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A B S T R A C T

The Kety–Schmidt technique for the measurement of cerebral blood flow (CBF) has been in use

for many years, but efficient statistical methods for producing estimates of CBF have received

little attention. This paper proposes simple statistical models for this problem and explores their

properties using data from a recent study of severe head injury in children. The method, which

can readily be implemented on a personal computer, allows the uncertainty in the estimate of

CBF to be quantified.

INTRODUCTION

Kety and Schmidt [1,2] described a method for the
measurement of cerebral blood flow (CBF) based on the
introduction of a low proportion (5–10%) of nitrous

Figure 1 Examples of cerebral saturation curves : arterial
(solid) and venous (broken)
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oxide (N
#
O) into the subject’s inhalation mixture. The

method uses the observation that the arterial N
#
O

concentration rises to a saturation level (A) faster than
does the N

#
O concentration in the venous drainage of the

brain (see Figure 1). Other physiologically inert tracers
can be used, but our experience is restricted to N

#
O and

terminology consistent with this will be used throughout.
The CBF is obtained by applying Fick’s principle to

the difference between the arterial and venous concen-
trations t min after the introduction of N

#
O. If C

a
(t) and

C
v
(t) denote the arterial and venous concentrations

respectively, then it can be shown [2] that the CBF is
given by:

CBF ¯ 100¬
λC

v
(t

eq
)

& teq

!

C
a
(u)®C

v
(u)du

(1)

where λ is the blood:brain partition coefficient, and the
factor of 100 is required to give the conventional units of
ml[100 g−"[min−". The upper limit t

eq
is the time by

which the arterial, venous and cerebral tissue concen-
trations of N

#
O have reached saturation.

The method introduced by Kety and Schmidt has been
scrutinized for more than half a century by many
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investigators (see, for example, [3–8]). It is accepted to be
the reference method for the measurement of average
levels of CBF, and is widely used both in experimental
settings [9–12] and in clinical applications in severely ill
patients [13–17]. Its validity rests on two key assump-
tions, namely: (1) that the venous samples, usually taken
from one internal jugular vein, represent the venous
drainage of the whole brain, and (2) that the concentration
of the tracer in all brain tissue is the same as that in mixed
cerebral venous blood at the beginning and end of blood
sampling. It has been argued that, in practical applications
of the technique, the latter condition is usually not
satisfied, and a correction for this problem has been
suggested [6].

In practice, the method can be implemented at the
bedside by measuring the concentration of N

#
O in

samples taken intermittently from a peripheral arterial
line and from a line placed in a superior jugular venous
bulb [13,18]. This type of arrangement also facilitates
sampling of arterio–venous differences in important brain
metabolites, such as glucose and lactate, and has the
advantage that these will arise from the same distribution
within the brain as is used to determine the CBF [13].

While some of the mathematical properties of the
processes underlying the Kety–Schmidt technique have
received attention [6,19], the statistical aspects of the
estimation of CBF from data generated by this technique
have been almost completely neglected. The present
paper presents an efficient statistical method for es-
timating CBF that can easily be implemented on a
personal computer and which also allows the error in the
estimate to be quantified. This paper assumes that the
Kety–Schmidt technique is used in its saturation mode,
but the ideas can be readily adapted to the desaturation
mode.

In the next section the disadvantages of an ad hoc
approach are explained, and the ideas behind the use of a
statistical model are presented; in the following section
two models are introduced and are illustrated and
compared using data from 109 determinations of CBF
obtained in the course of a study of severe head injury in
children [20,21] ; the penultimate section discusses the
estimation of error ; and some general comments are
given in the final section.

MODEL-BASED APPROACH

An ad hoc approach to the analysis might start from a
plot of the data as shown in Figure 2. The area under each
curve could be calculated by a simple numerical method,
such as the trapezium rule, and the CBF would be
obtained by dividing the difference between the areas
into some estimate of C

v
(t

eq
). This approach was ad-

vocated with t
eq

¯ 10 min [2], and these authors also
suggested assessing the stability of the estimate of CBF

Figure 2 Data from adetermination of CBF : arterial (E) and
venous (D) samples

by repeating these calculations for an increasing sequence
of values of t

eq
% 10. Some investigators (e.g. [14]) state

that they have used essentially this approach, while many
others are not explicit on this point ; it is surmised that
something like this technique is widely used. An ex-
ception is [15], in which the authors ‘fit a curve and
integrate to infinity’, but details are not given.

