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SUMMARY. Many deoxyribonucleic acid (DNA) sequences display compositional heterogeneity in the form
of segments of similar structure. This article describes a Bayesian method that identifies such segments by
using a Markov chain governed by a hidden Markov model. Markov chain Monte Carlo (MCMC) techniques
are employed to compute all posterior quantities of interest and, in particular, allow inferences to be made
regarding the number of segment types and the order of Markov dependence in the DNA sequence. The
method is applied to the segmentation of the bacteriophage lambda genome, a common benchmark sequence
used for the comparison of statistical segmentation algorithms.
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1. Introduction

Vast amounts of DNA sequence data are currently available
for analysis, primarily as a result of large-scale sequencing
projects such as the Human Genome Project. Consequently,
there is an increasing need to develop efficient computational
and statistical tools to analyze this profusion of biological
data. In this article, we focus on the fundamental problem
of analyzing compositional variability in genome sequences,
that is, the complete DNA sequence of an organism. Many
genome sequences display heterogeneity in base composition
in the form of domains or segments of similar structure; Li
(2004) provides an extensive up-to-date bibliography.
Several statistical techniques have been developed in an at-
tempt to identify these homogeneous DNA segments, many of
which are reviewed in Braun and Miiller (1998). Other recent
work includes the Bayesian approach of Liu and Lawrence
(1999) and the quasi-likelihood method of Braun, Braun, and
Miiller (2000), both of which use a multiple change-point
framework with the change points delimiting the segments.
An alternative approach, introduced by Churchill (1989), de-
scribes the DNA sequence structure by a hidden Markov
model (HMM), which, in essence, is a mixture model with
Markov dependent component indicators; see MacDonald and
Zucchini (1997) for an introduction. HMMs have become a
popular choice for the analysis of DNA sequences and have
been used subsequently by Muri (1997), Boys, Henderson, and
Wilkinson (2000), and Nicolas et al. (2002), among others. We
follow these papers by using an HMM as our basic model. One
reason for the popularity of HMMs is their flexibility in al-
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lowing noncontiguous parts of the sequence to be described
by the same underlying structure. This can lead to more real-
istic biological interpretations when compared to the results
of standard change-point analyses.

Typically, HMMs assume that the observed process—here
the DNA sequence—evolves independently given the unob-
served Markov chain which locates the position of the seg-
ments. In this article, however, we allow the observed process
to evolve as a gth-order Markov chain, conditional on the hid-
den Markov chain. A choice of ¢ = 0 corresponds to the usual
independence assumption, whereas a choice of ¢ > 0 allows us
to account for the additional short-range structure that is of-
ten evident in DNA sequences; such a model has been used by
Churchill (1992), Boys et al. (2000), and Nicolas et al. (2002).

In general, both the order of dependence ¢ and the number
of hidden states which define the segment structure r will be
unknown and therefore it will be necessary to make inferences
about them from the data. Throughout the article, we adopt a
Bayesian approach to inference which allows us to take full ac-
count of the uncertainty in the locations and the composition
of the various segments. It also permits the incorporation of
prior knowledge about these unknowns and provides a coher-
ent framework for model comparison/selection. The complex
structure of the model precludes a fully analytic treatment
and we therefore use transdimensional MCMC (Green, 2003)
to explore both the parameter and model space.

The remainder of the article is organized as follows. The
model is presented in Section 2 together with details of the
prior-to-posterior analysis. Section 3 contains a description
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of the MCMC algorithm and is followed by an analysis of
the bacteriophage lambda genome in Section 4. The article
concludes with some brief remarks in Section 5.

2. The Bayesian Model

DNA sequence data can be represented by a string of let-
ters y = (y1, Y2,...,Y,) from the four-letter alphabet ) =
{4,C,G, T}. The letters represent the four nucleic acids, or
bases, adenine, cytosine, guanine, and thymine, respectively.
However, for reasons of generality and simplicity of notation,
we denote the state space by YV = {1,2,...,b}, and hence we
code A,C,G, and T as 1, 2, 3, and 4 when referring to the DNA
sequence.

The observed sequence y is assumed to be a realization of
a hidden Markov model with observation equations

Pr(Y; | Yii-1, 1)
=Pr(Yy =7 |Yig =Yg, Yie1 = ys-1, S = k)
=, ieY,={1,2,...,b%), jeV,
keS.-={1,2,...,r},

where i = Z(y,t,q,b)
equations

Pr(St ‘ Sl:t—l) = Pr(St =7 ‘ Siq = Z) = )‘ij’

14+ >0 (ye—e — )b, and state

i,J € Sr,

for t = quax + 1, quax + 2,...,n. We take this range of val-
ues for ¢ to remove the need to specify marginal models that
describe the evolution at the beginning of the sequence. Also,
throughout this article we use the notation x;; to denote the
sequence T, Titi,.-.,T;.

The above specification indicates that the observed pro-
cess Y = (Y, Ys,...,Y,) evolves as a gth-order Markov
chain, conditional on the hidden process S = (S, Sa,...,S,).
Also, the unobserved process S follows a first-order homo-
geneous r-state Markov chain, with transition matrix A =
(Ay), where each row A; € ./, the r-dimensional simplex.
For the sake of notational conciseness, we work with the re-
duced form of the gth-order transition matrix which, for each
hidden state or “segment type” k, is a b? x b matrix P*)
consisting of elements pgf). Each reshaped matrix P*) has
rows pik) € 4 and we denote the collection of these tran-
sition matrices by P = {PM, P? . . PM} Also, we take
reR={12,...,rmx} and g€ Q@ ={0,1,..., ¢ua}. Finally,
we denote the set of unknown hidden state and base transition
matrices by 6 = {A, P} e /" x .{"bq, where the space ./
denotes the product of z simplices, each one r-dimensional.

2.1 Prior Distributions

The aim of the analysis is to make inferences about the un-
known quantities in the model: the order of dependence ¢, the
number of segment types r, the model transition parameters
0, and the sequence of segment types or “segmentation” s. We
begin by quantifying our uncertainty about these unknowns
(before observing the data) through a prior distribution which
takes the form

w(r,q,0) = w(r)n(q)m(0]|r,q) = w(r)w(q)m(A|r)x(P]|r,q)

and assumes, inter alia, that r and ¢ are independent a priori.
Specifically, we adopt independent truncated Poisson prior
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distributions for r and ¢, namely

r ~ Po(a,;R) and g ~ Po(ay; Q), (1)

where a, > 0 and a, > 0 are fixed hyperparameters, and X ~
Po(a; X) denotes a random variable with probability function
Pr(X =i) xat/il,i € X.

The components of @ are all defined on simplices and there
are therefore many choices of prior distribution which could
be made; see Boys and Henderson (2002). We follow their
recommendation and take independent Dirichlet distributions
for the rows of each P®) and A, that is

pgk) = (pgjk)) |r,q ~ f/)(cgk)), 1€, jE€Y, keSS,
)
Ai=Ay) [~ Ad;), i,j€S, 3)
where the Dirichlet parameters ¢ and d are chosen to reflect

the goal of the analysis; see Section 4.1.

2.2 Likelihood

Information from the data on the unknown quantities is ex-
pressed through the likelihood function. For HMMs, it is
computationally convenient to treat the hidden states s as
“missing” data and work with the complete-data likelihood.
For our model, this is

n(y,s|r,q,0) =n(yl|s,rq0)n(s|r,q,0)

« TTTITI @™ TITI A @

i€Yq JEY kES, €Sy JES,
where
k . .
”E‘j) = Z [(Z(y,t,q,b) =4,y: = j, s = k) and
t=qmax+1
mi = Z H(St—l =1, 5 :j)
t=gmax+1

denote the relevant transition counts and I(z) is the usual
indicator function which equals 1 if z is true and 0 otherwise.
Implicit in this formulation is an assumption that the DNA
sequence is linear rather than circular; modifications required
for circular sequences are given in Churchill (1989).

