Tailor-made Crossover Trials:
the clots in lines study

John Matthews, Malcolm Coulthard and Nicky Gittins
University of Newcastle upon Tyne
Two themes

• Study is to compare two solutions for preventing clots forming in indwelling lines
 – not many children have haemodialysis (only 6 to 9 in Newcastle)
 – multicentre trial probably not practical
 – use crossover design with many periods?

• Models for multi-period crossover trials have been criticised
Example

- Patients generally dialysed Mon, Wed, Fri
- Some dialysed Mon and Fri only
- Patients have an indwelling line for venous access
- Between sessions clots form in the line and these must be removed before dialysis proceeds
- Aim to prevent this by inoculation of heparin
- If a clot forms, clinicians use a ‘clot-busting’ drug called Alteplase®
Study Question

• Question is whether it would be better to use Alteplase in place of heparin as a routine ‘lock’?

• At start of each session the nurses withdraw the fluid in the line and can recover the clot by passing fluid through a gauze swab. So the weight of clot is the outcome variable.
Study Design

- Not many patients available: only 8 in Newcastle
- Other centres have different protocols
- In any case, we can observe the patients we do have many times – quite a captive group
- Propensity to form clots likely to vary between patients
- Crossover design seems to be appropriate.
- What design?
Multi-period Crossover Trials

• Many designs around - largely stemming from Latin squares
• For two treatments there have been many papers looking at optimal designs (Kershner & Federer 1981; Matthews 1987, 1990; Kunert 1991; Kushner; 1997.)
• All results based around a model, different papers consider different forms of model
What Model?

- Model is usually for continuous outcome
- Often of the form
 \[y_{ij} = \xi_i + \pi_j + \tau_{d(i,j)} + \gamma_{d(i,j-1)} + \epsilon_{ij} \]

- Here \(\xi \) is a patient effect, \(\pi \) a period effect, \(\tau \) a direct treatment effect and \(\gamma \) a carryover treatment effect.
- All sorts of variants possible
• Patient effects – random or fixed?
• Error term – independent within patient or not?
• Period effect – cows in sheds
• Carryover effect – is it plausible?

• Can be criticised on general grounds
• E.g. Senn criticises ‘mathematical carryover’
• Much of Senn’s criticism stems from a pharmacological view of the processes underlying these trials
• Standard methods are too generic
• Could interpret criticism as saying that usual approach makes too much use of ‘off the shelf’ models.
Model for Dialysis example

• One way forward is to try to base design on a model that is more closely based on the specific application.

• However, there is unlikely to be any work on optimal designs, or even decent ones, for the new model.

• Might be able to use existing designs, but these may be unnecessarily restrictive.
Model for Example

• Suppose weight of clot for patient i in period j is y_{ij}.

• Model is:
 $$y_{ij} = \xi_i + \pi(i,j) + \tau d(i,j) + \varepsilon_{ij}$$

• ξ is a patient term – there is likely to inter-patient variation in clot-forming propensity.
 (?allow a trend – no, trial too short and patients fairly stable wrt to clot formation)
• Treatment term, $d(i,j),=1$ (heparin) and -1 for Alteplase.
• No carryover term needed: lines flushed through very thoroughly by dialysis session, so no residual of clot or of ‘lock’ solution by end of session.
• A realistic ‘period’ term is more complicated
• Residuals – might be correlated?
Period effect

- Let set of patients dialysed thrice weekly be D_3 and twice weekly be D_2. These sets have sizes N_3 and N_2 respectively.

- $\pi(i,j)$
 - $= \pi_1$ if $i \in D_3$ and j is a Monday
 - $= \pi_2$ if $i \in D_3$ and j is a Wednesday
 - $= \pi_3$ if $i \in D_3$ and j is a Friday

- $\pi(i,j)$
 - $= \pi_4$ if $i \in D_2$ and j is a Monday
 - $= \pi_3$ if $i \in D_2$ and j is a Friday

- Weight of clot depends on inter-dialytic period and typical activities.
Optimal Designs

• Suppose trial lasts w weeks
• We will obtain $m=3wN_3+2wN_2$ observations
• Randomise patient i to a sequence of treatments – which sequences?
• Determined by design matrix
 \[X = (A \mid B_1 \mid B_2) \]
 A is Rx, B_1 ‘period’, B_2 patient, matrices
• Information for \(\tau \) in full model is

\[
s^{-2}A^T \mathcal{\rho}^\perp([B_1 \mid B_2])A
\]

where \(\mathcal{\rho}^\perp(M) = I - \mathcal{\rho}(M) \) and \(\mathcal{\rho}(M) = M(M^TM)M^T \)

• Information in model omitting patient effect is

\[
s^{-2}A^T \mathcal{\rho}^\perp(B_1)A
\]

