
Sample Size and Power 

General remarks 
One of the most transparent reasons why statistical analyses are based on the means 
of samples rather than just single values is that they are in some sense an 
improvement on using single values.  In less vague terms, the sample mean, x , 
becomes a more and more precise estimate of the population mean, μ, as the sample 
size increases.  A quantitative measure of this precision is the standard error, σ/√n, 
which decreases as the precision increases.  The larger n becomes the smaller is the 
standard error. 

The dependence of the standard error on sample size can be exploited when a study is 
being planned.  The investigators need to decide how much precision is needed for 
their purposes and design the study accordingly.  It is wasteful, and possibly 
unethical, to recruit many more patients than you need, while on the other hand a 
study that recruits too few may well be pointless. 

There are several  methods of determining sample size and each has several variants, 
depending on the kind of outcome being measured.  Sample sizes could be based 
directly on the measure of precision, so that the width of a confidence interval, or 
equivalently the size of a standard error, is required to be less than a prescribed value.  
An alternative  method is to set the sample size so that a hypothesis test has a given 
power.  The latter is probably more widely used, although the former is, perhaps, 
rather underused. 

In either case the sample size will be given by a formula or a table which will require 
the values of certain unknown parameters to be specified.  It would not be 
unreasonable to think of the study as a means of obtaining such estimates, and 
consequently their prior specification in a sample size calculation can often seem 
rather unhelpful.  Nevertheless, this is problem is inevitable.  For some parameters 
logically satisfactory ways round this impasse can be found, but for others there is no 
option but to attempt to find some estimate, perhaps from the literature or from a pilot 
study.  For this reason it is important to realise that sample size calculations do not 
give precise values: they depend on parameters whose values are unknown and they 
will vary, sometimes alarmingly, as the values used for the parameters vary. 

It is a wise precaution when performing a sample size calculation to do a sensitivity 
analysis, where the range of sample sizes obtained from a range of parameter values 
is considered.  Of course, this will not help in deciding what parameter values are 
correct, nor should it be used to accord special status to parameter values 
corresponding to convenient samples sizes.  However the exercise is useful in telling 
the investigators how much reliance it is prudent to place on the computed sample 
size. 

It should also be appreciated that in some pieces of research, the area is insufficiently 
understood to allow a sensible sample size calculation to be performed.  For example, 
if it is impossible to find adequate values for the parameters needed to provide the 
sample size that ensures a hypothesis test has a certain power, then perhaps it should 
be admitted that it is too early in the process of research for a hypothesis to be tested.  
At an early stage it is inevitable that sample sizes will be determined almost 
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arbitrarily: in these circumstances the results of the study may need to be used with 
caution. 

Methods based on estimation 
The confidence interval for a mean is x ts n± / , where s is the sample standard 
deviation and t is the appropriate point from a t-distribution.  Strictly speaking the 
value of t will change with n but in fact, once n>30, the value changes little as n 
changes.  Consequently it is much simpler to base sample size calculations on the 
approximate confidence interval x zs n± /  where z is the appropriate point of a 
standard Normal distribution.  So, for example, for a 95% interval z=1.96.  If the 
calculation results in a value of n below 30 then it might be prudent to increase the 
value slightly to allow for this approximation, but this is seldom needed in practice.  
The width of the confidence interval is 2zs n/ , which is approximately 4s n/  for 
a 95% interval.  Consequently sample size calculations which prescribe a limit for the 
width of a confidence interval are essentially the same as those which put a limit on 
the size of the standard error, they merely differ by a known factor 2z 

If the standard error is required to be less than L then this means that n must exceed 
s2/L2.  The value of s will clearly be unknown, but it can be replaced by σ, but this too 
is unknown.  It is necessary to find some prior estimate of this parameter and this is 
substituted in σ2/L2.  It is not really material whether you think of the process as 
estimating s or σ. 

It is important to ensure that the correct standard error is used.  The above uses the 
standard error of a sample mean.  If the aim is to set a limit on the standard error of 
the difference between the means of two groups, then that standard error should be 
used.  If the responses in the two groups have a common standard deviation, then 
standard error of x x1 − 2  is: 

s
n n
1 1

1 2

+                                                          (1) 

where s estimates the common standard deviation and n1 and n2 are the sizes of the 
two groups.  Placing a limit on (1) is not sufficient to determine two samples sizes.  
However, it is usual to assume that the two groups have the same size (it is very easy 
to adapt the calculation to allow any other pre-specified ratio between the two sample 
sizes).  In this case (1) become s√2/√n where n is the size of each group.  
Consequently putting a limit of L on the standard error of the difference between two 
groups requires 

n s
L

≥
2 2

2 . 