2.3 Posterior Inference

In the Bayesian paradigm, inferences are based on the poste-
rior distribution

n(r,q,0,s|y) x7(r,q,0)7(y,s|r,q,0),

which calibrates our uncertainties about the unknown param-
eters after observing the data. This distribution does not per-
mit a straightforward analysis and therefore we utilize MCMC
methods to make inferences about the unknown quantities of
interest.

In the case of fixed r and ¢, as described in Boys et al.
(2000), the MCMC scheme is straightforward and proceeds
by standard Gibbs sampling techniques for HMMs (Robert,
Celeux, and Diebolt, 1993; Chib, 1996). Briefly, values for the
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transition probability parameters 6 are generated from their
full conditional distributions which are independent (conju-
gate) Dirichlet distributions:

|rq,sy~(/( kJrn(k)), i€, keS., (5)

Ai ‘T7Q7 S,y ~ —(j/‘(dz + mi), 1€ 87‘7 (6)

where ngm = (ngjk)) and m; = (m;;) are the transition counts.
Similarly, a new sequence of hidden states s is generated from
its full conditional distribution 7(s|r, q, 8, y) using a stan-
dard forward—backward simulation algorithm. Details of this
algorithm can be found in Boys and Henderson (2002).

The novel aspect of our model is that both r and ¢ are
unknown parameters. The MCMC algorithm allows for this
by requiring the sampler to jump between parameter spaces
with different dimensions corresponding to models with dif-
ferent values of r and ¢. For r, this can be accomplished by
using reversible jumps (Green, 1995), an adaptation of the
Metropolis—Hastings algorithm which permits transdimen-
sional movement. In particular, the method we use is based
on standard reversible jump techniques for HMMs (Robert,
Rydén, and Titterington, 2000). However, as we show in Sec-
tion 3.1, the structure of the model allows ¢ to be updated by
a more direct method. We now describe the MCMC scheme
in more detail.

3. Outline of MCMC Scheme

At each iteration of the MCMC algorithm, a fixed scan is
performed of the following mowves:

(a) update the order of dependence and the transition prob-
ability parameters using 7(q, 0|1, s, y);

(b) update the number of segment types r (and conse-
quently update 0 and s) conditional on ¢;

(c¢) update the segmentation s using 7(s|r, q, 0, y).

Repeating this scheme for N iterations beyond convergence
will give values (r®, ¢@, 8% s®) for i = 1, 2,...,N on
which to base posterior summaries.

Moves (a) and (b) require the sampler to jump between
models in different dimensional parameter spaces and will be
described further in the following sections. Move (c) is accom-
plished using the standard forward—backward algorithm; see
Section 2.3.

3.1 Move (a)

Move (a) is a joint move in which the order of Markov de-
pendence ¢ is updated using 7(q |7, s, y) and then the tran-
sition probability parameters @ are updated using their full
conditional distribution 7 (8|, g, s, y), which is given in (5)
and (6). The choice of conjugate (Dirichlet) prior distribution
for P allows ¢ to be updated directly from the appropriate
conditional distribution without resorting to reversible jump
moves, that is, from

(@) (ylr g ), (7)

where the simplification results from ¢ being independent of
(r, 8) a priori. The marginal likelihood = (y |7, ¢, 8) is cal-

m(q|r s, y) x7(q|r,8)m(y|r.q,8) =
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culated by using a simple rearrangement of Bayes’s Theorem
as

7(Plr, g, 8)m(y|P,7q,s)
m(Plr,q,s,9)

:ﬁﬁ (Z )HF i

= HF o {i<czf>+nzf>>}

J=1

m(y|r,q, ) =

(8)

Boys and Henderson (2002) discuss other choices of prior dis-
tribution for P which inherit the simplicity of this marginal
likelihood calculation.

3.2 Move (b)

In move (b), the number of segment types r is updated us-
ing two types of birth/death reversible jump moves, imple-
mented successively. The birth/death moves are conceptually
and computationally simpler to implement than split/merge
moves and we have found them to result in adequate mixing
over .

3.2.1 Birth and death moves. These moves are similar in
style to the birth and death moves described by Viallefont,
Richardson, and Green (2002). The move begins with a ran-
dom choice between creating and deleting a segment type with
probabilities b, and d,., respectively.

In the birth move, a new segment type j* is proposed, thus
taking the number of segment types from r to r + 1. A set
of base transitions u for the new segment type is generated
from the prior distribution (2), and then we set PU") = u
and PV = PU) for j # 7*. We then simulate a row vector v
from the prior distribution (2) and set row j* of the proposed
transition matrix A to be )\ i+ = v. Column j* is then filled by
taking )\”* = w; for i # j*, where w; ~ Beta d”*,z Jvn
has the appropriate marginal distribution. The elements of
A are then scaled to ensure it is stochastic. Finally, a new
segmentation § is simulated conditional on r» 4+ 1 and 0 using
the forward—backward algorithm. The move is accepted with
probability min(1, Ag), where

m(y,5|r+1,q,0)  w(r+1)

M= snae) < A Y
I[] »x II TI2(" ")
1€Sp 41 ke84 1€)y
[I2xi1d) TT T[2@" )
€Sy keSr i€Yq
dr+1 7'('(8 ‘T7Q707y)
be(r+1) n(3|r+1,q,0,y)

X { o] d;-
'LEST+1\] JESr1\J*

-1
x HD(ui|é§j*))} I a-wy,
i€Yq 1€8r1\J*
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where D(-|6) is the (@) density and B(-|a,b) is the
Beta(a,b) density. Briefly, the first two lines in this expres-
sion consist of the likelihood ratio and the prior ratio, the
remaining lines consist of the proposal ratio and the Jacobian
resulting from the change of variables (P,u) — P and
(A, v,w) — A. Details of the general form of such acceptance
ratios can be found in Cappé, Robert, and Rydén (2003).
Although the expression for Ap can be simplified, we have
included all terms so that generalizations to other prior and
proposal distributions are clear. We note, however, that Ag
does not depend on s or § because
m(y,8|r+1,q,6) m(s|r,q,0,y) _ w(y|r+1,q,0)
77(2’4’3“’7‘1’9) 7T(.§|T+1,q,é,y) W(y"/‘,q,@)

I

and the observed-data likelihoods w(y|r+1,¢,0) and
m(y|r, g, @) can be computed independently of the segmen-
tation from a forward sweep of the forward-backward algo-
rithm; see MacDonald and Zucchini (1997). Therefore, the
move can be simplified slightly by leaving the simulation of a
new segmentation § to be performed in move (c).

The death move is the obvious reverse of the birth move:
A randomly chosen current segment type j* is proposed to
be deleted and the other parameters are adjusted accordingly.
First, PU") is deleted and the remaining base transition prob-
abilities are taken as P = P for j # j*. Then row and
column j* of A are deleted before its remaining elements are
rescaled to obtain the stochastic matrix A. The death of seg-
ment type j* is accepted with probability min(1, A5') as the
birth and death moves form a reversible pair. Again, there is
no need to deduce a new segmentation s as part of this death
move.

