example Initial design 'Bayesian' optimal design **Design criteria** Proper Bayesian Designs

Summary of Lindley's approach

- Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$
- Perform an experiment ξ and observe data ${\bf x}$
- Information now available about θ is $\mathscr{J}_1 = \mathbb{E}_{\theta | \mathbf{x}, \xi}(\log \pi(\theta | \mathbf{x}, \xi))$
Summary of Lindley's approach

• Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- Perform an experiment ξ and observe data ${\bf x}$
- Information now available about θ is $\mathscr{J}_1 = \mathbb{E}_{\theta | \mathbf{x}, \xi}(\log \pi(\theta | \mathbf{x}, \xi))$
- Choose ξ to maximise $\mathscr{J}_1 \mathscr{J}_0$:

Summary of Lindley's approach

- Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$
- Perform an experiment ξ and observe data ${\bf x}$
- Information now available about θ is $\mathscr{J}_1 = \mathbb{E}_{\theta | \mathbf{x}, \xi} (\log \pi(\theta | \mathbf{x}, \xi))$
- Choose ξ to maximise $\mathscr{J}_1 \mathscr{J}_0$:but this depends on ${\bf x}$

Summary of Lindley's approach

- Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$
- Perform an experiment ξ and observe data ${\bf x}$
- Information now available about θ is $\mathscr{J}_1 = \mathbb{E}_{\theta | \mathbf{x}, \xi} (\log \pi(\theta | \mathbf{x}, \xi))$
- Choose ξ to maximise $\mathscr{J}_1 \mathscr{J}_0\text{:}\mathsf{but}$ this depends on ${\bf x}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

• So choose ξ to maximise $\mathbb{E}_{\mathbf{x}|\xi}(\mathscr{J}_1 - \mathscr{J}_0)$,

Summary of Lindley's approach

- Information about θ in prior $\pi(\theta)$ is $\mathscr{J}_0 = \mathbb{E}_{\theta}(\log \pi(\theta))$
- Perform an experiment ξ and observe data ${\bf x}$
- Information now available about θ is $\mathscr{J}_1 = \mathbb{E}_{\theta | \mathbf{x}, \xi}(\log \pi(\theta | \mathbf{x}, \xi))$
- Choose ξ to maximise $\mathscr{J}_1 \mathscr{J}_0$:but this depends on ${\bf x}$
- So choose ξ to maximise $\mathbb{E}_{\mathbf{x}|\xi}(\mathscr{J}_1 \mathscr{J}_0)$, which amounts to

$$\int \log \pi(\theta | \mathbf{x}, \xi) \pi(\theta, \mathbf{x} | \xi) d\theta d\mathbf{x} = \int \log \pi(\theta | \mathbf{x}, \xi) \pi(\mathbf{x} | \theta, \xi) \pi(\theta) d\theta d\mathbf{x}$$

• Previous integrals are awkward - some approximations useful

Approximating posterior i

- Previous integrals are awkward some approximations useful
- Consider only cases where $\pi(\theta|\mathbf{x},\xi)$ depends on data only through the MLE, $\hat{\theta}$

Approximating posterior i

- Previous integrals are awkward some approximations useful
- Consider only cases where $\pi(\theta|\mathbf{x},\xi)$ depends on data only through the MLE, $\hat{\theta}$
- Commonly used approximation is $\pi(\theta|\mathbf{x},\xi) = N(\hat{\theta},\mathscr{I}(\hat{\theta})^{-1})$

Approximating posterior i

- Previous integrals are awkward some approximations useful
- Consider only cases where $\pi(\theta|\mathbf{x},\xi)$ depends on data only through the MLE, $\hat{\theta}$
- Commonly used approximation is $\pi(\theta|\mathbf{x},\xi) = N(\hat{\theta},\mathscr{I}(\hat{\theta})^{-1})$
- From this we obtain $\mathbb{E}_{\mathbf{x}|\xi}(\mathscr{J}_1 \mathscr{J}_0) \approx \frac{1}{2} \mathbb{E}_{\theta}(\log \det \mathscr{I}(\theta))$