Methods based on hypothesis tests 
The ideas behind this approach are the same regardless of the type of outcome 
variable that is the basis of the calculation.  However, the details do differ 
substantially and therefore two cases are dealt with here, namely a Normally 
distributed variable and a binary variable.  The main ideas are introduced in this 
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context and the necessary modifications are dealt with when binary data are 
considered. 

Normally distributed outcome 
Suppose interest is focussed on the comparison of two groups with respect to a 
variable that has a Normal distribution.  In particular the null hypothesis of interest is 
that the means in the two groups are equal.  It is assumed that the responses in the two 
groups share a common population standard deviation. 

The usual method of testing this hypothesis is to use an unpaired t-test which is based 
on the test statistic 

z x x
s n n

=
−

+
1 2
1 1
1 2

. 

The P-value is found by referring this to a t-distribution on the appropriate degrees of 
freedom.  Provided the combined sample size exceeds about 30, a simpler 
approximation is to refer the statistic to a standard Normal distribution. 

Hitherto it has been recommended that the size of the P-value be used as a measure of 
the evidence against the null hypothesis.  A similar approach, but which has a slightly 
different emphasis, is to reject the null hypothesis if the P-value is below some critical 
value, C.  Two kinds of error could be made: 

Type I  -  the null hypothesis is rejected when it is true 

Type II - The null hypothesis is not rejected when it is false. 

The probability of the first is determined by the critical C and this does not depend on 
sample size.  For example, a Type I error probability or rate of 5% corresponds to 
C=1.96. 

The probability of a Type II error depends on several things, including the sample 
size, and n can be set by specifying, amongst other things, the Type II error rate. 

The Type II error is 1 minus the power, because the power of the test is the 
probability that a false null hypothesis is rejected. 

The formula for the sample size will be given below and its components described.  
The mathematical justification of the formula can be found in the appendix.  
However, although it is rather imprecise, there is some value in a more heuristic 
explanation of how power can be used to set sample size can be given and this is now 
given. 

Heuristic explanation 

When testing the difference in means between two groups we are trying to decide if 
μ μ1 − 2  is zero or not.  We have to try to do this on the basis of the difference in 
sample means, x x1 2− .  While we know that x x1 2−  contains information on μ μ1 2− , 
we also know that x x1 − 2  is an imprecise estimate of μ μ1 2− .  The standard error of 
this difference, se measures this imprecision. 

Consider two cases: one in which μ μ1 2−  has a given (non-zero) value and another in 
which μ μ1 − 2  is twice this value.  Both cases have the same se.  The distributions of 
the observed values of x x1 − 2  in the two cases is shown in figure 1.  It is clear that 
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you will have a much better chance of being able to conclude that μ μ1 − 2  is not zero 
if μ μ1 − 2  is larger. 
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Figure 1: distribution of sample means: solid case has twice the population mean of 
the dashed case. 

 

Although obvious, this is an important point: the power of a test is the probability that 
the test rejects the null hypothesis when the null hypothesis is false.  However, unlike 
the null hypothesis being true, which defines a value for μ μ1 2−  (it is zero), the null 
hypothesis being false only entails μ μ1 2 0− ≠ , so the null hypothesis can be false in 
an infinite number of ways, and the power will not be the same for all these values.  
In other words, the power of a test is actually a function of the true difference, 
μ μ1 2− , it is not a single number.  In order to specify the power as a single number 
the value of μ μ1 − 2  must also be specified.  Of course, μ μ1 2−  is always unknown 
and the way this is handled is explained below, once the formula for sample size has 
been given. 

 

A second circumstance to consider is when there are two cases where, the difference 
in the population means is the same in both cases but the standard errors are different.  
This is shown in figure 2. 
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Figure 2: distribution of sample means: solid case has half the standard error of the 
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dashed case, both cases have the same mean. 

 

It is clear that we have a much better chance of inferring that μ μ1 2−  is non-zero in 
the case with the smaller standard error.  The standard error depends on the sample 
size and it can be made as small as we like by making the sample size sufficiently 
large.  If the standard error is sufficiently small, then the distribution of x x1 − 2

ut
 will 

be clustered sufficiently tightly abo  μ μ1 2−  that (provided μ μ1 2−  really is not 
zero) we will be very likely to be able to infer that μ μ1 2 0− ≠ .  This is the basis of 
using this approach to set sample sizes. 