3.2.2 Birth and death of empty segment types. To improve
the mixing behavior of the reversible jump algorithm we also
use birth and death moves that act solely on dormant or empty
segment types—that is, segment types with no data currently
allocated to them—in the spirit of Richardson and Green
(1997). These special birth/death moves operate in largely
the same way as those described in Section 3.2.1, and hence
the details have been omitted. The acceptance probability
for the birth of empty segment type j* is min(1, Ag),
where

(r+1) _7(3|r+1,4,0)

A = A

TG0 ) " wl(s]r,4,0)
n(y,s|7,q,0) Xﬂ(é\rJrl,q,é,y)

)

ﬂ-(y’g‘r+17q50) 71—(8‘7,7Q707y)
and r( denotes the number of empty segment types prior to
the proposed birth. The corresponding death move is accepted
with probability min(1, Ag").

4. Application to DNA Sequence Data

We illustrate the general method described in the previous
sections by analyzing the genome of the bacteriophage lambda,
a parasite of the intestinal bacterium FEscherichia coli. This
virus has become a benchmark sequence for the compari-
son of segmentation algorithms since the experimental seg-
mentation based on gradient centrifugation of its CG content
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by Skalka, Burgi, and Hershey (1968); see Braun and Miiller
(1998) for further references. Its (circular) genome is relatively
small at 48,502 base pairs (bp) in length, though this is long
enough to provide an adequate challenge for the methods in
this article. The complete genome sequence is stored in the
GenBank sequence database (Benson et al., 2004) under ac-
cession number J02459 and can be obtained from the National
Center for Biotechnology Information (NCBI) web pages at
http://wuw.ncbi.nlm.nih.gov/.

4.1  Prior Specification

Our aim is to describe the structure of the bacteriophage
lambda as parsimoniously as possible. This preference can be
expressed through the prior distribution. In choosing a prior
(1) for r and ¢, we want to express a preference for a small
number of segment types and a low order of Markov depen-
dence without being too restrictive. Therefore, taking into
account the number of transition parameters and the length
of the sequence, we choose upper bounds for r and ¢ of rpy., =
14 and gma = 3 and prior means around a, = 3 and a, = 1,
respectively.

Prior knowledge about the base transition probabilities in
each segment is necessarily weak, and so we make the ex-
changeable choice cgk) =(1,1,1,1) for i€ Y, and k € S,.
The specification of parameters for the segment transition
structure A is more complex. However, our prior preference
for a relatively small number of large homogeneous regions
can be expressed through uncertainty about segment lengths.
This can be achieved by adopting an off-diagonal exchange-
able pattern of the form (d;); = aé; + B(1 — ¢;) for some
choice of o and 3, where §;; is Kronecker’s delta. These hy-
perparameters are chosen by considering prior mean segment
lengths and effective prior “sample sizes.” For this analysis, we
have chosen a priori expected segment lengths of 1000 bases
with each row d; having the information content of a sequence
with 10007, /7 transitions. This prior input is not particu-
larly strong given that this DNA sequence is nearly 50,000
bases long. It also balances the amount of prior information,
in terms of equivalent transitions, for the different values of
r. The sensitivity of the results to changes in the prior are
discussed in Section 4.3.

4.2  Results

The MCMC algorithm was run from a variety of starting
points and its convergence was monitored using a range of
conventional convergence diagnostics. Each run produced es-
sentially the same results and we report here one typical run
consisting of a burn-in of 500,000 iterations followed by a fur-
ther 100,000 iterations in which only every 10th iterate was
recorded in order to reduce computing overheads. Thus pos-
terior inferences are based on N = 10,000 sampled values
(r®, ¢, 90 ),

4.2.1 Marginal posterior for q. The (marginal) posterior
distribution for the order of dependence parameter ¢, as es-
timated from the MCMC output, is concentrated (almost)
solely at ¢ = 2, that is, within each segment type, the
bases almost certainly follow a second-order Markov chain.
This may seem overly precise but Fan and Tsai (1999) and
Boys and Henderson (2002) have also observed that highly
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Table 1
Posterior distribution of r|q = 2
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T <4 5 6 7 8

9 10 11 12 13 14

Probability 0.000 0.011 0.542 0.297 0.111 0.030 0.006 0.002 0.001 0.000 0.000

concentrated posterior distributions for ¢ are often obtained
when analyzing reasonably long sequences containing either
a single segment or two segment types. This finding is also
supported by an examination of the ¢-distribution in each of
the segment types identified by the posterior mode estimate
of the segmentation; see Section 4.2.4.

Posterior support for second-order dependence is not par-
ticularly surprising since the bacteriophage lambda genome
is composed predominantly of coding DNA and is therefore
largely governed by the genetic code, which is read in triples
(Y¢—2, Yi-1, y1). Moreover, this conclusion reinforces the need
to be able to make inferences about ¢ when analyzing DNA
sequences, as conventional segmentation analyses assume
q = 0. In the following subsections, we condition our anal-
ysis on second-order dependence.

4.2.2 Posterior for r| g = 2. Table 1 contains an estimate
of the posterior distribution for r given ¢ = 2 based on em-
pirical averaging of the sampler output.
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It shows that there still remains some (posterior) uncer-
tainty about r. The model which receives most support is one
with r = 6 segment types, and no support is given to models
with fewer than 5 or greater than 13 segment types. The 95%
highest density interval (HDI) is {6, 7, 8}. It is interesting
to note that other HMM-based analyses of the bacteriophage
lambda genome, such as in Churchill (1989, 1992) and Muri
(1998), have concentrated on models with 7 < 6 and ¢ < 1
which receive little or no posterior support in our analysis.

The MCMC sampler mixes adequately over different val-
ues of r. This may be due to the similarity in the prior and
posterior distributions for A, which results in birth propos-
als that have (relatively) high posterior density and thus a
reasonable probability of acceptance. Overall, approximately
3.5% of birth/death moves and 12.1% of birth/death of empty
segment types moves are accepted. These rates are quite low
but they do compare favorably with those reported in the
HMM analysis of Robert, Rydén, and Titterington (2000).
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Figure 1. Posterior segment type probabilities lg\r(St =j|lr=6,g=2,y)forj=1,2,...,6.
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4.2.3 Problems of identifiability. Although there are many
possible summaries for this high- (and variable-) dimensional
posterior distribution, we concentrate on summaries for the
segmentation s and the parameters € conditional on r and
g. This task is complicated by the nonidentifiability of the
parameters in the posterior distribution, which leads to label
switching in the MCMC sampler output; see Stephens (2000)
for a detailed description of this feature. To remedy this prob-
lem we focus on one of the r! symmetric posterior modes by
performing a relabeling algorithm, along the lines of Stephens
(2000). The algorithm permutes the MCMC output according
to the permutation of the hidden states s that is most con-
sistent with the marginal posterior mode (MPM) estimate
§—the most likely hidden state at each position in the se-
quence. The reader is referred to Boys and Henderson (2002)
for a detailed description of the algorithm.

4.2.4 Posterior for s|r, q. The primary focus of all seg-
mentation algorithms is to infer the latent segment structure
of a sequence and this is done here through the posterior dis-
tribution of s given r and ¢. One summary of this posterior
distribution is the MPM estimate s. However, it is useful to
have some understanding of posterior uncertainty regarding
the segmentation in addition to the MPM estimate. This can
be provided by using an estimate of the segment type distri-
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for j €S,
Pr(S;=j|r=r"9=q"y)

N
= > 1(s)) =4, Z
i=1

or its Rao—Blackwellized equivalent (Gelfand and Smith,
1990). Figure 1 displays these probabilities for the bacterio-
phage lambda genome conditional on the most likely model a
posteriori, that is, six segment types and second-order depen-
dence. It clearly shows the existence of several well-defined
segments. In particular, the first half of the sequence ap-
pears to be rather homogeneous, consisting mainly of type 1
structure but also with a short fragment of different structure
(type 4) shortly after base 20,000. In contrast, the second half
of the sequence is comparatively heterogeneous and contains
structure of types 2, 3, 5, and 6. We note that, although the
segments of types 4 and 5 are quite short, they are neverthe-
less well defined. It is also interesting to note that, although
we have not analyzed the data as a circular sequence, the seg-
mentation has identified the same segment type (type 3) at
the very beginning and end of the sequence.