• Easier to handle as dimension of \(B_1 \) is \(m \times 4 \) whereas dimension of \(B_2 \) is \(m \times (N_1 + N_2) \).
Deriving optimal designs

- (see Stufken, 1996 for a good review)
- Kunert (1983) used the identity

\[\mathcal{S}^\perp([B_1 \mid B_2]) = \mathcal{S}^\perp(B_1) - \mathcal{S}(\mathcal{S}^\perp(B_1)B_2) \]

- So \(A^T \mathcal{S}^\perp([B_1 \mid B_2])A \leq A^T \mathcal{S}^\perp(B_1)A \)

 with equality if \(A^T \mathcal{S}(\mathcal{S}^\perp(B_1)B_2)A = 0 \)

 \[\Leftrightarrow A^TB_2 = A^T \mathcal{S}(B_1)B_2 \]
• So, we need to find a design which maximises

\[A^T \varphi^\perp(B_1)A \] (information under reduced model)

and which also obeys

\[A^TB_2 = A^T \varphi(B_1)B_2 \] (essentially an orthogonality constraint)

• Need to consider each of the red quantities in turn, but first some notation
• $q_W = q_{Wh} - q_{Wa}$
 q_{Wh} (q_{Wa}) is number of administrations of heparin (Alteplase) on a Wednesday

• $q_F = q_{Fh} - q_{Fa}$
 As above but counting Fridays not Wednesdays

• $q_{M3} = q_{M3h} - q_{M3a}$
 As above but counting Mondays and only for the thrice-weekly patients

• $q_{M2} = q_{M2h} - q_{M2a}$
 As above but counting Mondays and only for the twice-weekly patients
- \(\sigma^{-2} A^\top \delta \ominus (B_1) A = \sigma^{-2} [m - q^\top R q] \)
 where \(q \) is the 4 x 1 vector of the \(q_s \) and
 \(R = w^1 \text{diag}(N_3, N_3+N_2, N_3, N_2)^{-1} \)

- \(A^\top B_2 \) is 1 x (\(N_2+N_3 \)) vector: \(i^{th} \) element is difference between number of times patient \(i \) receives heparin and Alteplase

- \(A^\top \delta(B_1)B_2 \) 1 x (\(N_2+N_3 \)) vector comprises two quantities: \(q^\top R P_2 \) and \(q^\top R P_3 \) for the twice and thrice weekly patients respectively.

- So, if we arrange for \(q_f = q_w = q_{M3} = q_{M2} = 0 \), and each patient to receive heparin and Alteplase the same number of times, we have an optimal design.
Sample Size Calculation

- For an optimal design \(\text{var}(\tau) = \sigma^2 / (3wN_3 + 2wN_2) \)

 provided errors are independent
- Some pilot data available, giving estimate of within-patient SD of 22 mg
- Clinically important difference, \(2\tau_0 = 10\text{mg} \)
- For 80% power at 5% level \((\tau_0 / \sigma) \sqrt{m} = 1.96 + 0.84 = 2.8 \)
- At planning stage, \(N_3=4, \ N_2=2 \), so \(m=16w \), so \(w \approx 10 \text{ weeks} \).
Construct design

- Choose a 3-sequence of As and Hs for each week
- Dual pair is sequence with As and Hs interchanged
- Randomize appropriately – pilot data suggests you might be grateful to be able to use a randomization test when the day comes
Details for thrice weekly patient

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
</table>

Apply random permutation, e.g.

| C | B | d | A | b | E | c | D | a | e |

- Allocate $X \in \{\text{AAA, AAH, AHH, AHA}\}$ to a with probabilities 0.1, 0.2, 0.2, 0.5 respectively, with dual pair being allocated to A.
- Repeat for b, c, d and e.
- Automatically ensures optimal design as over pairs of weeks A and a, B and b etc. number of allocations to A and H are balanced in total and over days of week.
Why the unequal probabilities?

• What if the error term is correlated?

• No detailed analysis but if there is no carryover in model, Matthews (1987) showed that a design with rapidly altering allocations was optimal for +ve autocorrelation

• Assuming +ve autocorrelation most likely form of dependence, want a tendency to have alternating treatments

• But do want trial to be sufficiently flexible to allow a randomization analysis, so allow sequences other than AHA
General remarks

• Attempting a 30 period crossover
• Reasonably captive population
• Some go for transplant
• Some switch from twice to thrice weekly (& also vice versa)
• Also, nine patients have been entered
• With more conventional period effect, adding extra patients, or patients switching cycles could be awkward
• Within-patient elimination of ‘period’ effects allows easy, randomization-based method of construction
• Refs at www.mas.ncl.ac.uk/~njnsm/talks/titles.htm