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Survival Analysis

Introduction to Survival Data
In many studies the outcome for a patient, volunteer or experimental unit is

some event.  Examples would be:

a) clearance of psoriasis in a trial of alternative therapies;

b) metastatic spread in a study of the natural history of a particular cancer;

c) death, from any cause, of patients in a trial of different treatments for leukaemia;

d) death, due to leukaemia, in the above trial;

e) destruction of a sample in a study of the strength of dental material.

The events in these examples differ in the degree of certainty that can be ascribed to
their ascertainment.  Those in c) and e) are unequivocal, d) might be surprisingly
uncertain, b) could be very difficult whereas a) would depend on the method used to
determine 'clearance'.  In what follows it will be taken for granted that the occurrence
of the event can be accurately ascertained, although in practice this may not be the case
and it may be necessary to take account of this.

In each of these studies an outcome that may be of considerable clinical or
scientific importance is the time, measured from some appropriate origin, that elapses
before the event occurs.  It is this quantity that is known as the survival time or in
some contexts, the failure time.  Such times are either continuous variables or can be

treated as continuous
for all practical
purposes.  However,
special methods are
needed to analyse such
data for two reasons,
the first empirical, the
second structural.

Skewness: although it
is not inevitable, it is a
matter of common
experience that most
sets of survival times
are skewed and not at
all suitable for the
application of the usual
methods based on
Normal data.  A typical

graph of some survival times is given in figure 1.  As often happens with highly skewed
data, the SD exceeds the mean and clearly a Normality assumption is untenable; it
predicts over 16% of the population would have survival time less than 0.

Censoring: the second problem is that during the period or locality of observation the
event which defines the survival time will not happen to some of the patients or units in

0 15 30 45 60 75

Survival time (weeks)

0.0

1.5

3.0

4.5

6.0

7.5

N
um

be
r 

of
 p

at
ie

nt
s

Mean survival time = 17.9 wks
S.D.                 20.3 wks

Median survival time =  7.5 wks
Lower quartile 3.25 wks
Upper quartile 28 wks

Figure 1: histogram of a typical sample of survival times
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the study.  When the analysis is performed the survival times of such individuals are
not fully observed; on the other hand these times are not totally unknown because they
are known to be in excess of the time for which the individual has been observed.
Such times are said to be censored and it is an important component of survival
analysis that the information in censored times is taken into account fully.

The Survival Curve
In a t-test or regression the analysis is based around the estimation of and

testing hypotheses about population parameters, which are numbers such as means,
standard deviations or regression slopes.  In a survival analysis the underlying
population quantity is a curve rather than a single number, namely the survival curve.
The survival function is denoted by S t( ) , which is defined as:

S t( )  is the probability an individual survives more than time t

The survival curve is the plot of S t( )  (vertical axis) against t (horizontal axis).  The
definition has two general consequences: first, as an individual is certain to survive

more than zero time, S(0) = 1; second, as it is impossible for an individual to survive
more than time t2 without surviving all times t1 < t2, S t( )  must get smaller as t gets
bigger.  Figure 2 shows two examples of population survival curves.

The aims of the survival analyses to be described in the following sections are
centred on the estimation of the survival curve and on the assessment of the equality of
two survival curves.  The methods will not make any assumptions about the
distribution of the survival times, so the comparison of two curves can be thought of as
the survival analogue of the Mann-Whitney test.  More complicated methods are
available, including parametric survival models (generally rather underused in medical
applications) and Cox regression models, which feature in many parts of the literature.
Both these are beyond the scope of this note: further details on Cox regression can be
found in Altman (1991, p. 387-393).
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Figure 2: hypothetical examples of two population survival curves
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Estimation of S(t)
The first requirement of all survival analyses is to produce an estimate of the

survival curve.  The method, known as the Kaplan-Meier or Product-Limit estimator,
is explained in broad terms and then the procedures for its calculation are set out in
more detail.  Various packages, such as Stata or SAS, will produce this estimate for
you but unfortunately it is not available in Minitab.  It is actually easy to program in a
spreadsheet such as Excel.

Background to the method.

The approach of the method is to compute the estimate sequentially.  Suppose
we have an estimate of S(t) for times up to t1 and we want to extend the estimate to
time t2 > t1.  A unit can survive beyond the later time only if it survives until the earlier
time and then survives the interval between the two times, in symbols this is:

S(t2) = Prob( survive from t1 to t2 ) × S(t1).