4.2.5 Posterior for 8| r, q. We now focus on the transition
structure of the observed sequence and concentrate again on

=r*,q" r@=r* ¢ =q*)

bution at each location t = quax + 1, Guax + 2,...,n, such as, the model with r = 6 and ¢ = 2. Figure 2 illustrates the
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Figure 2. Marginal posterior means for the base transition probabilities pg-“) with 95% credible intervals.
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base transition structure within each segment. It displays
the marginal posterior distributions for the probabilities pgm
through their estimated posterior means together with 95%
equi-tailed credible intervals. The figure clearly shows that
there is considerable (posterior) uncertainty about the base
transition structure in segment types 4 and 5, in contrast to
the other segments, especially segment type 1. This level of
uncertainty is mainly due to the preponderance of each seg-
ment type in the sequence (see Figure 1). The plot also pro-
vides a useful characterization of the transition structure and
shows that the patterns of transition structure differ markedly
between segment types. This explains to some extent why
there is so little (posterior) evidence for a lower number of
segment types (r < 5), and why the locations of segment
types 4 and 5 are well identified in Figure 1 despite their
comparatively short length.

For reasons of brevity, we have not included summaries of
the posterior distribution of the hidden state transition ma-
trix A. However, information on useful quantities such as seg-
ment lengths can be gleaned from the posterior distribution
of s.

4.3 Sensitivity to Prior Specification

The sensitivity of our conclusions to the choice of prior pa-
rameters was investigated using many runs of the MCMC
algorithm. The posterior distribution is fairly insensitive to
changes in the prior distributions for the dimension parame-
ters (7, ¢) and the base transition probabilities (P). However,
this is not the case for the hidden state transition matrix A.
For example, the MPM segmentation is quite sensitive to the
prior mean (and variance) of the segment lengths. A reanal-
ysis of this sequence taking prior mean segment lengths to
be as low as 100 bases naturally results in a segmentation
with considerable switching between a much larger number of
segment types.

4.4 Biological Relevance of the Results

We now compare our segmentation results to known biological
functions of the bacteriophage lambda genome. Lewin (2000)

579

provides an overview of lambda genome organization together
with further details on the content of, and terminology used
in, this section.

Focusing on the model that is most consistent with the
data, that is » = 6 and ¢ = 2, reveals segments (see Figure 1)
which contain coding regions with the same direction of tran-
scription: segments of types 1 and 2 transcribe left to right,
and the others, right to left. The segmentation also identifies
regions of biological significance and classes of genes with sim-
ilar function. Segment type 1 comprises the structural genes
for the bacteriophage particle (the “head” and “tail”). These
genes are expressed when the phage is undergoing replication.
It also contains the P protein, which is required for replication
of the DNA. The type 2 segment contains the Nin proteins
(which deal with DNA recombination), proteins cro, c¢II, and
@ (which have important roles in regulation of gene expres-
sion), and proteins R and Rz (which are involved in breaking
open the cells to release the new bacteriophage particles).
Segment type 3 contains many coding regions; some are tran-
scribed early in the life cycle, others have, as yet, unknown
function. It also contains important regulatory proteins
(N and cl) together with int and zis which are involved in
integrating the phage DNA into the (host) bacterial chromo-
some (when it becomes a lysogen) and cutting it out again
when it reactivates. The type 3 structure at the 5" end of the
sequence is clearly identified as being separate from the first
segment (type 1) which contains the structural genes. Seg-
ment type 4 identifies orf206b, a coding region with a distinc-
tive transition pattern. Segment type 5 contains the O gene,
which is involved in initiating replication. Finally, segment
type 6 contains the endonuclease ea59 together with rexA and
rexB, which are involved in excluding other bacteriophages
that might compete with lambda.

5. Discussion

This article has described a fully Bayesian analysis of DNA
sequence data assuming a hidden Markov model in which the
observed process evolves as a Markov chain. The approach
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is quite general in terms of its flexibility with respect to the
number of different segment types that may be present in
the sequence and the complexity of the structure within each
segment type.

There are several other published HMM-based analyses of
the bacteriophage lambda genome. However, these analyses
consider a much more restricted class of models (in terms of r
and ¢) than considered here. A more recent analysis by Braun
et al. (2000) assumes an independence (¢ = 0) model for base
transitions and uses quasi-likelihood to identify changes in the
segmentation together with an adjusted BIC to determine the
number of change points. They conclude that there are eight
change points and their locations are identified on the change-
point (posterior) probability plot in Figure 3. Here the change-
point probabilities are calculated using the output from our
MCMC scheme and are averaged over different values of r
(and q); details of other posterior summaries that take into
account the variability in r and ¢ and that are label invariant
are available from the authors.

Our analysis is in general agreement with these locations
except in the latter part of the sequence. In particular, their
q = 0 analysis fails to identify the change points corresponding
to the location of the type 5 segment around base 39,000. Nev-
ertheless, our analysis of the bacteriophage lambda genome
reveals much of the biological structure known to be present
in this sequence.
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RESUME

Beaucoup de séquences d’acides désoxyribonucléiques (ADN)
présentent une hétérogénéité dans la forme des segments de
structure similaire. Ce papier décrit une méthode bayésienne
qui identifie de tels segments en utilisant une chaine de
Markov gouvernée par un modele de Markov caché. Les tech-
niques de Monte Carlo par chaines de Markov (MCMC) sont
utilisées pour calculer les quantités d’intérét a posteriori et
en particulier permettre des inférences eu égard au nombre
de types de segments et a I’ordre de la dépendance markovi-
enne dans la séquence ADN. La méthode est appliquée a
la segmentation du génome du bactériophage lambda, une
séquence courante de référence, utilisée pour la comparaison
d’algorithmes de segmentation.
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Discussions on
“A Bayesian Approach to DNA Sequence Segmentation”

By: Charles Lawrence and Ivan Auger

Wadsworth Center
New York State Health Department
Albany, New York 12201, U.S.A.

The use of HMMs with Markov models of segments is now
one of the old statistical methods in the young science of bioin-
formatics. In addition to the references cited by Boys and
Henderson, this approach is a fundamental component of
gene-finding algorithms that have been used extensively to
identify and delineate genes in the human genome and other
genomes. For example, the algorithms HMMgene (Krogh,
1997) and Genescan (Burge and Karlin, 1997) take this
approach. In spite of this substantial history, Boys and
Henderson have addressed a largely unexplored component
of this problem. Thus, through the use of reversible jumps for
posterior inferences of the number of segment models appro-
priate for the characterization of a DNA sequence, they make
a very important contribution to this field.

Unfortunately, the sensitivity analysis they report indicates
that the resulting inferences maybe fairly sensitive to the as-
sumed prior distribution on the HMMs’ hidden state tran-
sition parameters. This may be the consequence of the fact
that the information content of over 1000 transitions in the
specification of these priors is a long way from the assumption
of a uniform distribution.

