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Relating two variables: linear regression and correlation 

Introduction 

Thus far we have been concerned with the analysis of a single variable – estimating the 
parameters which define its distribution, assessing the precision of the estimates and trying to 
decide if values of the parameters are different in separate groups.  Quite often we need to 
consider more than one variable and how they relate to one another.  The of assessing the 
relationship between several variables can be addressed but we will only consider the case 
of two variables. 

The most obvious way to start to analyse how one variable changes with another is to plot a 
scatter diagram of the points.  Indeed, it is not only obvious, it is an essential first step in any 
such analysis.  In Figure 1 two such scatter plots are shown. 

In Figure 1 a) the variable plotted on the vertical axis (generally called the y variable) is the 
log of the electrical resistance of a semi-conductor and the variable plotted on the horizontal 
axis (the x-variable) is a function of temperature.  The data clearly indicate that y and x 
show very little deviation from a straight line relationship.  This kind relationship is quite 
common in the physical sciences, where linear relationships can often be discerned from the 
underlying theory 
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a) resistance and temperature in a semiconductor† b) FEV1 and stature of male medical students‡ 

Figure 1: examples of scatter plots 

Figure 1 b) shows the heights (cm) of 20 male medical students on the horizontal axis and 
the corresponding Forced Expiratory Volume in one second (FEV1) in litres (l) on the 

                                                 

† Data from chapter 4 of GL Squires, 2001, Practical Physics, 4 th ed. CUP, Cambridge. 

‡ Data from chapter 11 of M Bland, 2000, An Introduction to Medical Statistics 3 rd ed., OUP, Oxford. 
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vertical axis.  This is much more typical of the kind of relationship seen in the biological and 
clinical sciences.  While there seems to be some sort of relationship – taller students tend to 
have a larger FEV1 – it is by no means as clear cut as that in Figure 1 a).  There are many 
instances of students having a larger FEV1 than that of a taller peer.  The challenge is to find 
a quantitative description of this kind of relationship.  

Fitting a line to the data 

A quantitative description for the data in Figure 1 a) is readily obtained by fitting a straight 
line to the data.  While in this case this might reasonably be done by eye, it is better, 
especially in less clear-cut cases, to have an objective algorithm for doing this.  Recall that a 
straight line has the equation 

xy βα +=  

where α is the intercept and β  is the slope.  The term ‘fitting a line’ simply means some sort 
of algorithm for finding suitable values for α and β . 
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a) Line of best fit for semiconductor data b) line of best fit for FEV1 data 

Figure 2: lines fitted to the data in figure 1 

The most widely used algorithm for finding α and β  is the Method of Least Squares.  This 
has been applied to obtain the lines in Figure 2.  It is easier to see how it works by 
considering its application in Figure 2 b).  A line is drawn on the figure and the vertical 
distance of each point from the line is found – the dashed lines in Figure 2 b).  It is usual to 
count the distances of the points above the line as positive but as negative for points below 
the line.  Simply adding these up would lead to cancellation between the positive and 
negative distances.  To overcome this, the distances are squared (and therefore all positive) 
before be being added up – a device reminiscent of the way a standard deviation is 
computed.  All possible lines are considered and the one which gives the smallest value for 
this sum of squares is the fitted line.  Of course, you cannot actually try drawing all possible 
lines – the method works by applying methods from the calculus. 
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If all data looked like Figure 1 a) then this would be the end of the matter – least squares 
has provided an objective way to calculate the best fitting line and its meaning would be 
clear.  However, what has been achieved by fitting a line such as that shown in Figure 2 b)?  
Least squares by itself is essentially a geometrical tool and to make sense of its use in cases 
such as Figure 2 b) requires a statistical context. 

A statistical perspective – the method of linear regression 

In order to make progress when considering the statistical relationship between two 
variables, let’s go back to the case of one variable.  The fundamental idea was that the 
variable was measured on a population and we observed a sample from that population.  
The distribution of the variable in that population is defined in terms of parameters and for a 
Normal distribution these are the mean, µ and standard deviation, σ. 

For the data in Figure 1 b), the distribution of FEV1 in the population could also be thought 
of as having a mean and standard deviation.  However, in order to acknowledge the fact 
that FEV1 is likely to be larger in larger people, it is too restrictive to consider the mean of 
this population to be a single number, µ.  Rather, we should expect the mean to depend on 
the height, x, of the individual: i.e the mean is a function of height µ(x).  In order to keep 
things as simple as possible we also assume that the way the mean depends on height is as 
simple as possible, namely a straight line – so: 

xx βαµ +=)( . 