A simple estimate of the probability of surviving from t1 to t2 is 1− d

n
, where

d is the number failing between t1 and t2 and n is the number that could have failed in
the interval.  An important step in estimating S(t) is to realise that if the interval
between t1 and t2 contains no failures (d=0) then the estimate of S(t) does not change.
Therefore, we only need to update S(t) at the times at which a failure is observed to
occur, and then the formula displayed above is used.

The only complication to resolve is what to do with censored observations.  It
is assumed that if, e.g., an individual whose survival time was censored at 100 months
had in fact failed at 50 months, then we would have recorded that failure.  Thus, at any
failure time, n in the formula includes any individual censored at that or a later time but
excludes those censored earlier.

This is all there is to the Kaplan-Meier estimate.  Its implementation is
essentially straightforward and relies on accurate book-keeping of when individuals
failed or were censored.

Computational Details

The computation of the Kaplan-Meier estimate is demonstrated table 1 using
the following example data set of survival times (in days from entry to a trial) for
patients with stage 3 diffuse hystiocytic lymphoma (from McKelvey et al., 1976,
Cancer, 38, 1484-1493).

6, 19, 32, 42, 42, 43*, 94, 126*, 169*, 207, 211*, 227*, 253, 255*, 270*, 310*, 316*,
335*, 346*.

The times marked * are censored.  It is useful to start the estimation of S(t) by writing
the data in ascending order, including the censored times in the ranking but ensuring
that they are distinguishable from times that are not censored.

The table comprises five columns, the final two being found easily once the first
three have been completed.  The first column contains all the times at which at least
one failure was observed, it does not contain the times at which only censoring
occurred: it also contain the time 0.  The second column indicates how many failures
occurred at the corresponding failure time: in many tables this column predominantly
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contains 1s.  The third column contains the number that could have been seen to fail at
the corresponding time.

The entries in the first two columns are easily found.  The first row is also
easily found: there are no failures and the number at risk is the total sample size: as
S(0) = 1 for all survival functions, the value in the final column is known.

Subsequent rows for the third column are found by subtracting the value in the
second column from that in the third column of the row above, that is the number at
risk is the number that were at risk at the last failure time minus the number failing at
that time.  Thus in row 3, n=18 = 19 (n in previous row) - 1 (d in previous row).
However, there is a complication, namely the number of subjects censored at any time
from (and including) the previous failure time up to (but excluding) the present failure
time must also be subtracted from the number at risk.  So, in row 6 n is not 16 - 2 from
the row above but 16 -2 -1 = 13, because a patient was censored at 43 days.

Once the first three columns have been found it is a matter of simple arithmetic
to calculate the ratio in column 4.  The entry at a given row of column 5 is the value in

the previous row of
column 5 multiplied by
the value in the present
row of column 4.  It is
because the evaluation is
dependent on the
previous row that it is
necessary to set the
process going by
including the value 1 in
the first row of column 5.

The entries in column 5
form the Kaplan-Meier
estimator; it is usual to
plot S(t) against t,
remembering that the
value of S(t) at times

intermediate between successive failures is the value at the earlier failure time (figure
3).  Although the dataset contained times greater than 253 days, they were all
censored.  There is no general agreement about whether these points should be
included in any plot, some authors extend the graph as a horizontal line until the

Failure time No. failing d No. at risk n
1− d

n

S(t)

0 - 19 - 1
6 1 19 0.9474 0.947
19 1 18 0.9444 0.895
32 1 17 0.9412 0.842
42 2 16 0.8750 0.737
94 1 13 0.9231 0.680
207 1 10 0.9000 0.612
253 1 7 0.8571 0.525

Table 1: calculations for Kaplan Meier estimator of S(t)
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maximum censored time, others finish the graph at the largest failure time.  In principle
the former is more informative, although some judgment should be exercised because a
large outlying censored time can distort a graph greatly.

Comparing two Survival Curves: the Log-rank test
There are many circumstances when it is required to ascertain whether or not

there are differences in the survival experiences of two groups, perhaps patients in
treatment groups after a clinical trial or with different prognoses, such as tumour
stages.  A naive approach would be to choose a time, e.g. 2 years, work out the
proportions surviving beyond this time in the two groups and compare them using a χ2

test.  This has two disadvantages: first it is difficult to define the proportions in a way
that is both efficient and unbiassed, largely due to the presence of censoring: see
Altman (1991, section 13.5) for details.  Second the choice of a time (such as 2 years)
is arbitrary and it is potentially misleading to compare two survival curves at a single
time.