Boys and Henderson suggest that HMMs are somehow
uniquely appropriate in circumstances in which noncontigu-
ous parts of the sequence are described by the same Markov
model. This is not the case. Perhaps the perception that
change-point algorithms were not appropriate in this circum-
stance stems from the fact that current change-point imple-
mentations for DNA sequence segmentation seek direct and
thus exact posterior inferences on all unknowns (Liu and
Lawrence, 1999) rather than resorting to an iterative MCMC
approach. To achieve this end, these algorithms must simulta-
neously sum and integrate over all unknowns in the problem in
order to marginalize over all unknowns to obtain the marginal
likelihood, the key normalizing constant. This ability is lost

when noncontiguous parts of the sequence are described by a
common Markov model. In this case one is forced to resort to
an iterative MCMC approach to produce posterior inferences
from either HMMSs or change-point models. Thus, the ability
to identify models common to multiple noncontiguous seg-
ments is associated with the use of MCMC algorithms rather
than the use of HMM instead of change-point algorithms. An-
other key distinction between HMMs and change-point algo-
rithms concerns the distributional form of segment lengths.
HMMs imply geometric distributions for segment lengths,
while change-point algorithms used in this context assume
that all segmentations of the sequences with exactly k change
points are equally likely. This difference suggests that it may
be productive to explore the potential of change-point algo-
rithms to produce inferences that are less sensitive to prior
specification.

In the analysis of the bacteriophage genome, an annotated
diagram of the genome with the coding regions with direction
of transcription would be useful. It is interesting that seg-
ment types 1 and 2 transcribe in the forward strand and all
the other ones in the reverse strand. It is possible that there
are fewer segment types and that models 1 and 2 are reverse
complements of segment types 3—-6. This seems to be a partic-
ularly important avenue to explore when DNA sequences con-
tain coding regions. However, because there has already been
much good work on gene-finding algorithms whose key focus is
on distinguishing coding from noncoding sequence, the great-
est potential for the applications of the procedures described
here may be in the analysis of noncoding DNA sequences.
Unfortunately, all too often in the biometrics community,
a single available data set is repeatedly analyzed by many
groups even when it may not be particularly well suited for
illustrating the advantages of a new approach. If, as we be-
lieve, the future in the field of biometrics lies in far greater
immersion in biology of the 21st century, then this unfortu-
nate tendency will automatically fade as the community be-
comes far more knowledgeable about biochemistry, genetics,
genomics, and the wonderful data resources that are emerging
from the biotechnology/genomics revolution.
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We congratulate the authors for presenting a comprehen-
sive Bayesian treatment to the problem of compositional vari-
ations in genomic DNA sequences and for introducing in-
teresting extensions of the standard hidden Markov model
(HMM; see Churchill, 1989; Muri, 1998). The hidden states
in the authors’ model represent the unknown segment types,
and the observed nucleotides are assumed to be generated
from a distribution completely specified by the underlying
segment type. Churchill’s basic HMM requires a finite num-
ber of states to be fixed in advance and the nucleotides within
a segment type to follow the i.i.d. multinomial model. The
form of the augmented data likelihood then is of the regu-
lar exponential family so that an ML estimation algorithm
can be set up through the EM framework (Dempster, Laird,
and Rubin, 1977). Churchill later extended his HMM to the
case where the observed outcomes follow a first-order Markov
chain, under which the estimation algorithm can be imple-
mented through minor adjustments to the i.i.d. case. In the
present article, the authors generalize Churchill’s model to
allow (i) an unknown number of states, and (ii) an unknown
order of Markovian dependence between the sequence of ob-
servations. It is important to note that in both Churchill’s
model and the current authors’, the underlying state bound-
aries are ignored when specifying the order of dependence
of the observed sequence, though the transition probabili-
ties may depend on the underlying state sequence. We dis-
cuss the implications of this later in more detail. Because the
model becomes quite complicated after the authors’ gener-
alizations, the authors developed several MCMC algorithms
to simultaneously estimate the total number of states and
the order of dependence between observations, for an optimal
sequence segmentation. However, as more uncertainty is in-
troduced into the model, a reliable inference is more difficult
to obtain and the identifiability of the parameters becomes
an issue.

1. Duration Modeling

One inevitable phenomenon while modeling state transitions
through a Markov chain is that the resulting distribution of
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the duration of the chain in a certain state is geometric. More
specifically, in a two-state model with states 0 and 1, and
transition probabilities pgo, 1 — poo, 1 — P11, P11, respectively,
let us denote the number of consecutive steps that the chain
stays in state 1 as L;. Then
P(ley):plllfl(l_pll)7 y:1727'“

This exponentially decaying distribution of lengths is often
considered inappropriate in DNA segmentation applications.
More complex length distributions can be modeled by intro-
ducing an array of several hidden states (e.g., Durbin et al.,
1998). For example, we can think of a transition within state 1
as an occurrence of n consecutive states (say Sii,...,Sm),
each such state Si; having probability p;; of transitioning to
itself and 1 — p;; of moving to the next state S ;.. The
resulting distribution is then negative binomial (n, pi;),

y+n-—1 n
P(ley):< a1 )pi’l(lfpu), y=0,1,...

Parameters n and p;; can be empirically estimated from
the mean and variance of segment lengths from training se-
quences. This idea can be easily applied to a multistate model
where it may provide greater flexibility and a more accurate
fit to the empirical length distribution.

2. The Generalized HMM versus
the Segmentation Model

In this context arise two questions—first, is it proper to con-
sider the order ¢ of Markovian dependence among the obser-
vation sequence the same irrespective of the underlying state?
Second, what does it mean to allow Markovian dependence be-
tween observations that may not be generated from the same
state? For neighboring segments, which are assumed to have
different mechanisms of generation, it is a little difficult to
understand what a “dependence” between, say, p residues of
state 3, and the neighboring ¢ — p residues of state 1 may sci-
entifically mean. Under the current model specifications, how-
ever, it is difficult to restrict interresidue dependence within
distinct segment types without adding an amount of compu-
tational awkwardness. In this context, it may be of interest
to consider a segmentation model (Liu and Lawrence, 1999)
that incorporates a higher-order dependence (that may be
state specific), and simultaneously avoids the problem of state
overlapping of residues.

Liu and Lawrence’s segmentation model can be thought of
as a four-sided (for DNA) “coin-toss” model with multiple
coins (a maximum of 7,,,) having runs of unknown length.
State transitions between different coin types are assumed
i.i.d., as well as the sequence of coin tosses. The total num-
ber of states is assumed unknown, and estimated under the
model (along with length of segments) through a Monte Carlo
approach employing dynamic programming-like recursions.
Following Boys and Henderson, we let the observed residue
sequence be Y =(Y,...,Y,) and the corresponding hid-
den state sequence be S=(Sy,...,S5,). A higher-order de-
pendence version of this model with g;-order Markovian de-
pendence under state i may be formulated as having the
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complete-data likelihood (under the partition A = (A, ...,
Ar), where A; = max; {j:1 <j <n; S; =i}, Ay =0):

Tmax

P(YVh e 7YnaA | earmax) = H P(}/[AT,I:AT] ‘ GT)P(A ‘ rmax)?
r=1

where for r € (1, rypa), and 4,1 + ¢ < j < A, (i €
{1,...,0%};5€ {1,...,b}),

P(Y; | Yia, 11,00, 85 = 1) = P(Y; | Vi, .., Yg,.0)

r-1:-1
=pi}.

