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Linked Michaelis-Menten type models for methanogenesis data 
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Statistical details of the analysis. 

 
The rate of production of 13CH4 (in µmol per cc of slurry per hour) increases with the 
amount of 13C substrate present.  The form of this dependence is proposed to follow 
Michaelis-Menten kinetics, i.e.  
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The rate of production of unlabelled methane, 12CH4 is also measured and a priori we 
would expect the total production of methane to be unaffected by the concentration of 
labelled substrate.  Consequently, we would expect the production of 12CH4 to be 
governed by an equation of the form: 
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where A is the total production of methane. 
 
Estimates for the parameters governing the Michaelis-Menten kinetics, B and K and 
of the total production of methane, A can be obtained by fitting a suitable statistical 
model to these data.  Three models will be fitted. The details of these will be 
presented and the rationale for each explained. 
 
Model I: common error, constant total methane production. 
 
The model to be fitted to each observation is as follows. 
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Here si denotes the ith substrate concentration employed in the experiment (i=1,2,3,4, 
corresponding to the four concentrations used) and 12

3
12
2

12
1 ,, iii yyy  (respectively 

13
3

13
2

13
1 ,, iii yyy ) are the three rates of production of 12CH4 (respectively 13CH4) observed 

at this concentration.  The ε ij are the residuals or error term.  In this model, with 
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common error, the error terms are all assumed to follow independently a Normal 
distribution with zero mean and common standard deviation σ. 
 
The model will be fitted in a single procedure: i.e. we will not fit the 12CH4 and 13CH4 
observations separately.  This is because some of the parameters of the model (most 
importantly B and K) influence both sets of observations. 
 
 
Model II: separate error, constant production. 
 
The model to be fitted to each observation is more or less as before, i.e. 
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The difference from Model I is that the residual terms for 13CH4 observations have 
standard deviation σ13, which is not necessarily equal to σ12, the value for the 12CH4 
observations. The reason for this is two-fold.  First, the quantities are measured using 
different techniques, which do not necessarily have the same characteristics.  Second, 
looking at the variation within the replicate measurements at each substrate 
concentration, the 12CH4 values seem to be measured with less precision than are the 
13CH4 values. 
 
Model III: separate error, non-constant production. 
 
The model to be fitted to each observation is now 
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The difference from Model II is that the total production of methane is not now 
assumed to be unaffected by the concentration of labelled substrate.  This is model 
provides a simple check on an important assumption underlying model II.  The 
hypothesis of constant total methane production can be assessed by testing the null 
hypothesis that C=0. 
 
 
Details of fitting etc. 
 
Each of the models was fitted by maximum likelihood (ML) and the standard errors of 
the parameter estimates obtained from the expected information matrix.  This is 
standard statistical theory. The following informal remarks are intended for those for 
whom this is unfamiliar methodology. 
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The likelihood is a mathematical function of the data and, more importantly, of the 
unknown parameters.  So, e.g., in Model II the likelihood can be thought of as a 
function of the unknowns, namely A, B, K σ12 and σ13, which we can write succinctly 
as f(A, B, K, σ12, σ13).  This function is related to the probability (assuming the model) 
of observing the data that have been seen.  The method of ML says that we should 
estimate the unknown parameters by the values which make this probability maximal. 
 

So, the method now reduces to a mathematical problem, namely to find the values of 
A, B, K σ12 and σ13 which maximises f(A, B, K, σ12, σ13).  In this instance we cannot 
find all these values by analytical means.  However, if we were to fix B and K at 
arbitrary values, we can find the values of the other parameters analytically, albeit in 
terms of the arbitrary B and K.  This function, call it g(B, K), is known as the profile 
likelihood and we maximise it using numerical methods.  Doing as much as you can 
analytically means you only have to maximise a function of two variables and this is 
somewhat more stable.  The profile log- likelihoods are given in Appendix I. 
 
The other aspect of ML is that the value of the likelihood (actually the log of this 
quantity) can under some circumstances, be used to assess the relative fit of different 
models.  This method is used to compare models I and II and models II and III. 
 
A further feature of the ML method is that it can be used to derive standard errors of 
the estimates of the parameters.  This is done using the expected information matrix, 
which for model II is given in Appendix II. 
 
The proportion of total methane production due to acetoclastic methanogenesis can be 
estimated as B/A.  The standard error of this ratio can be approximated using the 
delta-method as: 
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where 22 , bA ss  are estimates of the variances of the estimates A and B, respectively and 

ABs  estimates the covariance between the estimates of A and B. 
 
How well does the model fit? 
 
 
This is a very broad question which encompasses many issues, including those 
concerned with the background theory.  Here we consider only a narrow statistical 
assessment of the models. 
 
An important aspect of the analysis is that the likelihoods used for the various models 
assume that the residuals follow a Normal distribution.  For a given data point the 
residual is the difference between the observed rate of methane production and that 
predicted according to the model under consideration (based on the ML estimates of 
the parameters for that model).  This can be assessed by looking at a Normal 
probability plot of the residuals.  For models II and III, which assume different 
variances for the 13C curve and 12C curve, separate plots are needed for the two sets of 
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observations.  As an illustration, the plots from the data analysed in the report are 
shown below.  The slopes of the lines differ because the SD of the residuals are 
indeed quite different.  The lines are reasonably straight, which indicates that the 
assumptions of Normality are tenable. 
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Appendix I:profile likelihoods  
 
Model I. 
 
For this model the log- likelihood is: 
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where nj is the number of observations on the  jC curve (j=12 or 13) and 
f(s;K)=s/(s+K). 
 
Maximising over σ gives  
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substituting this leaves the profile log-likelihood as )ˆ,,,ˆ( σKBAl , which can then be 
maximised numerically over B and K. 
 
Model II 
 
For this model the log- likelihood is: 
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and maximising with respect to the residual SDs gives: 
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again omitting irrelevant constants.  As for Model I, the estimator of A is given by 
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unknowns, B and K, which can be maximised numerically. 
 
Model III 
 
The calculations here are the same as above, only allowing the slightly more 
complicated form for the production of 12CH4.  Analytical maximisation with respect 
to the residual SDs and also with respect to A and C, again leaving a numerical 
maximisation over just two unknowns. 
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Appendix II: the expected information matrix. 
 
This is the expected information matrix for Model II and is recorded here for reference. 
 
For Model II )/(E 2 Tθθ∂∂−∂ l  
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Here );( Ksff ii = , where )/();( KssKsf +=  and we have observed that KffKf /)1(/ −−=∂∂ . 


