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Introduction

Experiments are performed to learn about some system

Designing such experiments requires knowledge of the system

This is an inevitable tension in experimental design

Satisfactory resolution requires judgment and prior knowledge

Bayesian ideas are useful but need not entail a Bayesian
analysis

This talk illustrates some aspects of this using
Michaelis-Menten experiments
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where
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Main example - Michaelis Menten studies

Rate of reaction in enzyme kinetics determined by the Michaelis

Menten equation.

v =
Vmaxs

K + s

where

s is the substrate concentration, v the rate of reaction

K is the Michaelis parameter;Vmax the maximum rate of
reaction

interest focusses on K and other quantities, such as Vmax/K
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Statistical model

Conduct experiment to estimate parameters

Observe rate vi at concentrations si , i = 1, . . . ,N

Assume model

vi =
Vmaxsi

K + si
+ ǫi

with the ǫi being independent, N(0, σ2)

Not wholly realistic but will serve for present purposes.

Substantial history to fitting this model exists.
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Design Problem

How should the substrate concentrations be chosen?

Depends on aim of experiment

Suppose we wish to estimate K as precisely as possible.
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Expected information matrix can be written as I = Nσ−2M ,
where

M =





∑n
j=1 ηj

s2
j

(K+sj )2

−Vmax

∑n
j=1 ηj

s2
j

(K+sj )3
V 2

max
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j=1 ηj

s2
j
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


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Expected Information

Expected information matrix can be written as I = Nσ−2M ,
where

M =





∑n
j=1 ηj

s2
j

(K+sj )2

−Vmax

∑n
j=1 ηj

s2
j

(K+sj )3
V 2

max

∑n
j=1 ηj

s2
j

(K+sj )4





Usual continuous design framework: N observations at n

distinct concentrations sj ;

at sj make Nηj observations: ηj > 0,
∑

ηj = 1
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D-optimal

Let us seek a D-optimal design - i.e. maximise det(I ).
Equivalent to maximising ∆ = det(M )

∆ =





n
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ηj
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(K + sj)2




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
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Depends on design ξ = (s, η) and K but not Vmax, nor N nor σ2.
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Equivalent to maximising ∆ = det(M )

∆ =




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(K + sj)2


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
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
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
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(K + sj)3


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Depends on design ξ = (s, η) and K but not Vmax, nor N nor σ2.

Locally optimal design

Locally D-optimal design: m = 2, write yj = sj/(K + sj).

∆ = η1η2y
2
1 y2

2 (y1 − y2)
2

Optimal design ηj = 1
2 , y1 = 1

2 , y2 = 1 i.e. s1 = K , s2 = ∞
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’Bayesian’ optimal design

K is unknown so find design by maximising Eπ(log det(I ))
for prior π(K , Vmax)
Objective factors as

f (N) + f (σ2) + f (Vmax) + f (K , ξ)
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’Bayesian’ optimal design

K is unknown so find design by maximising Eπ(log det(I ))
for prior π(K , Vmax)
Objective factors as

f (N) + f (σ2) + f (Vmax) + f (K , ξ)

So expectation involving ξ depends only on the K -marginal of π.
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Optimal ’Bayesian’ design, m = 2

Need to maximise Eπ(log det(I )) numerically

Can find optimal ’Bayesian’ two-point design explicitly.

A bit of an indulgence but... (also often need a lot prior
uncertainty to persuade m > p)

Two-point ’Bayesian’ design

η1 = η2 = 1
2

t2 = ∞
t1 is solution of:

Eπ

(

κ − t1

κ + t1

)

= 0

So t1 ≈ E(κ).
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Optimal ’Bayesian’ design, m = 2

Need to maximise Eπ(log det(I )) numerically

Can find optimal ’Bayesian’ two-point design explicitly.

A bit of an indulgence but... (also often need a lot prior
uncertainty to persuade m > p)

Two-point ’Bayesian’ design

η1 = η2 = 1
2

t2 = ∞
t1 is solution of:

Eπ

(

κ − t1

κ + t1

)

= 0

So t1 ≈ E(κ). Also Jensen’s inequality ⇒ t1 ≤ E(κ)
κ ∼Unif. κL = 0, t1 ≈ 0.397:
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Optimal ’Bayesian’ design, m = 2

Need to maximise Eπ(log det(I )) numerically

Can find optimal ’Bayesian’ two-point design explicitly.

A bit of an indulgence but... (also often need a lot prior
uncertainty to persuade m > p)

Two-point ’Bayesian’ design

η1 = η2 = 1
2

t2 = ∞
t1 is solution of:

Eπ

(

κ − t1

κ + t1

)

= 0

So t1 ≈ E(κ). Also Jensen’s inequality ⇒ t1 ≤ E(κ)
κ ∼Unif. κL = 0, t1 ≈ 0.397: for log κ ∼Unif., t1 =

√
κL
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Finding Optimal ’Bayesian’ Design, m > 2

Search Numerically, successively m = 3, 4, . . .