In this model, the order of dependence is only conditionally
specified depending on the underlying state; and hence there
is no occurrence of residue dependence overlapping across
states. Generalization to more complex application-specific
segmentation models can likewise be obtained using individ-
ual segment models (e.g., Schmidler, Liu, and Brutlag, 2000).
Another aspect of the segmentation model is that unlike the
possible repetitions of states in an HMM, here every segment
is considered to be generated under a run of a state that oc-
curs only one time in the sequence. However, this is not really
a drawback of the model as any two nonadjacent segments
can be tested for similarity of properties (e.g., g-order transi-
tion frequencies for some ¢) and may be collapsed into a sin-
gle state if necessary. A between-segment Markovian model
may also be incorporated, with minor modifications to the
dynamic programming recursions. Conceptually, it is possi-
ble to develop a Gibbs sampling-like algorithm that samples
r and the ¢;’s from their conditional posterior distributions
and updates the partitions given r and q. Alternatively, evo-
lutionary Monte Carlo—type moves (Liang and Wong, 2000)
could be used for sampling segmentations (given r and q) that
could lead to a faster algorithm.

3. Relation of State Identifiability to Order
of Dependence

It is of both theoretical and practical interest to investi-
gate the unidentifiability issue of the problem. Theoretically,
adding layers of complexity to the structure of the model (such
as a higher-order dependence) may make it more attractive for
a scenario of application. However, how flexible can the model
remain (viz. unknown number of states, unknown order of de-
pendence, and resulting variability and increase in the number
of model parameters) before the problem of unidentifiability
makes it impracticable? To be more specific, consider a binary
sequence composed solely of ‘0’s and ‘1’s in a repetitive pat-
tern of three types of segments (only ‘0’s, only ‘1’s, alternating
‘0’ and ‘17):

000000000000000000111111111111111111
010101010101010101000000000000000000. . .

Using an i.i.d. model, it is easy to determine that there
are three distinct segment types. However, when we assume
that the dependence structure is a first-order Markovian, the
three-state model and a two-state model (with the ‘0’- and
‘I’-runs grouped into one state and the ‘01’-runs into an-
other) provide virtually identical posterior likelihoods (assum-
ing identical priors under each state). In the absence of knowl-
edge of the true number of states, it would be a challenge
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for any of the above-discussed algorithms that incorporate
higher-order Markov dependence to find the correct number
of segments.

4. Conclusion

Boys and Henderson describe some interesting extensions to
the current ideas of DNA sequence segmentation in a Bayesian
framework and sound mathematical algorithms to implement
these. Most importantly, their article raises fundamental ques-
tions about limitations in model specification and brings to
the forefront the issue of how far one can refrain from making
prior assumptions about a model while keeping it feasible in
practice. The question remains an open one and any prac-
titioner should exercise extreme caution during the actual
implementation of all such models and algorithms to avoid
arriving at misleading conclusions.

REFERENCES

Churchill, G. A. (1989). Stochastic models for heterogeneous
DNA sequences. Bulletin of Mathematical Biology 51, 79—
94.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, Series B
39, 1-38.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Bi-
ological Sequence Analysis. Cambridge, U.K.: Cambridge
University Press.

Liang, F. and Wong, W. H. (2000). Evolutionary Monte Carlo:
Applications to C, model sampling and change point
problem. Statistica Sinica 10, 317-342.

Liu, J. S. and Lawrence, C. E. (1999). Bayesian inference on
biopolymer models. Bioinformatics 15, 38—52.

Muri, F. (1998). Modelling bacterial genomes using hidden
Markov models. In COMPSTAT 98 Proceedings in Com-
putational Statistics, R. W. Payne and P. J. Green (eds),
89-100. Heidelberg: Physica-Verlag.

Schmidler, S. C., Liu, J. S., and Brutlag, D. L. (2000).
Bayesian segmentation of protein secondary structure.
Journal of Computational Biology 7, 233—248.

By: Terry Speed
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the Walter and Eliza Hall Institute of Medical Research
Parkville, Victoria 3052, Australia

The authors have done a very fine job illustrating the
Bayesian approach to the problem of DNA sequence segmen-
tation. Their formulation of the problem is clean, their pa-
rameterization natural, and their MCMC algorithms elegant
and powerful. Their results add yet more weight to the al-
ready strong argument for the use of Bayesian MCMC meth-
ods in biological sequence analysis. What can I add to their
excellent article? It seems to me, just two things. One, to
make sure readers of Biometrics appreciate the enormity of
their understatement, when they write: “HMMs have become
a popular choice for the analysis of DNA sequences,” and
give just three references to papers like theirs. The other is
to remark that we can and should ask for more biological
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motivation before embarking on exercises like the one in
this article, and that our assessments of the scientific value
of biological sequence analysis can and should be more
penetrating.

After reading their article, I could not help wondering
how the authors managed not to mention the extremely ef-
fective applications of HMMs (and generalized HMMs and
generalized pair HMMs) to ab initio gene finding. In my
view this work is one of the great success stories involv-
ing statistics in modern biology, and it deserves to be more
widely appreciated. As with the present article, gene find-
ing is a segmentation problem: identifying intergenic and
genic regions within DNA, with the genic regions having a
great deal of further structure: transcribed but untranslated
segments, exons, introns, polyadenylation, splice, translation
start and stop signals, and so on. And as with the present
article, the workhorse is the HMM, or some generalization
thereof. Widely used programs include FGENESH+, GENSCAN,
and SLAM. In principle, all of the methods of the present arti-
cle should apply (with suitable modification or extension) to
gene finding, and it is an interesting question to ask whether
they would in practice, and if so, what the gains would be.
Exact calculations for multispecies gene finding with “tree
HMMs,” merging the pair HMM approach of Alexandersson,
Cawley, and Pachter (2003) with that of Siepel and
Haussler (2003) is unlikely to be feasible, so it seems likely
that MCMC methods like those in the article will be neces-
sary to solve this problem. That would be a problem worthy of
attack!

What is the biological motivation for an article like the
present one, and how should we assess its results? In 1989,
Churchill applied (exact, non-Bayesian) techniques similar to
those of the present article to segmenting the E. coli genome
into regions with high and low GC content, replacing the sim-
pler method of thresholding local GC content. That was a
well-defined question, and HMMs provided a natural frame-
work for answering it. Both the number of segment types and
their meaning were known a priori, and it was easy to check
whether HMMs gave a good answer. By contrast, inferring
compositional heterogeneity in phage A is offered in this ar-
ticle simply as an illustration of the techniques, rather than
a problem to be solved or a question to be answered. What
did we learn from applying the techniques of the article to
A? Roughly, that each of the about r = 6 different segment
types seems to correspond to a gene or set of genes, sharing
a common composition. It is not clear that the extra flex-
ibility obtained from being able to allow the data and the
model to determine the number of segment types actually led
to any biological insights. However, using techniques similar
to those in this article, Nicolas et al. (2002) found DNA se-
quence characteristic of phages in the B. subtilis genome, and
so it might be expected that phage A genome harbors DNA
sequence characteristic of its host, F. coli, which got there by
some form of horizontal transfer. Indeed it does, and a com-
parison of Figure 1 of this article for j = 1 with Figure la
of Scherer, McPeek, and Speed (1994) suggests that segment
type 1 is typical E. coli sequence, though the correspondence
between these two figures is not perfect. Perhaps there are
similar interpretations for the other five segment types, but I
do not know them.
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Let me close with a question for the authors. Was the seg-
mentation obtained when ¢ = 0 very different from that when
q=27
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By: Jeffrey L. Thorne
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Following the pioneering application to biological sequence
data by Churchill (1989), hidden Markov models (HMMs)
have assumed a central position in bioinformatics (see Durbin
et al., 1998 for a good overview). To my knowledge, Boys and
Henderson introduce here the most general existing applica-
tion of HMMs to the analysis of DNA sequence data. With
the Boys and Henderson approach, little need be prespecified.
The approach does not require the number of underlying com-
positional categories of DNA to be known in advance nor does
it require the probabilities of transitions between these cat-
egories to be predetermined. Likewise, the frequencies of the
four nucleotide residues within each compositional category
are free to vary.