This dependence of the mean of the y variable on the x variable is known as the regression 
of y on x.  Other forms of dependence, such as something more complicated than a straight 
line or dependence on more than one x variable, are possible but will not concern us 
presently. 

It would be possible to allow the other parameter, σ, to depend on height, but in most 
applications this is not found to be necessary and we will assume that the distribution of the 
FEV1 has the same standard deviation regardless of the height of the student. 

To summarise, we have approached the analysis of two variables by considering the 
following. 

• The mean of the population of one variable depends linearly on the value of the 
other variable.  So, e.g. we consider the FEV1s for the population of students who 
have a given height and assume that this mean varies linearly with height.  We do 
not assume that the FEV1 of a given student depends on his height via a straight line 
relationship – a glance at Figure 1 b) shows that this would be untenable. 

• We also assume that the spread of FEV1 about this mean is measured by a 
standard deviation, σ, about the line and that this does not change with height. 

• Consequently, in a regression analysis there are three parameters to estimate – the 
intercept and slope of the line defining the mean, α and β  (note now why Greek 
letters were chosen for these quantities) and the standard deviation about the line, σ. 
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In Figure 3 some artificial data have been generated using parameter values similar to those 
which obtain in Figure 1 b).  This shows how data from the approach just outlined would 
look for three groups of students.  Within each group all the students have the same height 
but the heights differ between the groups.  Note that the mean FEV1 increases linearly with 
height but note that FEV1 values for individuals do not inevitable increase with the height of 
the individual.  Note also that with the present approach the spread about the line is the 
same for all the heights. 
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Mean FEV1
at Ht=185cm is 4.57 l
SD = 0.59 l

Mean FEV1
at Ht=165cm is 3.08 l
SD = 0.59 l

 

 

Figure 3: artificial data from the standard regression set-up 

 

Notice how this approach to analysing the data has introduced an asymmetry into the 
analysis – we are considering the distribution of FEV1 given the height of the student.  
While this sometimes means that regression is not the right tool to use in the analysis of two 
variables, it is far more common to find that the problem to hand is best posed in this 
asymmetric way. 

What do we estimate? 

For a single variable we can estimate the population mean, µ and population standard 
deviation, σ by the mean and standard deviation from a sample.  In a regression analysis 
things are no different in principle.  However the population mean now depends on height as 

xβα +  and we now need to estimate two parameters, α and β , the population intercept 
and slope.  If a line is fitted to the data as in Figure 2, then the algorithm will produce values 
for the slope and intercept of the least squares line fitted to the sample.  So if the line fitted to 
the sample has equation bxay +=  then a is the sample intercept and b is the sample slope 
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and these estimate α and β  respectively.  Finally we need an estimate of the spread about 
the line, namely σ.  This is estimated by a quantity s related to the minimised sum of squares 
about the fitted line, although the details need not concern us. 

It is worth noting that when you calculate these estimates, they should be given units.  The 
intercept is on the same scale as the y variable and so has the same units.  This is also true of 
the standard deviation about the line,  The slope has units of y per x, so in the example in 
Figure 1 b) it will be in litres per cm. 

How good are the estimates and testing a hypothesis 

The intercept parameter α is often of little direct interest.  In practice, because a regression 
analysis is aimed at elucidating the relationship between y and x it is the slope parameter, β , 
which is of the greatest interest.  This is because it measures the rate at which the mean of 
the y variable changes as the x variable changes. 

We saw in an earlier part of the course that it is important to know how good our sample 
mean, m is as an estimate of the population mean µ and that we could measure this by the 
standard error.  In just the same way we can ask how good the sample slope, b is as an 
estimate of β .  The answer is again a standard error, albeit one calculated using a slightly 
more complicated formula.  The complexity need not concern us, as Minitab does the 
calculation for us and the interpretation of the standard error is the same as for the standard 
error of the mean. 

So far we have discussed regression analysis in terms of the meaning of the approach, the 
parameters used and their estimation and little has been said about testing any hypotheses.  
This is probably as it should be, as hypothesis testing has a limited role here.  The one 
hypothesis which is often of interest is whether β=0.  The reason for this is that if β=0 then 
the mean of the y variable does not change with the x variable.  In other words, at least in 
terms of this form of linear dependence, if β=0 then there is no association between the y 
and x variables.  As with the t-test the appropriate standard error plays an important role in 
testing this hypothesis.  The details are beyond our present scope and we leave Minitab to 
do the work. 