Search for tj ∈ [0, T ] and ηj ≥ 0,
∑

ηj = 1

T some arbitrary ’large’ scaled concentration - herein T = 10
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Optimal ’Bayesian’ Design

κ ∼ Unif κL = 0

t 0.02 0.39 10
η 0.02 0.49 0.49
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Optimal ’Bayesian’ Design

κ ∼ Unif κL = 0

t 0.02 0.39 10
η 0.02 0.49 0.49

log κ ∼ Unif κL = 10−2

t 0.04 0.33 10
η 0.26 0.30 0.44
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Optimal ’Bayesian’ Design

κ ∼ Unif κL = 0

t 0.02 0.39 10
η 0.02 0.49 0.49

log κ ∼ Unif κL = 10−2

t 0.04 0.33 10
η 0.26 0.30 0.44

log κ ∼ Unif κL = 10−5

t 4.4e-5 4.9e-4 3.8e-3 0.029 0.29 10
η 0.12 0.10 0.11 0.14 0.23 0.30
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The point at T

All designs ascribe some weight (quite a lot usually) to
t = T = 10
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The point at T

All designs ascribe some weight (quite a lot usually) to
t = T = 10

Gives information about Vmax

Essential even when interest in focussed on K

Applies whatever the prior for Vmax
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The point at T

All designs ascribe some weight (quite a lot usually) to
t = T = 10

Gives information about Vmax

Essential even when interest in focussed on K

Applies whatever the prior for Vmax

So what happens if π(Vmax) is very concentrated?
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Is the criterion right?

The criterion Eπ(log det(I )) was introduced rather casually -
what is its provenance?
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using utility functions

Specific utilities matched to aims of the experiment should be
identified
For inference about a parameter θ Lindley made extensive use
of Shannon information
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Is the criterion right?

The criterion Eπ(log det(I )) was introduced rather casually -
what is its provenance?

Formal Bayesian design was introduced by Lindley (1956)
using utility functions

Specific utilities matched to aims of the experiment should be
identified
For inference about a parameter θ Lindley made extensive use
of Shannon information
This work was later formailised by Bernardo (1979)
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Summary of Lindley’s approach

Information about θ in prior π(θ) is J0 = Eθ(log π(θ))
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Perform an experiment ξ and observe data x

Information now available about θ is
J1 = Eθ|x,ξ(log π(θ|x, ξ))
Choose ξ to maximise J1 − J0:but this depends on x
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Summary of Lindley’s approach

Information about θ in prior π(θ) is J0 = Eθ(log π(θ))

Perform an experiment ξ and observe data x

Information now available about θ is
J1 = Eθ|x,ξ(log π(θ|x, ξ))
Choose ξ to maximise J1 − J0:but this depends on x

So choose ξ to maximise Ex|ξ(J1 − J0),
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Summary of Lindley’s approach

Information about θ in prior π(θ) is J0 = Eθ(log π(θ))

Perform an experiment ξ and observe data x

Information now available about θ is
J1 = Eθ|x,ξ(log π(θ|x, ξ))
Choose ξ to maximise J1 − J0:but this depends on x

So choose ξ to maximise Ex|ξ(J1 − J0), which amounts to

∫

log π(θ|x, ξ)π(θ, x|ξ)dθdx =

∫

log π(θ|x, ξ)π(x|θ, ξ)π(θ)dθdx
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Previous integrals are awkward - some approximations useful
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through the MLE, θ̂
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Approximating posterior i

Previous integrals are awkward - some approximations useful

Consider only cases where π(θ|x, ξ) depends on data only
through the MLE, θ̂

Commonly used approximation is π(θ|x, ξ) = N(θ̂, I (θ̂)−1)
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Approximating posterior i

Previous integrals are awkward - some approximations useful

Consider only cases where π(θ|x, ξ) depends on data only
through the MLE, θ̂

Commonly used approximation is π(θ|x, ξ) = N(θ̂, I (θ̂)−1)

From this we obtain Ex|ξ(J1 − J0) ≈ 1
2Eθ(log det I (θ))
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Approximating posterior ii

This approximation for the posterior overlooks the
contribution of the prior
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Approximating posterior ii

This approximation for the posterior overlooks the
contribution of the prior

An alternative is π(θ|x, ξ) = N(θ̂, [I (θ̂) + R]−1)
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Approximating posterior ii

This approximation for the posterior overlooks the
contribution of the prior

An alternative is π(θ|x, ξ) = N(θ̂, [I (θ̂) + R]−1)

R is the prior precision matrix
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Approximating posterior ii

This approximation for the posterior overlooks the
contribution of the prior

An alternative is π(θ|x, ξ) = N(θ̂, [I (θ̂) + R]−1)