Sample size formula 

Suppose we are comparing two groups, with the responses in group 1 having a 
Normal distribution with mean μ1 and standard deviation σ and group two being the 
same but that the mean is μ2.  A test of the null hypothesis that these means are equal 
will have Type II error β (so power 1-β) if the size of each group is: 

n
z z

=
+

−

2 2 2

1 2
2

1
2

σ

μ μ
β α( )

( )
.                                                (2) 

The term zβ is simply the value that is exceeded by a proportion β of a standard 
normal population.  The term in α is related to the significance level used to reject the 
null hypothesis.  Other aspects of the formula are in accord with the heuristic 
explanation given above.  If the outcome measure is more variable, i.e. σ is larger, 
then a larger value of n is required.  If the difference between the groups is smaller, 
then again n will need to be larger if the same power is to be obtained. 

The values of the z terms in (2) can be found from tables or statistical packages.  
However, when determining sample sizes only a few values of α and β are used, so 
the most commonly encountered values of 2 1

2

2(z zβ α+ )  = A say, can easily be 

tabulated.  If the null hypothesis is considered to be rejected if a two-sided P-value is 
less than 0.05 then α=0.05 and z1

2
196α = . .  It is common to find that powers of 80%, 

90% and 95% are considered, and this then gives the following. 

Power 80% 90% 95% 

A 15.7 21.0 26.0 

 

The formula for sample size calculation becomes 
2
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with A taken from the above table. 
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Use of the formula 

The choice of α and β, the Type I and II error rates, is a reflection of the investigator's 
views on the acceptability, or otherwise, of either type of error.  Once chosen then A 
is determined and the formula in (3) needs to be applied, but neither σ nor μ μ1 2−  is 
known, so how do you proceed?  Of course, to apply (3) you only need to know the 
ratio of these quantities and this can sometimes be exploited to simplify matters.  
However, it is generally a good idea to avoid this simplification unless you are very 
familiar with the variables you are dealing with. 

Some value for σ needs to be obtained from somewhere, whether from the literature 
or existing data or a specially designed pilot study.  Two notes of caution should be 
sounded here: 

1.  the standard deviation should measure the same variation as is present in the data 
values that go to make up each of x x1 2, .  If these measure the change in serum 
cholesterol from baseline to the end of a trial, it is no use finding a value for the 
standard deviation of a cholesterol level: it is the standard deviation of the change 
that needs to be entered in (3). 

2.  If the value of σ is based on an estimate s from a small pilot study, remember that 
s is going to be a highly variable estimate of σ.  In these circumstances it is 
particularly important to perform a sensitivity analysis.  Constructing a confidence 
interval for σ from s is likely to be a worthwhile if somewhat salutary exercise. 

 

It is important to be clear how to think of the value of μ μ1 2−  that is entered in (3).  
It was remarked above that the power of a test was a function of μ μ1 2−  and this is 
made explicit in figure 3. 
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Figure 3: power curves for two tests: sample sizes larger in dashed case than solid. 

 

As μ μ1 − 2  gets larger, either positively or negatively, the probability of rejecting the 
null hypothesis approaches 1.  However, if μ μ1 2− =0 then the probability of 
rejecting the null hypothesis (which is now the Type I error rate) is fixed at 0.05 (or, 
more generally, α), so the curves for all tests, whatever sample size they use, must 
pass through the point (0,0.05).  At a given value of μ μ1 2−  (strictly ( ) /μ μ σ1 2− ), 
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the higher curve in figure 3 corresponds to the larger sample sizes.  The idea behind 
the sample size calculation is to focus on a value of μ μ1 2−  and then choose n so that 
the height of the power curve at that value of μ μ1 2−  is the desired power, such as 
0.8, or 0.9 or 0.95. 

How is the value of μ μ1 − 2  chosen?  It is clear that the power for values of the 
abscissa between μ μ1 2−  and 0 is less then the value set for μ μ1 2− .  This is 
inevitable: if you want to have good power for a very small value of μ μ1 − 2  then a 
very large sample size will be needed.  Consequently, investigators have to accept 
that it will be difficult for their study to detect reliably very small values of μ μ1 2− .  
However, very small values of μ μ1 2−  are unlikely to be of interest: no physician is 
going to want to know if treatment X reduced mean blood pressure by 1 mmHg more 
than treatment Y.  On the other hand, if the study is such that there is poor power to 
detect a clinically important value of μ μ1 2− , then the study may well end up giving 
a non-significant result (say P=0.5) when, in fact, there is an important difference 
between the groups. 