Although the χ2 test is incorrect, the associated 2 × 2 table is the basis of the
correct method.  The method overcomes the problems of censoring by using methods
that are similar to those used in the Kaplan-Meier estimator of S(t).  It overcomes the
problem of comparison at a single point by comparing at many time points
simultaneously: again the thinking behind the Kaplan-Meier estimator is used as the
times chosen are those a which a failure occurred, in either group.

The resulting test, called the log-rank test, tests the null hypothesis that the
survival curves in the two groups are the same.  If this null hypothesis is true, then the
numbers failing in each group in each 2 × 2 table will be in the ratio of the numbers at
risk in the groups.  The expected numbers of failures so calculated in each group can
be added across all times: the log-rank test proceeds by comparing these values with
the actual numbers of failures in the two groups.

To be specific, the 2 × 2 table that is constructed at each time is given below:

Failed Surviving At risk

Group A dA nA - dA nA

Group B dB nB - dB nB

Combined d n - d n

If the null hypothesis is true then you expect the total number of failures d to be
distributed between the two groups in the ratio of the group sizes.  That is, the
expected number of failures in group A at this time is

E d
n

nAt
A= ×

The subscript t is added to make it clear that this is just the expected number of failures
in group A at one particular failure time.  The expected number of failures in group B
is defined in a similar fashion but there is no need to compute it in the same way
because it can be found simply by noting:
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E d
n

n
d

n n

n
d EBt

B A
At= × = × − = − :

from which it follows that the expected number in group B can be found as the number
which ensures that the expected numbers of failures in both groups add up to the
observed number.

From this table at a given failure time, the table at the next failure time is
computed in a way analogous to the updating of the table used in the calculation of the
Kaplan-Meier estimate.  Updating is done separately in each group: the number at risk
in the next table is the number at risk in the present table minus the number failing in
the present table minus the number of individuals censored between the present table
and before the next table.

Once tables have been found for each failure time the method continues by
computing four quantities:

1. the total number of observed failures in group A, i.e. the sum of the dA over all
failure times, call this OA

2. the total number of observed failures in group B, called OB

3. the expected number of failures in group A, i.e. the sum of the EAt over all failure
times in either group, called EA.

4. the expected number of failures in group B, which is easily found from the above as
E O O EB A B A= + − .

If the null hypothesis is true then the Os and the Es would be expected to be similar.
The log rank test based on the above computes

( ) ( )O E

E

O E

E
A A

A

B B

B

− + −2 2

, (*)

and the P-value is found by referring this to a χ2 distribution with 1 degree of freedom.

An example: trial of 6-MP in treatment of leukaemia.

Table 2 contains the survival times (in weeks) of patients with leukaemia given
6-MP (group A) or control (group B), (Freireich, EJ et al. 1963, Blood, 21, 699-716):
as before * denotes a censored time

Group A (6-MP) 6, 6, 6, 6*, 7, 9*, 10, 10*, 11*, 13, 16, 17*, 19*,
20*, 22, 23, 25*, 32*, 32*, 34*, 35*

Group B (control) 1, 1, 2, 2, 3, 4, 4, 5, 5, 8 8, 8, 8, 11, 11, 12, 12, 15,
17, 22, 23

Table 2: survival times, see text for details.

Although it is conceptually easier to think of the process in terms of 2 × 2
tables, it is cumbersome and unnecessary to carry this into the calculations.  All that is
needed is to record the numbers failing in each group at each failure time, together
with the numbers at risk in each group at the same times.  The calculation can then be
set out in tabular form, as in table 3, with columns 1 & 2 and 4 & 5 containing the
essential the data from the experiment.  Column 7 can then be found by adding 1 & 4
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and column 8 by adding 2 & 5; columns 3 and 6 can be found by multiplying
respectively columns 2 and 5 by the ratio of column 7 to column 8.

The first row is at the time of the first failure, that is at week 1.  At the second
failure time, namely week 2, the number at risk in group B is 19, which comprises the
21 at risk at week 1 minus the two deaths at week 1.  The first failure in group A
occurred at week 6, when three deaths occurred.  The next failure time is 7 weeks and
the number at risk is 17, which is the 21 at risk in week 6 minus the 3 deaths at week
6, minus the patient whose survival time was censored at 6 weeks.  The table is
compiled in this way, stopping at the largest failure time which is not censored.  The

total number of observed and expected failures in each group is found as in table 3.
The log-rank statistic can then be found from an application of the formula given
above:

( . )

.