Estimation in Minitab 

If a linear regression is fitted in Minitab then the Session Window will look like that shown 
Figure 4. 

The regression command in Minitab will, in fact, fit a multiple regression with several x 
variables.  While this does not concern us it explains some apparent redundancy in the 
output shown in Figure 4.  All of the material from the heading Analysis of 
Variance can be ignored.  When there is just one x variable (but not when there are 
more) this section merely repeats information already given in the first part of the output.  
The section Unusual Observations tries to draw attention to possibly erroneous 
or outlying values.  While this is laudable, this particular automation of the important process 
of inspecting data for outlying values highlights rather too many points and we will not use it. 
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The key part of the output is the fitted line, reported as  
The regression equation is 
FEV1 = - 9.19 + 0.0744 Ht 
 

Of course, this really should read ‘Mean FEV1 =…’ but the output overlooks this point.  
From this we see that the sample intercept, a, is -9.19 l and the sample slope, b, is 
0.0744 l/cm. 

 

 

Figure 4: Minitab output after fitting a regression line to the data from Figure 1 b) 

The next part of the output, namely  
 
Predictor     Coef  SE Coef      T      P 
Constant    -9.190    4.306  -2.13  0.047 
Ht         0.07439  0.02454   3.03  0.007 
 
is also important. 
 
The column headed Coef simply repeats the values of a and b, albeit with more significant 
figures.  Note that the term Constant is used to identify what we have called the 
intercept.  The standard error of b is given under the heading SE Coef as 0.02454.  The 
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test of the hypothesis β=0 is based on the t-statistic 3.03† given under T, with the 
corresponding P-value given as 0.007 under P. 

The last part of the output which is of relevance is 
 
S = 0.589222   R-Sq = 33.8%   R-Sq(adj) = 30.1% 

The value of S (which is what we have called s), namely 0.589 l is the estimate of the 
standard deviation which measures the spread of the FEV1 about the fitted line. 

In summary the key items we usually need to extract from the output are: 

• the estimated slope and intercept, given under Coef; 

• the standard error of the slope, given under SE Coef; 

• the P-value for the test of the hypothesis β=0; 

• the standard deviation about the line, given as S. 

It is perhaps worth considering some points regarding these quantities. 

1. The estimate of a is -9.19 l: how can something in litres be negative?  
Remember that the intercept is the mean FEV1 when the individual has 
height equal to 0.  Consequently we should not expect the value to make 
sense directly.  It is for this reason that little attention is focused on the 
intercept.  If we omit the intercept then the fit of the line is distorted and we 
could get quite the wrong value for the slope, so the intercept needs to be 
there, it is just that its value needs to be interpreted appropriately. 

2. The value P=0.007 indicates that the data provide very strong evidence that 
the mean FEV1 does depend on the height of the student, i.e. that the data 
discredit the hypothesis β=0.  This does not mean that FEV1 is determined 
once height is known – Figure 1 b) shows this is far from the case.  
However it shows that the mean FEV1 changes with height, and the value of 
b shows that the mean FEV1 increases by about 0.074 l for each 1 cm 
increase in height. 

3. The variation left in the FEV1 values once the effect of the height of the 
student has been taken into account is measured by s.  In many analyses we 
make no explicit use of s but it is used implicitly when we test hypotheses, 
derive confidence intervals or assess predictions. 

 

                                                 

† This is, in fact, Coef/SE Coef = 0.07439/0.02454. 
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Using regression to make predictions 

One of the applications of regression is its use to use one variable to predict the value of 
another.  This sounds quite useful: some clinically important variable might be difficult or very 
invasive to measure and predicting it from other, related variables would be attractive.  
Equally variables which will only become apparent in the future, such as survival time, might 
be predicted from variables known at presentation.  In practice these advantages are more 
apparent than real.  Any proper attempt at prediction needs to take into account the natural 
variability in the system and this often places wide limits on the prediction made for an 
individual.  Despite this a more detailed consideration of prediction methods is instructive. 

On the basis of the sample in Figure 1 b) how would we predict FEV1 for a student if we 
knew nothing about the student?  The best value we could use would be the mean of the 
FEV1 values, namely 3.86 l.  How would this change if we were told that the student had a 
height of h cm – e.g. we might be told h = 180 cm? 