The approach that is used is to decide on what value of μ μ1 2−  corresponds to the 
minimum clinically important difference between the groups.  The study is then 
designed to have good power at that value of μ μ1 2− .  If the true value of μ μ1 2−  is 
larger than the minimum clinically important difference then the study will have even 
higher power.  If the true value of μ μ1 2−  is smaller than the minimum clinically 
important difference, then the study may be too small to be able to detect this 
difference reliably but in this case the study will miss a difference that has been 
deemed to be clinically unimportant. 

Example 

In a trial to compare a new treatment for influenza, zanamivir with placebo the 
primary outcome variable was the number of days to the alleviation of symptoms 
(MIST Study Group, Lancet, 352, 1877-1881).  A previous study suggested a value 
for σ of 2.75 days.  It was decided that a change of one day in the mean number of 
days to alleviation of symptoms was of interest, but that any smaller improvement 
would not be of clinical value. 

The aim, therefore, is to determine how many patients should be allocated to each 
treatment group.  If it is decided that it is important not to miss a difference of 1 day, 
then a power of 90% may be selected.  Assuming the significance level is 5%, then 
A = 21.0 and as σ = 2.75 days and μ μ1 2−  = 1 day, formula (3) gives the number of 
patients in each group as: 

=× 2

2

1
75.20.21 158.92 ≈ 159 

so the trial should aim to recruit 318 patients and allocate them equally between the 
groups.  If σ had been taken as 2 or 3.5 days the number per group would have been 
84 or 258, showing how uncertainty in the prior estimate of variability translates into 
noticeable uncertainty in the calculated sample size. (to put this kind of variation in 
context, note that if 2.75 days were an estimate based on a sample of size 25 then a 
95% confidence interval for σ  would be 2.15 to 3.83 days). 
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Binary outcome 
The principles in the case when the outcome is binary are unchanged.  The test that 
the population proportions in the two groups are the same needs to be performed at a 
given significance level, which is usually taken as 5%.  The investigator needs to 
specify the power that is required.  Thus α and β need to be decided just as in the 
formula above.  The minimum clinically important difference between the two 
proportions, π π1 − 2  must also be specified. 

The main difference between the Normal and binary cases arises in specifying the 
remaining parameter, which in the Normal case would be σ, the measure of 
variability.  There is no direct analogue of this parameter in the binary case.  The 
standard error of a proportion from a sample of size n is π π( ) /1− n , i.e. the 
variability is determined by a function of the population proportion.  The way this is 
resolved is by specifying both π1 and π2 rather than just their difference π π1 − 2 .  This 
is because the dependence of the standard error of a proportion on the value of that 
proportion means that different numbers of patients are needed to detect π π1 − 2 =0.2, 
when this is from, e.g., 0.1 to 0.3 or from 0.4 to 0.6.  Providing both π1 and π2 rather 
than just their difference allows the technique to take proper account of this.  In some 
ways this makes it easier to set a sample size when the outcome is binary because the 
calculations depend on parameters that are more likely to be known than in the 
normal case. 

Various formulae are available.  In the same way that the formula (2) is closely 
related to the t-test, the formulae for the binary case are generally related to the χ2 
test.  An alternative is to use an approach related to Fisher’s Exact test.  
Mathematically this is rather complicated but an easily used table is available which 
actually makes it one of the easiest methods to use.  It is given in table 3B reproduced 
below from Casagrande, Pike and Smith, Applied Statistics 1978, 27, 176-180. 

In order to estimate a sample size the investigator must specify values for π1 and π2: 
the change π π1 − 2  can be determined in the same way as μ μ1 2−  in the normal case, 
i.e. as the minimum clinically important difference.  In addition one of π1 and π2 must 
also be given (of course any other independent combination, such as the mean of the 
proportions, would suffice but this is seldom convenient).  It is often the case that one 
of the proportions will measure the success rate of the status quo, so is likely to be 
known. 