( . )

.
.

9 19 25

19 25

21 10 75

10 75
15 23

2 2− + − = ,  P < 0.001,

so there is clear evidence that the survival curves for the two groups are different.
This can be seen in figure 4, where the Kaplan-Meier estimators for the two groups are
shown.  In any survival analysis it is insufficient to supply just the results of a log-rank

Failure
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At
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2
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n
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5
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Bt

6
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n
t
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1 0 21 1.0 2 21 1.0 2 42
2 0 21 1.05 2 19 0.95 2 40
3 0 21 0.553 1 17 0.447 1 38
4 0 21 1.135 2 16 0.865 2 37
5 0 21 1.2 2 14 0.8 2 35
6 3 21 1.909 0 12 1.091 3 33
7 1 17 0.586 0 12 0.414 1 29
8 0 16 2.286 4 12 1.714 4 28

10 1 15 0.652 0 8 0.348 1 23
11 0 13 1.238 2 8 0.762 2 21
12 0 12 1.333 2 6 0.667 2 18
13 1 12 0.75 0 4 0.25 1 16
15 0 11 0.733 1 4 0.267 1 15
16 1 11 0.786 0 3 0.214 1 14
17 0 10 0.769 1 3 0.231 1 13
22 1 7 1.556 1 2 0.444 2 9
23 1 6 1.714 1 1 0.286 2 7

O
A
 = 9 E

A
 = 19.251 O

B
=21 E

B
 = 10.749

O
A
/E

A
 = 0.468 O

B
/E

B
 = 1.954

Table 3: log rank test.
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test.  It is necessary to provide the Kaplan-Meier estimators for all appropriate groups,
and it is useful to provide some numerical estimate of the difference between the
curves.

The hazard ratio

The commonest estimate of the difference between two survival curves is
known as the hazard ratio.  The ratio of the number of failures observed to that
expected assuming the null hypothesis, that is O/E, is called the relative failure rate.  In
this analysis the relative failure rates are 0.46 in group A and 1.95 in group B.  The
ratio of these two quantities is:

h

O
E

O
E

A

A

B

B

=

which is the hazard ratio, equal in this analysis to 0.46/1.95=0.24.  This quantity
expresses how much larger the failure rate is in group A than group B and, being less
than 1, shows that group A has the more favourable survival rate.

An approximate 95% confidence interval for h can be found.  As with odds
ratios, the confidence interval is the back transformation of a confidence interval for
log ( )e h .  The standard error of this quantity is approximately:

se h
E Ee

A B

(log ( ))
. .

= + = +1 1 1

19 25

1

10 75
 =  0.381,

so a 95% confidence interval for log ( )e h  = -1.427 is -1.427 ± 1.96 × 0.381 =
( . , . )− −2 173 0 680, and back-transforming gives the confidence interval for h as (0.11,
0.51).  This procedure is only approximate but gives reasonable answers if h is
between a 13  and 3.
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Figure 4: Kaplan-Meier estimators for two groups in table 2
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Extensions and variants of the Log-rank test
The log-rank test outlined above is the simplest version, designed to compare

two groups as a whole.  Even to do exactly the same job there are at least two other
forms of the statistic which may be encountered in the literature.  However, in most
cases the difference between the above method and these variants is small and can be
ignored.

There are several extensions of the log-rank test to accommodate different
circumstances.  The most obvious extension is to compare more than two groups: the
method described works by computing the number of failures expected in each group
under the null hypothesis and there is no reason why exactly the same method should
not be extended to find the expected number of failures in any number of groups.  The
final test statistic is the obvious extension of (*), which is referred to a χ2 distribution
on g-1 degrees of freedom, where g is the number of groups.  This extension can itself
be extended to allow for ordering in the groups.

An extension of a different kind is to stratify the analysis: this may be desirable
when the failure rates are expected to differ between different subgroups of patients,
e.g. those with stage II or stage III tumours.  This is a straightforward extension: the
computations in table 3 are performed separately in each stratum and then the observed
and expected numbers in each group are summed across the strata before being entered
in the formula (*).

A good description of these extensions can be found in Altman (1991, section
13.4)  A much more ambitious extension is to Cox Regression, which allows numerous
groups to be compared, using several strata and also can allow for continuous variables
which might influence survival, such as white blood cell count, and variables which
change over time.  This technique is widely used in medical research but is beyond the
scope of this note, the interested reader is referred to section 13.6 of Altman (1991).
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