This exploratory approach has advantages. With the avail-
ability of genomic sequence data, hypothesis-driven research
has become unfashionable (e.g., Lawrence, 2001). Large data
sets can be mined for unusual patterns. Once identified, the
biological underpinnings of these unusual patterns can be de-
termined. General and flexible statistical approaches such as
this one by Boys and Henderson have much to recommend
them.

However, these general and flexible approaches also have
shortcomings which are sometimes overlooked in the statis-
tics community. While it is statistically satisfying to estimate
the parameters of a relatively general model, it may be chal-
lenging to interpret these parameters. Regardless of whether
it can be well estimated, a parameter that has an unclear bi-
ological meaning prior to data analysis may continue to have
an unclear meaning following the analysis.

Although Boys and Henderson have developed a gen-
eral and flexible approach to characterizing compositional
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heterogeneity in DNA sequences, it is not necessarily going
to be straightforward to interpret its results. In the bacte-
riophage lambda example analysis that they present, genes
can be assigned to particular compositional categories but it
is less clear whether the genes within each category are con-
nected by some biological property beyond DNA composition
and the direction of transcription. When parameters can be
assigned a specific interpretation prior to data analysis, then
the connection of the inferences to the biological system being
studied is easy to establish. For example, HMM-based anal-
yses of single DNA sequences have proven very successful in
gene finding (e.g., Burge and Karlin, 1997) and extensions
to multiple aligned sequences (Pedersen and Hein, 2003) are
promising. With these gene-finding techniques, hidden states
have a precise biological meaning such as “phase 0 intron” or
“promoter.”

How can the output of their computational strategy be bet-
ter exploited to advance the state of biological knowledge?
This is the question that I hope Boys and Henderson ad-
dress in their future work. The value of data-driven research
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is completely dependent upon how much it can illuminate the
system being studied.
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The authors replied as follows:

We thank the Co-Editor for inviting discussion of our arti-
cle and the discussants for their thought-provoking comments.
The discussion reflects the tensions inherent in modeling the
underlying biological process and ranges from points about
model choice and computational simplicity to biological mo-
tivation, relevance, and interpretation.

1. Model Framework

Several important modeling issues are raised. To begin with
there is the choice of overall model structure, essentially a
choice between the hidden Markov model (HMM) used in
our article, and the multiple change-point segmentation model
(Liu and Lawrence, 1999) referred to by Gupta and Liu, and
Lawrence and Auger. The change-point model has a com-
putational advantage over the HMM in that posterior sam-
ples can be obtained without using (approximate, iterative)
MCMC methods. However, if it were adapted to include the
biologically more plausible scenario in which noncontiguous
parts of the sequence had the same composition then the cru-
cial intersegment independence would be lost, together with
the associated computational advantages. Of course, as Gupta
and Liu suggest, it is possible to assess compositional similar-
ity in noncontiguous segments but this might just lead to a
redistribution of computational effort from the model imple-
mentation stage to the follow-up analysis. The computational
benefit of using HMMs in this context is the availability of a
forward—backward algorithm from which to simulate segmen-
tations efficiently (Scott, 2002) and this advantage may be
substantial when analyzing long sequences.

2. Segment Lengths

Both Lawrence and Auger, and Gupta and Liu, comment
on the geometric segment length distribution inherent in the

first-order Markov assumption for the hidden layer in the
HMM. A fundamental objection in using the geometric distri-
bution to model segment lengths is that the whole shape of the
distribution, particularly the exponential decay, is not consis-
tent with the lengths of “known” segments. Unfortunately,
similar distributional shapes for segment lengths can also oc-
cur in the change-point model: When there are m change
points in total, the prior distribution for the position of the
(k 4+ 1)st change point 741 given the position of the kth
change point 7 for a sequence of length n is

. . n—j—1 n—1—1
Pr(re1 = jlme =11) = (m{kl)/( — >7

j=i+1,....n—m+Ek,

and this leads to a nonincreasing distribution for 74,1 — 7%,
which can be lighter tailed than a geometric distribution, and
frequently is for moderate to large n and m. Furthermore,
in many applications, people seek to be uninformative about
the number of change points m, and this can be represented
by using a discrete uniform distribution on {0, 1,...,n — 1},
that is, where each model is equally likely. However, this uni-
form distribution is also the marginal distribution for m when
m|p has a binomial B(n, p) distribution and an uninforma-
tive uniform prior distribution is used for p. For a given p,
we can think of the change point locations as binary indica-
tors occurring within a Bernoulli process with parameter p,
and consequently the distribution of segment lengths is geo-
metric. Thus, the problem of an inappropriate distributional
shape can be common to both modeling frameworks.

A remedy commonly used to overcome the objections to
geometric segment lengths is to generalize the HMM to al-
low explicit duration modeling (of segment lengths) using hid-
den semi-Markov models (HSMMs). These models have been
used to great effect in gene-finding algorithms such as the
GENSCAN algorithm (Burge and Karlin, 1997) mentioned by
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the discussants (and in the original, longer, version of our
article). However, they do suffer from an additional computa-
tional overhead due to the complexity of implementing the as-
sociated forward—backward algorithms (e.g., Guédon, 2003).
In our fully Bayesian framework, this is somewhat undesirable
given the already substantial computational burden of using
MCMC techniques to implement our HMM model. However,
as Gupta and Liu suggest, negative binomial (d, \;;) segment
lengths (with known integer parameter d) can be incorpo-
rated easily into the HMM framework by introducing d — 1
extra hidden states for each of the r current hidden states.
The resulting HMM has a larger hidden state space with a
special transition structure and so this HSMM can be fitted
by using only minor modifications to our method. Also, when
d is not too large, this added flexibility can be achieved at a
relatively small additional computational cost. Allowing even
more flexibility through unknown d or using other segment
length distributions would require the use of the more compu-
tationally intensive algorithms already developed for HSMMs.
Clearly, our HMM can be made more biologically plausible.
However, in the absence of specific information about segment
length distributions, we believe our model is a sensible com-
promise between biological plausibility and computational
complexity.

3. Base Dependence

We now turn to comments concerning models for the ob-
served DNA sequence within homogeneous segments. Gupta
and Liu suggest a model in which the order of Markov de-
pendence ¢; is possibly different for each segment type. This
might have more biological merit than our homogeneous de-
pendence model and, when using conjugate priors for the base
(residue) transition probabilities, it is straightforward to ac-
commodate in each of the HMM, HSMM, and change-point
models. For the HMM, the extension to state-specific depen-
dence is achieved simply by adapting the MCMC algorithm
so that, at each iteration, the sampling step for ¢ is replaced
by 7 such sampling steps for ¢;, i = 1, 2,...,r. If dependence
between bases across segment boundaries is restricted then
the algorithm would become considerably more cumbersome,
as Gupta and Liu point out. There is little doubt that such re-
strictions would improve the biological credibility of the model
but we are uncertain as to whether they would yield sufficient
additional insight, particularly when g, is small and both
the sequence and segments are long. It would be interesting
to investigate whether incorporating this feature really does
produce a more meaningful segmentation. For their exten-
sion of the change-point model to state-specific dependence
Gupta and Liu suggest a Gibbs sampling-like update for the
qi, equivalent to that for the HMM. This extension could also
be implemented, perhaps more efficiently, using dynamic pro-
gramming recursions which integrate out uncertainty regard-
ing the g; (Fearnhead, 2003).