Table 3B assumes that π1 and π2 have been labelled so that π2 < π1: the values used in 
the table are π2 (defining the rows) and π1 - π2 (defining the columns).  Only values of  
π2 up to 0.50 are given in the table, so does this mean it cannot be used if the smaller 
proportion is greater than this value?  It does not and this can be illustrated by 
considering an example.  Suppose the sample size needed to detect a change from 0.6 
to 0.8 was sought.  This could be thought of as the size of study needed to detect an 
increase in success rate from 60% to 80%.  This is, of course equivalent to the failure 
rate decreasing from 40% to 20%.  Table 3B does not specify whether the binary 
outcome is success or failure and, in purely mathematical terms, they are equivalent,  
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so the problem of determining the size of study needed to detect a change from 60% 
to 80% is solved by using π2 = 0.20 and π1 - π2 = 0.20. 

For each combination of π2 and π1 - π2 there are three entries in the table.  They are 
the sample size for each group for three different combinations of significance level 
and power.  The top two figures are for a two-sided significance level of 5% (the table 
describes them as one-sided levels of 2.5% but this amounts to the same thing) and 
the last figure has a significance level of 1%.  The top figure gives a power of 80%, 
the middle corresponds to 90% and the bottom figure is for 95% power. 

So, for example, if the success rate of the standard treatment is 25% and it is 
important to be able to detect a change of 15%, at the 5% significance level, when 
using the new treatment (i.e. that the success rate on the new treatment is 40%) then 
two groups each of 216 patients would give a 90% chance of detecting this difference.  
If the groups only contained 164 patients the power would be 80%. 

General Remarks 
It should be clear that a sample size calculation is far from a precise and objective 
exercise.  If uncertainty about key parameters lead to sample size estimates varying 
between, e.g. 400 and 800, it may be asked why they are helpful at all?  It must be 
conceded that it is often unwise to take a sample size calculation as an immutable 
target for the study.  However, even if a sample size can plausibly range between 400 
and 800, it certainly excludes 100, and if this is the largest number of patients that can 
be recruited in the foreseeable future, then the calculation has been useful in stopping 
a woefully inadequate design from proceeding. 

While the details are beyond the scope of this note, formula (2) can be used in other 
ways.  In particular it is possible to use it to calculate the power of a study with a 
given number of patients.  So, if an investigator knows that in a year he will be able to 
recruit 200 patients, then (2) can be used to find the value of zβ and hence the power, 
1-β to detect a given μ μ1 − 2 .  The approach should be used cautiously: it is all too 
easy to inappropriately convince oneself that a power of, say, 65%, is adequate, if the 
alternative is to abandon the study altogether. 

In some sample size calculations the investigators anticipate a certain drop-out rate 
from the study and inflate their sample size estimates accordingly.  This can be quite 
sensible and can guard against an unfortunate loss power.  However, it should be 
borne in mind that in these circumstances loss of power may not be the principal 
problem.  In the example of a clinical trial the groups would be randomized and 
therefore comparable.  There is no guarantee that the patients dropping out of one 
group are comparable with the group dropping out of the other, so the loss of 
comparability may be much more serious than the loss of power, and additional 
recruitment cannot compensate for this. 

A final issue is that of so-called post hoc power.  Once a study has been completed an 
investigator may try to work out what power was actually achieved.  This may be 
especially tempting when the study is non-significant, inasmuch as a ‘non-significant’ 
P-value is widely acknowledged to be uninformative if the study had inadequate 
power, so ruling out this possibility is particularly important.  This practice is, 
however, generally misguided.  As figure 3 shows, the power is a function of μ μ1 2−  
which is unknown both before and after the study..  Of course, after the study the 
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investigator has some knowledge of μ μ1 2−  through the observed value of x x1 2− .  
There are, however, two comments that are relevant here. 

i)  The investigators should be interested in their study having adequate power to 
detect a clinically meaningful difference, and this is determined by thinking about 
the clinical problem and exercising clinical judgment: the observed difference in 
sample means is not relevant and therefore neither is evaluating the power at 
x x1 2−  from figure 3. 

ii)  Attempts to determine the power at the true difference by using the fact that 
x x1 2−  is an estimator of μ μ1 2−  are not sensible.  The former is only an 
estimator of the latter and will vary from it: if the study has resulted in a non-
significant P-value then the variation of x x1 2−  about μ μ1 2−  can be substantial.  
Given that parts of the curve in figure 3 are very steep, even small variations about 
μ μ1 2−  will result in widely varying estimates of power.  The range of possible 
powers could be found by constructing a confidence interval for μ μ1 2−  and then 
finding the powers corresponding to the end points of this interval.  This is 
bizarre: the interest in the study is, or should be, in the value of μ μ1 2−  and a 
confidence interval is an appropriate measure of this: translating this to a power is 
unnecessary and misleading.  Once a study has been completed, interest should 
focus on confidence, not power. 