A student with height of 180 cm is amongst the taller students, so we would expect them to 
have an FEV1 above the average.  In one sense this does not alter our approach - we 
would still use the mean but we could now use the regression analysis to quote a mean that 
is specifically for those students with this height.  Our approach assumes that the mean 
FEV1 for a student of height h is α + β  h, which in this example would be α + 180×β . 

Of course, as α + 180×β  depends on the parameters α and β  this cannot be calculated 
because we never know the value of a parameter.  Instead we have to use the estimates of 
α and β , a and b which we have obtained from the regression analysis.  So the prediction 
we can calculate is: 

a + 180×b = -9.19 + 180 × 0.07439 = 4.20 l. 

As we might expect for a taller than average student, his FEV1 is also above the average.  
This simple use of the estimated regression equation is all that is needed for a prediction 
comprising a single value. 

Intervals for prediction 

The matter becomes more complicated if we wish to place limits on this prediction.  The 
problem is that two possible pairs of limits can be computed and their interpretation is very 
different. 

The first type of interval is a confidence interval – exactly the same in principle as we have 
already calculated for a mean of a single variable.  In this case we acknowledged the 
uncertainty in the sample mean, m say, as an estimate of µ, by computing an interval (mL, 
mU) within which we ‘expect’ µ to lie.  An important observation here is that as the size of 
the sample from which the interval is calculated increases so the width of the interval 
decreases.  This reflects the fact that from a bigger sample we will have a more precise 
estimate of µ.  The width of the interval reflects only one source of variation, namely the 
uncertainty of m as an estimate of µ.  The situation is the same in regression – a and b are 
estimates of α and β  and this uncertainty can be quantified.  If we estimate the mean of the 
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population of students with height h by a + bh then the uncertainty in a and b will naturally 
give rise to uncertainty in this estimate and this can be quantified through a confidence 
interval.  Actually computing the confidence interval is a little more complicated and has 
some features which need a little thought to understand.  For example the width of the 
interval varies with the value of h.  However, we do not dwell on this feature.  As in the case 
for a single variable, the larger the sample the narrower will be the confidence interval. 

In most cases where prediction is contemplated it is likely to be applied to an individual.  
While a prediction consisting of a single value is useful, it is much more helpful if an interval 
can be given in which the value for the individual is likely to lie.  It is very important when 
computing such an interval that it is not confused with a confidence interval.  That a 
confidence interval is inappropriate can be appreciated by realising that it makes no sense 
computing an interval for an individual which can be made as precise as possible by making 
the sample on which a and b are estimated as large as possible.  To appreciate this consider 
figure 2 b).  Even once the height of the student is prescribed there remains considerable 
variation in the value of FEV1, so any sensible interval for the prediction of the value for an 
individual cannot shrink to zero width under any circumstances. 

The issue is that while the prediction for an individual is a + bh, the variability of this 
quantity, as a prediction for an individual, comes not only from the uncertainty in a and b 
as estimates of α and β , but also from the variability an individual will have about its mean – 
something measured by the estimate of the standard deviation  about the line, s.  This gives 
rise to a different way to compute the interval, and a different name for the interval: the terms 
prediction interval or tolerance interval are encountered.  Minitab will compute such 
interval and indeed can graph the intervals across a range of heights h. 

Example 

For a student with height 180 cm we have seen that the estimated FEV1 is 4.20 l.  The 
intervals Minitab computes are: 

95% confidence interval 95% prediction interval 

3.83, 4.57 l 2.91, 5.49 l 

The 95% confidence interval indicates that the mean FEV1 for students with height 180 cm 
is within 3.83l to 4.57l with 95% confidence.  The prediction interval indicates that 95% of 
students with height 180 cm have FEV1 values between 2.91 l and 5.49 l. 

Figure 5 shows these intervals, together with the raw data and fitted line, for all heights h 
from 165 to 185 cm.  Note that the confidence intervals are curved, indicating that our 
estimate of the mean FEV1 is better near the ‘centre’ of the data.  The prediction interval is 
almost a straight line because the interval is dominated by the intrinsic variability in the data. 

Using a computer to generate data that are similar to that in Figure 1 b), but now with a 
sample of size 1000 rather than 20, the prediction for the student with height 180 cm 
becomes 4.18 l and the intervals become 
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95% confidence interval 95% prediction interval 

4.14, 4.23 l 3.08, 5.29 l 

The prediction interval has changed little but the confidence interval is much narrower.  This 
illustrates the fact that we now have much more information about the mean FEV1 at this 
height but that the natural variability of students remains largely unchanged. 