The ad hoc method has at least four statistical dis-
advantages. (1) If a single observation from the venous
curve is used to estimate C

v
(t

eq
), then the error on this

one observation becomes an important component of the
error in the estimate of CBF. (2) The method ignores the
fact that C

a
(t) and C

v
(t) are most likely to be smooth

curves and the observed concentrations will be subject to
error. So, for example, it would be quite possible to
observe venous N

#
O concentrations that exceed earlier

arterial concentrations, and for the sequence of obser-
vations from the venous or arterial lines not to increase
monotonically with time. (3) Unless simultaneous arterial
and venous samples are available, some extrapolation is
needed to allow calculation of the integrals of the arterial
and venous curves over the same interval. (4) The error in
the estimate of CBF is not quantified. There are also
substantial difficulties in the choice of t

eq
, but many of

these are essentially non-statistical and have received
attention elsewhere [3,4,6]. Consideration of these and
their statistical implications will be deferred until the next
section.

An alternative approach is to try to identify math-
ematical functions, f

a
(t) and f

v
(t), defined in terms of a

few parameters, that provide good approximations for
the curves C

a
(t) and C

v
(t), and then the CBF can be

estimated by substituting f
a
(t) and f

v
(t) into eqn. (1).

There are some general features that any such functions
should have, including the following: (a) f

a
(0) ¯ f

v
(0) ¯

0 (initial N
#
O concentration is zero) ; (b) f

a
(t), f

v
(t) must

increase as t increases, both reaching the same maximum
value A ; and (c) 0 % f

v
(t) % f

a
(t), i.e. the arterial con-
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centration is always at least as high as the venous
concentration. The choice of the precise form of f

a
(t), f

v
(t)

will be discussed in the next section.
If the observed N

#
O concentrations obtained from the

arterial line are written as y
a
(1), … ,y

a
(n

a
), where n

a

samples are taken from the arterial line, at times t
a
(1),

… ,t
a
(n

a
), then a statistical model for the observed con-

centrations is y
a
(i) ¯ C

a
[t

a
(i)]­ε

a
(i) ; i ¯ 1, … ,n

a
; where ε

values are errors. A similar model, with subscripts v in
place of a, applies to the venous data. The main sources of
error are : (i) imprecise measurement of the N

#
O con-

centration, (ii) incomplete mixing of the N
#
O in the

breathing mixture, and (iii) biological variation in the rate
at which the N

#
O is absorbed. Each source has different

implications for the form of the error structure assumed
for the ε values. It may be that source (ii) produces ε

values with S.D.s that decrease with time. As successive
measurements are from the same patient, source (iii)
could induce dependence between the ε values. However,
source (i) will probably be the dominant source of error,
and a constant S.D. is likely to be appropriate here, so we
assume that the ε values are independent with constant
S.D. (σ). Moreover, practical constraints mean that both
n
a

and n
v

are likely to be less than 10, so in any case the
dataset is too small to allow detailed examination of the
more complicated structures mentioned for (ii) and (iii).
It follows that the parameters defining f

a
(t), f

v
(t) can be

estimated by ordinary least-squares.

CHOICE AND ASSESSMENT OF MODELS

The conditions (a)–(c) listed above do not characterize
particular functions f

a
(t) and f

v
(t), and a wide choice

remains to be made in the light of further practical and
theoretical considerations. Notice should be taken of any
theoretical guidance in the literature that can inform the
choice, but it is also necessary to assess how well any
proposed model fits data obtained from the Kety–
Schmidt technique. Moreover, as practical constraints on
the implementation of the method mean that, generally,
n
a

and n
v

are both % 10, models should not be too
elaborate and contain more parameters than can sensibly
be estimated from such limited data.

Modelling Ca(t)
There appears to be little discussion in the literature of
the functional form of the arterial curve. One model
proposes a sum of exponentials [6]. As this use of
exponential functions is consistent with the general
functional forms relevant to the uptake of inert gases [19],
we will use :

f
a
(t) ¯ A(1®e−kat) (2)

In a simulation model [6], a second exponential term was

Figure 3 Arterial (E) and venous (D) samples and fitted
curves from model I

envisaged, but we will restrict attention to the form in
eqn. (2) provided that it fits our data.

Modelling Cv(t)
Given the choice in eqn. (2), an analogous choice for the
venous curve is :

f
v

(t) ¯ A(1®e−kvt) (3)

Eqns. (2) and (3) will be referred to as model I.
While model I is our primary model for the N

#
O

concentration curves, it is certainly not the only model
that satisfies conditions (a)–(c). It is therefore useful to
have an alternative model to which the fit of model I can
be compared and which will also allow some assessment
of the dependence of the estimates of CBF on the
assumed model. Kety [19] provides an extensive dis-
cussion of the application of compartmental modelling of
the diffusion of inert gas in tissue. If the brain is taken as
a single compartment, then the venous concentration of
an inert gas is related to the arterial concentration by:

C
v
(t) ¯ k

v
e−kvt& t

!