• This approximation for the posterior overlooks the contribution of the prior

- This approximation for the posterior overlooks the contribution of the prior
- An alternative is $\pi(\theta|\mathbf{x},\xi) = N(\hat{\theta}, [\mathscr{I}(\hat{\theta}) + R]^{-1})$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- This approximation for the posterior overlooks the contribution of the prior
- An alternative is $\pi(\theta|\mathbf{x},\xi) = N(\hat{\theta}, [\mathscr{I}(\hat{\theta}) + R]^{-1})$
- *R* is the prior precision matrix

- This approximation for the posterior overlooks the contribution of the prior
- An alternative is $\pi(\theta | \mathbf{x}, \xi) = N(\hat{\theta}, [\mathscr{I}(\hat{\theta}) + R]^{-1})$
- R is the prior precision matrix
- This leads to $\mathbb{E}_{\mathbf{x}|\mathcal{E}}(\mathscr{J}_1 \mathscr{J}_0) \approx \frac{1}{2} \mathbb{E}_{\theta}[\log \det(\mathscr{I}(\theta) + R)]$

- This approximation for the posterior overlooks the contribution of the prior
- An alternative is $\pi(\theta | \mathbf{x}, \xi) = N(\hat{\theta}, [\mathscr{I}(\hat{\theta}) + R]^{-1})$
- R is the prior precision matrix
- This leads to $\mathbb{E}_{\mathbf{x}|\mathcal{E}}(\mathscr{J}_1 \mathscr{J}_0) \approx \frac{1}{2} \mathbb{E}_{\theta}[\log \det(\mathscr{I}(\theta) + R)]$

Application to Michaelis Menten example i

• The criterion is now:

 $\mathbb{E}_{\theta}[\log \det(\mathscr{I}(\theta) + R)] = \mathbb{E}_{\theta}[\log \det(N\sigma^{-2}\mathscr{M} + R)]$

Parameter-dependent Optimal Designs

Application to Michaelis Menten example i

• The criterion is now:

$$\mathbb{E}_{ heta}[\log \det(\mathscr{I}(heta)+R)] = \mathbb{E}_{ heta}[\log \det(N\sigma^{-2}\mathscr{M}+R)]$$

• Now N and σ^2 do not 'scale out' of the problem

Application to Michaelis Menten example i

• Write
$$A_u = \sum \eta_j s_j^2 / (K + s_j)^{2+u}$$
 for $u = 0, 1, 2$, so

Parameter-dependent Optimal Designs

Application to Michaelis Menten example i

'Bayesian' optimal design

Design criteria

Proper Bayesian Designs

• Write
$$A_u = \sum \eta_j s_j^2 / (K + s_j)^{2+u}$$
 for $u = 0, 1, 2$, so
 $\mathscr{M} = \begin{pmatrix} A_0 \\ -V_{\max}A_1 & V_{\max}^2A_2 \end{pmatrix}$

• Also we have

Example

Initial design

Introduction

$$R = \begin{pmatrix} \operatorname{var}_{\pi}(V_{\max})^{-1} \\ 0 & \operatorname{var}_{\pi}(K)^{-1} \end{pmatrix} = \begin{pmatrix} R_V \\ 0 & K_U^{-2}R_{\kappa} \end{pmatrix}$$

Application to Michaelis Menten example ii

Transforming to κ and t_j and evaluating the determinant, the part that determines the design is:

Application to Michaelis Menten example ii

Transforming to κ and t_j and evaluating the determinant, the part that determines the design is:

$$\log\left[\left(\frac{R_V\sigma^2}{N} + A_0\right)\left(\frac{R_\kappa\sigma^2}{NV_{\max}^2} + A_2\right) - A_1^2\right]$$

whereas before it was simply

$$\log\left[A_0A_2-A_1^2\right]$$

イロト イヨト イヨト イヨト

= 990

Parameter-dependent Optimal Designs

 \bullet Assume σ^2 is known - bit of nonsense but allows illustration to proceed

- \bullet Assume σ^2 is known bit of nonsense but allows illustration to proceed
- Assume prior variance of V_{max} is σ_V^2 and set $\lambda = \sigma_V^2 / \sigma^2$.