 

 
Figure 5: 95% confidence and prediction intervals for the data in figure 1 b) 

 

Pitfalls and Assumptions 

Pitfalls 

As with any statistical technique, the method can be applied inappropriately.  Some 
comments of relevance to this are given below. 

1. The technique, as usually applied in the medical sciences, is rather a weak, empirical 
technique which deduces a relationship between two variables from that which can 
be apprehended in the sample itself.  There are some exceptions, for example in 
pharmacology where a regression analysis might be guided by some sort of 
compartmental model. 

2. It follows that it would be unwise to use the regression line, such as that fitted in 
Figure 2 b), for other kinds of data, even if they appear similar.  So, for example, 
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the line fitted in Figure 2 b) should not be extrapolated for use in, e.g., children, 
older males or female students. 

3. Beware of outlying or unusual values, as these can have a noticeable influence on the 
estimates you obtain. Problems of this nature can often be identified when assessing 
the assumptions underlying the technique, which will be discussed below. 

4. The regression of FEV1 on Height is shown in Figure 4 and gives rise to the 
equation which might loosely be written: 
FEV1 = a + b h or in this instance FEV1 = -9.19 + 0.07439 h 
 
It is tempting to rearrange this equation to obtain 
 
h = -a/b + 1/b FEV1 or in this instance h = 123.54 + 13.44 FEV1 
 
However, if you perform the regression of height on FEV1 in Minitab you obtain the 
output in Table 6, which gives a different equation.  Why is this? 
 
The answer lies in the looseness of the above equation.  It should have read Mean 
FEV1 = a + b h and so the rearrangement would have led to the equation h = -
a/b + 1/b Mean FEV1, which is not in the form Mean h  = c + d FEV1. 
 
The regressions of FEV1 on height and of height on FEV1 are quite different† and 
essentially address different questions.  It is up to the analyst to ensure that the 
correct approach is chosen. 
 

 

Regression Analysis: Ht versus FEV1  
 
The regression equation is 
Ht = 158 + 4.54 FEV1 
 
 
Predictor     Coef  SE Coef      T      P 
Constant   157.864    5.870  26.89  0.000 
FEV1         4.542    1.499   3.03  0.007 

 

Figure 6: Minitab output for regression of Height on FEV1 

 

                                                 

† Not wholly different – there are some points of overlap.  For example the P-value for the slope is the 
same in Figure 4 and Table 6.  We will not pursue this point here. 
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Assumptions 

Problems can also arise in the application of regression because the method makes some 
assumptions and in particular instance s these may not be met.  Assessing the assumptions 
gives rise to a large and important field of statistics known as regression diagnostics but we 
will consider only some simple aspects here. 

Before indicating how the assumptions are checked it is useful to reiterate what the 
assumptions are. 

1. That the mean of the y variable at a given value of the x variable changes linearly 
with x. 

2. The spread of the data about this line is constant, that is it does not change as x 
changes. 

3. The deviations from the line follow a Normal distribution (strictly this assumption is 
only needed if you intend to compute confidence or prediction intervals for the 
estimates or predictions or to perform hypothesis tests such as testing β=0). 

Assessing the linearity assumption: an essential first step is to draw a scatter plot of the y 
variable against the x variable.  This can be assessed by eye to see if the assumption is 
plausible and that no other form of relationship is suggested by the data.  Techniques which 
go beyond this are surprisingly difficult and quickly become rather technical. 

Assessing the spread about the line: this can also be assessed from a scatterplot but 
defining quantities known as residuals helps here.  For each point in the dataset there is a 
residual.  They are shown diagramatically in Figure 2 b): the residual is the vertical distance 
of a point from the fitted line, i.e. the lengths of the dashed red lines in the Figure.  Residuals 
are positive for points above the line and negative for points below the line.  The reason 
residuals are important in regression diagnostics is that if the fitted line truly reflects the 
structure of the data then the residuals are a sample from a distribution with population mean 
equal to zero and they all have the same standard deviation.  The most useful way residuals 
are used is graphically.  For example if the assumption of constant standard deviation is true 
then a plot of the residuals against the height of the individual should show points with a 
spread that changes little with height.  The method will be exemplified in the practical 
session. 