C
a
(u)ekvudu

Substituting from eqn. (2) for C
a
(t) into this integral

suggests the alternative form:

f
v

(t) ¯ A 01®
k
v
e−kat®k

a
e−kat

k
v
®k

a

1 (4)

Eqns. (2) and (4) will be referred to as model II. Although
a single-compartment model for the brain is questionable
[6], eqns. (2) and (4) obey conditions (a)–(c), and model II
provides a useful comparison for model I.

Choice of teq

Eqn. (1) is valid only if the cerebral tissue is in diffusion
equilibrium with its blood supply by t

eq
. The adequacy of

the value of 10 min chosen by the originators of the
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Table 1 Estimates of CBF and their ratios

CBF (ml[100 g−1[min−1)

Model Minimum Lower quartile Median Upper quartile Maximum

I 11.6 31.9 39.9 59.8 179.7
II 12.5 35.0 45.0 68.9 146.6
Ratio I/II 0.62 0.86 0.90 0.93 1.31

Figure 4 Arterial (E) and venous (D) samples and fitted curves for model I (solid lines) and model II (broken lines)
The CBFs under model I are below the lower quartile (a and b), between the lower and upper quartiles (c and d), and above the upper quartile (e and f).

technique has been questioned [3], and an improved
method to calculate CBF, based on ‘extrapolation to
infinity’, or t

eq
¯¢, was proposed. This is clearly not

practical with an ad hoc method, but need not present
difficulties for one based on a statistical model, such as
the ones above or that which was implicit in the method
suggested by Lassen and Munck [3].

Substituting the formulae for f
a
(t) and f

v
(t) into eqn. (1)

with t
eq

¯¢ gives :

Model I :
CBF ¯ 100¬λk

a
k
v
}(k

a
®k

v
) ml[100 g−"[min−" (5I)

Model II :
CBF ¯ 100¬λk

v
ml[100 g−"[min−" (5II)
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Table 2 Estimates of CBF and its standard error and residual standard deviation for
determinations shown in Figure 4
Determinations were based on model I or model II, as indicated.

Model I Model II Model I Model II

Panel in Figure 4… (a) (a) (b) (b)
CBF (ml[100 g−1[min−1) 31.7 37.1 17.6 18.7
S.E. of CBF 6.7 10.2 1.5 2.2
σ 5.11 6.03 2.21 3.09

Panel in Figure 4… (c) (c) (d) (d)
CBF (ml[100 g−1[min−1) 34.4 36.0 51.2 71.2
S.E. of CBF 1.8 2.7 8.5 22.2
σ 1.04 1.53 3.91 5.93

Panel in Figure 4… (e) (e) (f) (f)
CBF (ml[100 g−1[min−1) 179.7 137.4 86.5 104.0
S.E. of CBF 30.1 14.8 27.5 35.8
σ 0.92 0.81 3.73 3.97

Figure 5 Comparison of CBF determinations from models I
and II

It should be emphasized that the device of using t
eq

¯¢
overcomes errors due to an inadequate measurement
period only if the functions f

a
(t) and f

v
(t) adequately

represent C
a
(t) and C

v
(t) not only over the period of data

collection but also for all later times. The adequacy over
the former period can be checked by assessing how well
the models fit the observed data, but there is no easy way
to assess the adequacy of the model over the latter period.
One approach to the problem [6] is to postulate a
plausible underlying model and use this to quantify the
size of possible errors, such as those due to a second
cerebral compartment. We do not pursue this matter
further.

The CBF is estimated by fitting either model I or
model II to the data and substituting the estimates
obtained for k

a
and k

v
into eqn. (5I) or (5II). Note that

the estimate of CBF should not depend on the amount of

tracer used, and this explains why A does not appear in
eqns. (5I) and (5II).

Figure 3 shows the curves for model I fitted to some
data by least squares : the values obtained for the
parameters are 66.82 (A), 0.412 (k

a
) and 0.157 (k

v
), and

therefore the estimate of CBF is 100¬0.412¬0.157}
(0.412®0.157) ¯ 25.4 ml[100 g−"[min−" (provided we
take the partition coefficient, λ, to be equal to 1).