 

Appendix deriving formula (2) (Not Assessed) 
The derivation of formula (2) starts be considering the test statistic D = ( ) sexx 21 − .  
Later in the derivation se will be replaced by its expression in terms of sample size, 
namely: 

σ 1 1

1 2n n
+ ,                                                       (A1) 

but for the moment se will suffice. 

A test of the null hypothesis μ μ1 − 2 =0 is performed by seeing if D is between -z½α 
and z½α. where α is the significance level (so z½α is the value which is exceeded by a 
proportion ½α of a standard Normal distribution).  For example, if the test is two-
sided at the 5% level then the null hypothesis is not rejected if D is between -1.96 and 
1.96.  This region is shown by the shaded box in figure A1. 

Under the null hypothesis, D has a standard Normal distribution (i.e. a Normal 
distribution with mean 0 and standard deviation 1), so the choice of -z½α and z½α. 
ensures that the chance of rejecting the null hypothesis is indeed α, the Type I error.  
This is depicted by the dashed Normal curve in figure A1. 

What happens if the null hypothesis is false, and μ μ1 2−  takes some value other than 
0?  No generality is lost if is it is assumed that μ μ1 2− >0.  The null hypothesis is still 
tested in the same way (this must be the case, after all we never know for certain if 
μ μ1 − 2 =0 or not), but the distribution of D is no longer standard Normal - it is 
Normal, still with standard deviation 1 but now the mean is ( ) /μ μ1 2− se .  This is 
shown as the solid curve in figure A1. 

 11



-3 0 2 5

0.00

0.08

0 (μ1−μ2 )/( se)

Distribution of D
under H0

Distribution of D
under alternative

Acceptance region
for test of H0

 
Figure A1. 

 

As ( ) /μ μ1 2− se  gets larger the solid distribution in figure A1 moves to the right, so 
the chance of not rejecting the null hypothesis, i.e. the chance that D falls within the 
shaded box, gets smaller.  The quantity ( ) /μ μ1 2− se  can get larger because μ μ1 2−  
gets larger or because se gets smaller, i.e. the sample size gets larger. 

Formula (2) arises by working out the probability that a variable with the solid 
distribution in figure A1 falls within the shaded region, i.e. the probability that the 
null hypothesis is accepted even though it is false.  This is the Type II error β 
(remember that the power is 1-β). 

The probability of a Type II error is, therefore, the probability that a Normal variable 
with mean ( ) /μ μ1 2− se  and standard deviation 1 falls between -z½α and z½α .  It is 
convenient to do this calculation in terms of a standard Normal variable (SNV), and 
this can be done if you slide the values -z½α and z½α. and the solid distribution in the 
figure down until the solid distribution is centred about 0.  The probability of a Type 
II error is then  

 

β = Prob(SNV < z 1
2

1 2α seμ μ− −( ) / ) - Prob (SNV < − − −z s1
2

1 2α eμ μ( ) / ) 

The second term above is the chance that a value from the solid distribution falls 
below -z½α and this is clearly very small, so this term can be ignored.  Also, by 
definition zβ is the value that an SNV exceeds with probability β, so by the symmetry 
of the standard Normal distribution the probability that a SNV is less than -zβ  is β.  So 
the above can be written as  

β = Prob (SNV < -zβ ) ≅ Prob(SNV < z s1
2

1 2α eμ μ− −( ) / ) 

so from the second equation in this line  

− = − −z z sβ α eμ μ1
2

1 2( ) / . 

And rearranging this gives: 
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and using equation (A1) this gives: 

n n
n1 + n

z z
1 2
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2 2

1 2
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σ

μ μ
α β( )

( )
 

This is as far as we can go unless we decide on the ratio between the sizes of the two 
groups.  If we use equal group sizes, n1 = n2 = n then the left hand side above is 
simply ½n and (2) follows immediately.  Any pre-specified value for n1/n2 can be 
chosen and modest departures from one can be practically useful without entailing 
serious loss of power.  However, large imbalances will result in a loss of power 
relative the use of equal groups (with the same number of patients). 
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