- \bullet Assume σ^2 is known bit of nonsense but allows illustration to proceed
- Assume prior variance of V_{max} is σ_V^2 and set $\lambda = \sigma_V^2 / \sigma^2$.

• Write
$$ilde{V}=V_{
m max}/\sigma_V$$

Some simplifications

- Assume σ^2 is known bit of nonsense but allows illustration to proceed
- Assume prior variance of V_{max} is σ_V^2 and set $\lambda = \sigma_V^2 / \sigma^2$.
- Write $\tilde{V} = V_{\rm max} / \sigma_V$
- Need to maximise

$$\mathbb{E}_{\kappa,\tilde{V}}\log\left[\left(\frac{1}{N\lambda}+A_0\right)\left(\frac{1}{N\lambda\tilde{V}^2\mathsf{var}(\kappa)}+A_2\right)-A_1^2\right]$$

with prior for κ as before and for $\tilde{V} \sim N(V_0, 1)$

λ	t	η		
	0.04	0.27	0.04	0.26
10	0.33	0.31	0.33	0.30
	10	0.42	10	0.44

λ	t	η		
	0.04	0.27	0.04	0.26
10	0.33	0.31	0.33	0.30
	10	0.42	10	0.44
	0.04	0.33		
1	0.34	0.37		
	10	0.30		

λ	t	η		
	0.04	0.27	0.04	0.26
10	0.33	0.31	0.33	0.30
	10	0.42	10	0.44
	0.04	0.33		
1	0.34	0.37		
	10	0.30		
	0.04	0.48		
0.1	5.0	0.52		

・ロ> < 団> < 豆> < 豆> < 豆> < 豆
 ・<
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Example	Initial design	'Bayesian' optimal design	Design criteria	Proper Bayesian Designs

Observations

◆□> ◆□> ◆目> ◆目> →目 − ○へ⊙

Parameter-dependent Optimal Designs

• Effect of prior is correctly accommodated provided correct objective function is used.

- Effect of prior is correctly accommodated provided correct objective function is used.
- Need to be careful with what we mean by 'correct'

- Effect of prior is correctly accommodated provided correct objective function is used.
- Need to be careful with what we mean by 'correct'
- Role of prior, at least strictly, is to allow *your* analysis to update *your* beliefs

- Effect of prior is correctly accommodated provided correct objective function is used.
- Need to be careful with what we mean by 'correct'
- Role of prior, at least strictly, is to allow *your* analysis to update *your* beliefs
- For design, you are generating data that others may wish to use.

- Effect of prior is correctly accommodated provided correct objective function is used.
- Need to be careful with what we mean by 'correct'
- Role of prior, at least strictly, is to allow *your* analysis to update *your* beliefs
- For design, you are generating data that others may wish to use. Inappropriately prescriptive priors could lead to data being collected which is of narrow use.

- Effect of prior is correctly accommodated provided correct objective function is used.
- Need to be careful with what we mean by 'correct'
- Role of prior, at least strictly, is to allow *your* analysis to update *your* beliefs
- For design, you are generating data that others may wish to use. Inappropriately prescriptive priors could lead to data being collected which is of narrow use.
- The issue of a prior for design and a prior for analysis is discussed in Cox and Reid *The Theory of the Design of Experiments*

- Bernardo JM (1979) Expected information as expected utility. Annals of Statistics, 7, 686-690.
- Challoner K and Verdinelli I (1995) Bayesian experimental design: a review, Statistical Science, 10, 273-304.
- Cox DR & Reid N (2000) The Theory of the Design of Experiments Chapman and Hall/CRC, Boca Raton.
- Lindley DV (1956) On a measure of the information provided by an experiment, *Annals of Mathematical Statistics*, 27, 986-1005.
- Matthews JNS & Allcock GC (2004) Optimal designs for Michaelis Menten kinetic studies. *Statistics in Medicine*, 23, 477-91.