Data and model assessment
The performance of models I and II can be assessed using
data from 109 determinations of CBF obtained from 18
patients in a study of severe head injury in children
[20,21], using methods of data collection and measure-
ment of N

#
O concentration described previously [18].

We are presently concerned only with the assessment of
models I and II for the estimation of CBF, so issues
associated with repeated determinations on a patient will
be ignored.

The number of arterial samples available for a de-
termination ranged from four to eight, with only 13 CBF
estimates being based on fewer than seven samples. The
number of venous samples ranged from two to eight,
with six CBF estimates having fewer than six samples and
22 having fewer than seven. The distribution of the CBFs
is shown in Table 1. Figure 4 shows the fit of models I and
II to data from six patients, two randomly chosen from
below, two from between and two from above the
quartiles of CBF according to model I ; the derived CBFs
and some related quantities are given in Table 2.

Figure 4 shows that both models offer a good fit to the
data. In most cases model I fits better, in terms of both
visual inspection and lower residual variation as measured
by σ (see Table 2). Inspection of a larger number of plots
confirms that both models generally offer good fits to the
data, with model I usually being superior. The ratio of the
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estimate of σ from model I to that from model II ranges
from 0.59 to 1.38 (median 0.85; upper and lower quartiles
of 0.74 and 0.93 respectively). Note that σ is measured on
the scale of N

#
O concentration, so cannot be compared

directly between patients.
If fits of models I and II are compared [22], no evidence

that model II is superior is found. The statistic C derived
in section 4 of [22] was significant at the 5% level for only
eight out of 109 cases ; given the number of tests
performed, this is consistent with model II offering no
improvement in fit. A normal plot of the ordered C
values confirmed this.

While it appears clear that model I offers a better fit, it
is instructive to assess the influence of the choice of
model on the CBF values obtained. If the different
models give similar CBFs, then the user may have more
confidence in the values obtained. If this is the case, the
ratios of the CBF value obtained from model I to that
obtained from model II should be close to 1; these ratios
are plotted in Figure 5 against their geometric mean.

Model II yields CBFs that are on average 10% higher
than those obtained from model I, but, apart from this
bias, there is good agreement for slower blood flows.
Agreement is less good for higher CBFs, but, as will be
seen in the next section, the uncertainty in any CBF
determination increases as the CBF increases, and the
discrepancy shown in Figure 5 probably reveals the
difficulty in measuring CBF in these cases rather than any
model-dependence in the estimates.

QUANTIFYING THE ERROR IN CBF

If we assume that the errors ε have a normal distribution,
then statistical theory allows the standard errors and
correlations of the fitted parameters to be estimated.
From these, it is possible to infer an approximate value
for the standard error of the estimate of CBF; some
details are given in the Appendix. If we assume that
model I provides a good model for the data, then this
standard error will measure the uncertainty in our
estimate of CBF due to errors in the measurement of
N

#
O concentration. The standard errors of the CBFs

derived from Figure 4 are given in Table 2.
The accuracy of the various approximations involved

was assessed in a small simulation study and was found to
be satisfactory, provided that the CBF was not too large.
For flows below about 70 ml[100 g−"[min−" the standard
error can reasonably be used to construct confidence
intervals in the usual way. For example, for the case
illustrated in Figure 4(c), a 95% confidence interval is
(34.4³1.96¬1.8) ¯ 30.9, 37.9 ml[100 g−"[min−".

However, from Table 2 it can be seen that that the
standard errors increase as the CBF increases and by
considering, for example, Figures 4(b) and 4(e), it is easy

to appreciate why this is so. In the former, where the
CBF is low, the curves are well separated and errors in the
data points will lead to only a small change in the area
between them. In the latter, where the CBF is high, errors
in the data points could lead to very large proportionate
changes in the estimated area, and hence in the estimate of
the CBF. Although increasing imprecision with increas-
ing CBF is thus inevitable, the methods of calculating
standard errors and confidence intervals are themselves
flawed for larger CBFs, making matters worse and
leading to absurd results, such as the two determinations
in the present study with confidence intervals of (®74.0,
314) from a CBF of 120 and (®61.0, 298) from a CBF of
118 (all with units of ml[100 g−"[min−").

An alternative approach is to construct confidence
intervals using a method known as profile likelihood,
which is outlined briefly in the Appendix. This method
gives intervals that cannot be negative and may be skewed
(that is, the estimate of CBF is not in the middle of the
interval). In extreme examples, such as those at the end of
the last paragraph, the curves are so close that coincident
curves are compatible with the data and the profile
likelihood method will provide only a lower boundary
for the CBF, the upper limit being effectively infinite.
Although physiologically absurd, this is not statistically
unreasonable, given that the venous and arterial curves
differ by amounts that are similar to the noise in the data.
For the above examples the intervals are therefore (46.0,
¢) and (47.0, ¢) respectively. Fortunately, from a
clinical point of view, the precise value of CBF in cases
where the CBF is large may not be of crucial importance,
but at least the method provides a lower limit.