The discussants query whether the extra complexity of
Markov dependence is necessary, be it state-specific ¢; or sim-
ply ¢ > 0. For example, Speed questions whether there are dif-
ferences between segmentations when ¢ = 0 and ¢ = 2 for the
bacteriophage lambda example. Although the posterior dis-
tribution for the segmentation is both high dimensional and
explicitly dependent on the number of segment types r, a sim-
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ple comparison can be made using the MPM estimates of the
hidden states s conditional on the a posteriori most probable
model; here, this is 7 = 7 when ¢ = 0 and » = 6 when g = 2.
Figure 1 gives these MPM estimates and also the locations of
genes and their directions of transcription (indicated by the
arrows) as requested by Lawrence and Auger.

The segmentations look fairly similar, with slightly more
segments evident in the larger model (¢ = 2). Which model
gives the “better” segmentation depends to some extent on
the insight it gives to biologists. Of course, if the underlying
base transition structure is Markovian and if it is related
to gene function then using an appropriate choice of ¢
(or g;) will give a more appropriate classification of genes
to segment types. In this sense the ¢ = 2 model provides
a better description of the sequence as it has considerably
more posterior probability than the simpler model. Further
details of a related ¢ = 0 analysis of this sequence, with the
restriction to ry.c = 9, can be found in Boys and Henderson
(2001).

4. Model Identifiability

The issue of model complexity is related to Gupta and Liu’s
comments on model identifiability and, in particular, whether
different (r,q) combinations are (roughly) equally plausible
a posteriori. Clearly the problem is an important one when
there is high posterior dependence between r and ¢. In such
cases, considerations such as parsimony and biological inter-
pretability of the segment groupings may yield a satisfactory
solution. For our bacteriophage lambda example, there is very
little uncertainty regarding ¢ and so, fortunately, the problem
does not arise. Turning to Gupta and Liu’s binary data exam-
ple, our analysis of their data (assuming ¢ = 1) suggests that
there is very strong evidence to prefer a three-state model
with known segmentation to a two-state model with known
segmentation, which disagrees with Gupta and Liu’s conclu-
sion. Assuming a uniform Dirichlet prior for the base transi-
tion probabilities and allowing base dependence between seg-
ments, the (log) marginal likelihoods (prior predictives) are
—17.522 and —12.408 for the two-state and three-state mod-
els, respectively, which gives a Bayes factor of approximately
166 in favor of the three-state model. Furthermore, the three-
state model is to be preferred to a two-state model regard-
less of whether ¢ = 0, 1, or 2. In that sense the models
are clearly distinguishable. However, we agree with Gupta
and Liu that, in general, correctly identifying the segmenta-
tion when the sequence is only weakly informative about the
number of states would be a considerable challenge for any
algorithm.

5. Sensitivity to Prior Assumptions

An important issue raised by Lawrence and Auger is the sen-
sitivity of posterior inference to prior assumptions. The prior
information we used for the transition structure of the hidden
states (A) is equivalent to that from a sequence whose length
is a similar order of magnitude to the length of the observed
DNA sequence, which admittedly is large. The similarity be-
tween prior and posterior means for A (given r) could be due
to the prior dominating the likelihood function, as implied by
Lawrence and Auger. However, calculation of the (univariate)
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Figure 1. MPM estimates conditional on the model with ¢ = 2, r = 6 (top), and ¢ = 0, r = 7 (bottom).

marginal likelihood (via a ratio of a kernel density of the pos-
terior output and the prior density) for each element reveals
that the data are, in fact, fairly informative. We now recognize
that the sensitivity of the posterior distribution mentioned
in the article when changing the mean segment length to 100
is due to a conflict between this strong prior opinion and the
data. This insight highlights the benefit of using such calcu-
lations. They also reveal that the data are reasonably infor-
mative about the other parameters and therefore that their
posterior inferences should be fairly robust to modest changes
in their prior specification. The allocation of genes to segment
types is also reasonably robust.

6. Biological Motivation and Interpretation

We now consider the comments about biological motivation
and interpretation. Speed asks what is the main biological
motivation for an article such as ours. Our motivation is ex-
pressed succinctly by Thorne when he recognizes the role of
segmentation algorithms as providing exploratory tools for
data-driven research. Lawrence and Auger’s scenario of bio-
logical scientists being “buried in data that they don’t know
how to analyze’ is also a motivating factor in developing our
data-driven approach. The simple HMMs and change-point
models do make a serious attempt to describe general DNA
sequences but inevitably fall somewhat short. We agree with
Lawrence and Auger that our method may be more suited
to analyzing less well-understood noncoding DNA sequences.

Indeed, in an earlier paper (Boys, Henderson, and Wilkinson,
2000) we applied similar but more basic techniques (fixed r
and ¢) to study an intron of the chimpanzee a-fetoprotein
gene.

Speed and Thorne are concerned about what has been
learned from our analysis of the bacteriophage lambda
genome. Lawrence and Auger conjecture that some of the seg-
ment types are reverse complements of each other and Speed
suggests that there might be similarities between the charac-
teristics of our lambda segmentation and features of the host
E. coli organism, both points worthy of investigation. It is true
that our analysis did not lead to any further biological insight
but our biologist colleague did feel that our gene groupings
made biological sense, as did audiences at meetings where this
work has been presented, and perhaps this is all that can be
expected of such exploratory techniques. The motivation for
using this particular DNA sequence was to facilitate compar-
ison of our results with those made using other segmentation
algorithms. Such analyses do serve a useful purpose in high-
lighting limitations of potential models which might otherwise
be overlooked in an analysis of a carefully chosen sequence.
However, we do agree with the general thrust of Lawrence and
Auger’s point that the presentation of results should not be
restricted to those for a relatively small number of benchmark
data sets.

The problem of interpreting model parameters when they
are specified quite generally prior to observing the data is
raised by both Thorne and Speed. Our analysis of the lambda
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phage is a quite general exploratory investigation and has fo-
cused primarily on segmentation and classification rather than
on interpretation. In such circumstances, where parameter in-
terpretation is a secondary concern to sequence description,
predictive methods which integrate out all parameter uncer-
tainty can be instructive; see, for example, Figure 6 in Liu and
Lawrence (1999) and Figure 3 in Boys and Henderson (2001).
However, in many cases, biological meaning is of primary im-
portance and this can be aided by describing the attributes of
the hidden states in the prior distribution through a judicious
choice of their associated Dirichlet parameters. For example,
this approach can help locate segments containing genes from
families with particular base transition structures. Biological
information may also be included by specifying likely (prior)
values for elements of the transition structure of the hidden
layer, such as restricting the ordering of segment types using
an asymmetric matrix.

7. The Future

The advent of simulation-based Bayesian inference has led to
an explosion in the statistical analysis of complex models in
many fields of application. In particular, these techniques are
ideally suited to the analysis of latent process models and so
can be deployed very effectively to study many of the prob-
lems of current biological interest. Of course, the analyses
also gain considerably from the opportunity to input addi-
tional (prior) information and from the natural scientific in-
terpretation that results from adopting a subjective view of
probability. The discussants mention some of the statistical
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research into important biological questions, and progress is
being made rapidly on many fronts. It is certainly an excit-
ing time to participate at the interface between these two
subjects.
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