R is the prior precision matrix

This leads to Ex|ξ(J1 − J0) ≈ 1
2Eθ[log det(I (θ) + R)]
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Approximating posterior ii

This approximation for the posterior overlooks the
contribution of the prior

An alternative is π(θ|x, ξ) = N(θ̂, [I (θ̂) + R]−1)

R is the prior precision matrix

This leads to Ex|ξ(J1 − J0) ≈ 1
2Eθ[log det(I (θ) + R)]
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Application to Michaelis Menten example i

The criterion is now:

Eθ[log det(I (θ) + R)] = Eθ[log det(Nσ−2M + R)]
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Application to Michaelis Menten example i

The criterion is now:

Eθ[log det(I (θ) + R)] = Eθ[log det(Nσ−2M + R)]

Now N and σ2 do not ’scale out’ of the problem
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Application to Michaelis Menten example i

Write Au =
∑

ηjs
2
j /(K + sj)

2+u for u = 0, 1, 2, so

Parameter-dependent Optimal Designs



Introduction Example Initial design ’Bayesian’ optimal design Design criteria Proper Bayesian Designs

Application to Michaelis Menten example i

Write Au =
∑

ηjs
2
j /(K + sj)

2+u for u = 0, 1, 2, so

M =

(

A0

−VmaxA1 V 2
max

A2

)

Also we have

R =

(

varπ(Vmax)
−1

0 varπ(K )−1

)

=

(

RV

0 K−2
U Rκ

)
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Application to Michaelis Menten example ii

Transforming to κ and tj and evaluating the determinant, the part
that determines the design is:
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Application to Michaelis Menten example ii

Transforming to κ and tj and evaluating the determinant, the part
that determines the design is:

log

[(

RV σ2

N
+ A0

)(

Rκσ2

NV 2
max

+ A2

)

− A2
1

]

whereas before it was simply

log
[

A0A2 − A2
1

]
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Some simplifications

Assume σ2 is known - bit of nonsense but allows illustration
to proceed
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Some simplifications

Assume σ2 is known - bit of nonsense but allows illustration
to proceed

Assume prior variance of Vmax is σ2
V and set λ = σ2

V /σ2.
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Some simplifications

Assume σ2 is known - bit of nonsense but allows illustration
to proceed

Assume prior variance of Vmax is σ2
V and set λ = σ2

V /σ2.

Write Ṽ = Vmax/σV
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Some simplifications

Assume σ2 is known - bit of nonsense but allows illustration
to proceed

Assume prior variance of Vmax is σ2
V and set λ = σ2

V /σ2.

Write Ṽ = Vmax/σV

Need to maximise

E
κ,Ṽ

log

[(

1

Nλ
+ A0

)(

1

NλṼ 2var(κ)
+ A2

)

− A2
1

]

with prior for κ as before and for Ṽ ∼ N(V0, 1)
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Some examples

Take V0 = 10 and N = 5 and assume log κ is uniform and
κL = 0.01.
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Some examples

Take V0 = 10 and N = 5 and assume log κ is uniform and
κL = 0.01.

λ t η

0.04 0.27 0.04 0.26

10 0.33 0.31 0.33 0.30

10 0.42 10 0.44
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Some examples

Take V0 = 10 and N = 5 and assume log κ is uniform and
κL = 0.01.

λ t η

0.04 0.27 0.04 0.26

10 0.33 0.31 0.33 0.30

10 0.42 10 0.44

0.04 0.33
1 0.34 0.37

10 0.30
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Some examples

Take V0 = 10 and N = 5 and assume log κ is uniform and
κL = 0.01.

λ t η

0.04 0.27 0.04 0.26

10 0.33 0.31 0.33 0.30

10 0.42 10 0.44

0.04 0.33
1 0.34 0.37

10 0.30

0.04 0.48
0.1 5.0 0.52
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Observations
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Effect of prior is correctly accommodated provided correct
objective function is used.
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Observations

Effect of prior is correctly accommodated provided correct
objective function is used.

Need to be careful with what we mean by ’correct’

Role of prior, at least strictly, is to allow your analysis to
update your beliefs

For design, you are generating data that others may wish to
use.
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Observations

Effect of prior is correctly accommodated provided correct
objective function is used.

Need to be careful with what we mean by ’correct’

Role of prior, at least strictly, is to allow your analysis to
update your beliefs

For design, you are generating data that others may wish to
use. Inappropriately prescriptive priors could lead to data
being collected which is of narrow use.
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Observations

Effect of prior is correctly accommodated provided correct
objective function is used.

Need to be careful with what we mean by ’correct’

Role of prior, at least strictly, is to allow your analysis to
update your beliefs

For design, you are generating data that others may wish to
use. Inappropriately prescriptive priors could lead to data
being collected which is of narrow use.

The issue of a prior for design and a prior for analysis is
discussed in Cox and Reid The Theory of the Design of

Experiments
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