Assessing the Normality of the deviations from the line: as the residuals are essentially 
the deviations from the line then this assessment amounts to checking that the residuals come 
from a common Normal distribution.  As described at the beginning of the course the best 
way of doing this is using a Normal Probability plot for the residuals. 

Notice how no assumptions are made concerning the x variable.  It can be discrete or 
continuous, observed from a population or determined by the experimenter. 
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Correlation 

Correlation is a statistical concept which goes together with regression and the two are 
closely related.  The idea behind correlation is that there should be some way to 
quantitatively express the difference between the data shown in Figure 7.  The data in the 
left-hand panel seems to conform to a straight line more closely than the data in the right-
hand panel.  A regression line could be fitted to either panel but there is a difference 
between the two sets of data and there may be circumstances when quantifying this is useful.  
The correlation coefficient attempts to do this and it will now be described. 

There are several correlation coefficients defined in the literature.  The one we consider is 
the most commonly encountered and is known as the product-moment correlation or the 
Pearson correlation and is universally given the symbol r.  Strictly speaking, and in keeping 
with our convention on Greek and Roman letters, this is the sample correlation and the 
underlying population correlation is given the Greek letter ρ (rho). 
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Figure 7: two sets of fictitious data showing (left) closer conformity to a line and (right) greater dispersion. 

 

Properties of the correlation 

The correlation coefficient r has the following properties: 

1. it always takes values between -1 and 1; 

2. if the points were to lie exactly on a straight line then r would be either -1 or 1; 

3. a value of 0 corresponds to no linear relation between the variables; 

4. it can be computed for data which comprise pairs of continuous variables. 

Negative values of r correspond to data in which the y variable tends to decrease as the x 
variable increases, whereas for positive values of r the y and x variables tend to increase or 
decrease together.  The ‘strength’ of relationship between the variables is unaffected  by the 
sign of r, which simply reflects the direction of the relationship.  This is illustrated in Figure 8, 
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where the data on the left have correlation -0.7 and those on the right 0.7.  Similarly data 
with correlation 1 lie exactly on a straight line with positive slope whereas data with r=-1 lie 
on a line with negative slope. 
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Figure 8: two sets of fictitious data with (left) correlation -0.7 and (right) correlation 0.7. 

 

One of the problems with the correlation coefficient is that while the extreme values are 
readily interpreted, matters are less easy with intermediate values.  In Figure 9 data with 
correlation coefficients 0 and 0.3 are shown and it is clear that there is little to distinguish the 
two. 
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Figure 9: two sets of fictitious data with (left) correlation 0 and (right) correlation 0.3. 

 

Hypothesis tests for the correlation coefficient 

Statements such as ‘… the variables exhibited a correlation r=0.35 (P=0.07)’ are often 
encountered in the literature.  The P-value indicates that a hypothesis has been tested, but 
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which one?  In fact it is a test that the population correlation ρ=0, i.e. that there is no (linear) 
relation between the variables.  In fact, this turns out to be exactly the same test as testing 
β=0 in a regression of y on x, so the test and the P value is the same as would be obtained 
in an output such as that in Figure 4.  In order to perform this test it is necessary that one of 
the variables has a Normal distribution.  If both variables are Normal then a confidence 
interval for ρ can be computed but as the value of the correlation coefficient is awkward to 
interpret it is not much used. 

One problem with the practical use of the correlation coefficient is that the difficulty of 
interpreting the value of the correlation gives rise to a tendency among users to use the test 
of ρ=0 in dichotomous way – as establishing that there is or there is not a relationship 
between variables.  This is unfortunate because even apparently quite weak levels of 
correlation, such as those seen the right hand panel of Figure 9 can be deemed significant if 
the sample size if large enough.  For example, a value of r=0.3 will give P<0.05 if the 
sample is larger than 41.  It is important to realise that such a ‘significant’ result essentially 
discredits the hypothesis that the two variables are unrelated, not that they are necessarily 
closely related.  When interpreting a correlation coefficient it is useful to bear the right hand 
panel of Figure 9 in mind as a reminder of the difficulty in interpreting intermediate values of 
r. 

In general terms care needs to be exercised in the use of correlation.  The statistical 
relationship between two variables is often too complicated to permit its summary by a 
single value.  While this level of succinctness may be useful when there are many variables to 
consider, regression usually provides a more comprehensible method for assessing how two 
variables are related. 