DISCUSSION

Model I provides a coherent approach to the analysis of
data generated by the Kety–Schmidt technique for
the estimation of CBF. In addition to overcoming the
problems with ad hoc methods mentioned above,
the error in the estimate and confidence intervals based
on this model can be obtained. Part of our assessment of
the method rested on data obtained in a study in which
N

#
O was used as the tracer, so strictly our methods apply

only when this tracer is used. However, we see no reason
why the model should not provide a good fit when other
tracers, such as argon, )&Kr or "$$Xe, are used.

Model II does not appear to offer as good a fit to our
data as model I. Moreover, the use of bi-exponential
functions for f

a
(t) and f

v
(t) did not improve the fit of the

model (results not shown).
As was observed in the section on quantifying error,

larger standard errors and wider confidence intervals
accompany larger values of CBF. The Kety–Schmidt
technique would appear to be well equipped to dis-
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tinguish between cerebral ischaemia and hyperaemia. It
can provide precise estimates of CBF in ischaemia, but is
less able to do so when the CBF is high. However, once
it has been established that hyperaemia is present, there is
less clinical importance attached to the exact value of the
CBF.

Model I can be fitted when as few as four N
#
O

concentrations have been obtained, although our ex-
perience suggests that at least six, and preferably seven or
eight, samples from each of the venous and arterial lines
are needed for good estimation of CBF. While it is
unwise to attempt to estimate CBF from fewer than 12
data points, it may in practice be impossible to collect this
many samples, yet an estimate of CBF would be clinically
valuable. In these circumstances our method could be
applied, but caution is required for at least two reasons:
(i) there may be too few points for the data themselves to
confirm that the model fits, and (ii) fewer data mean less
precise estimation, regardless of the statistical technique
used. With regard to the first problem, the analyst must
fall back on the general performance of the model, which
this study suggests is good. It is important with regard to
the second problem to quantify the amount of infor-
mation that is available by calculating a standard error
and confidence interval.

The determinations of N
#
O concentration are necess-

arily made repeatedly on the same individual, and this
may lead to the error terms ε

a
(i) and ε

v
(i) being dependent.

We have not pursued this aspect of the model for several
reasons. The estimates obtained by assuming indepen-
dence will still be accurate, although in theory it is
possible that the estimate of error will not be correct.
However, with the number of determinations of the
concentration of the marker that it is feasible to make in
practice, it would be impossible to estimate the degree of
dependence between the errors with worthwhile pre-
cision, and any attempt to do is likely to lead to estimates
that have a greater mean square error than those presented
in this paper.

Programs for a personal computer that fit model I and
calculate the quantities described in this paper are
available from URL:
http:}}cs.portlandpress.com}cs}097}cs0970485add.htm
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APPENDIX

If we assume normal errors then, when model I is fitted,
we obtain not only estimates of A, k

a
and k

v
, but also

their standard errors and related quantities. We estimate
CBF using eqn. (5I) (see the main text) and the δ-method
approximates its standard error by:

100λ

(k
a
®k

v
)#

oσ
a
# k

v
%­σ

v
# k

a
%®2ρσ

v
σ
a
k
a
# k

v
# (A 1)

where σ
a

and σ
v

are, respectively, the standard errors of
the estimates of k

a
and k

v
, and ρ is their correlation.

For high CBFs (in practice higher than about 70λ

ml[100 g−"[min−"), when k
a

and k
v

are of similar size,
this approximation breaks down, and a profile likelihood
confidence interval for CBF is to be preferred. This is
most easily done by working with the parameter δ¯
k
v
−"®k

a
−"¯ 100λ}CBF; inverting the limits for the

confidence interval for δ and multiplying by 100λ gives
the interval for CBF. If we write δ# for 100λ times the
reciprocal of the estimated CBF, the 95% limits for δ are
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found by solving F(δ) ¯ F(δ#)®"
#
¬3.84 separately for δ©δ#

and for δªδ# , where
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(A 3)

where q
ai

¯ 1®exp[®k
a
t
a
(i)] and q

vi
is defined similarly.

If the CBF is large, then it is possible that F(0) "
F(δ#)®"

#
¬3.84, so no solution for δ! δ# can be found, and

in this case we take zero as the lower boundary on the
interval for δ, and the upper boundary of the interval for
CBF becomes infinite.
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