Relating two variables: linear regression and correlation

Introduction

Thus far we have been concerned with the analysis of asingle variable — esimating the
parameters which define its distribution, ng the precison of the estimates and trying to
decide if values of the parameters are different in separate groups. Quite often we need to
consider more than one variable and how they relate to one another. The of ng the
relationship between severd variables can be addressed but wewill only consider the case
of two variables.

The most obvious way to start to anayse how one variable changes with another isto plot a
scatter diagram of the points. Indeed, it is not only obvious, it is an essentid first gepin any
such andlyss. In Figure 1 two such scatter plots are shown.

In Figure 1 @) the varigble plotted on the verticd axis (generdly cdled they varigble) isthe
log of the dectrical resstance of a semi-conductor and the variable plotted on the horizontal
axis (the x-variable) isafunction of temperature. The data clearly indicate that y and x
show very little deviation from astraight line relationship. This kind relaionship is quite
common in the physica sciences, where linear relationships can often be discerned from the
underlying theory
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Figure 1: examples of scatter plots

Figure 1 b) shows the heights (cm) of 20 male medica students on the horizontal axis and
the corresponding Forced Expiratory Volume in one second (FEV1) inlitres (1) on the

" Datafrom chapter 4 of GL Squires, 2001, Practical Physics, 4" ed. CUP, Cambridge.

* Datafrom chapter 11 of M Bland, 2000, An Introduction to Medical Statistics 3" ed., OUP, Oxford.




vertica axis. Thisis much moretypicd of the kind of relationship seen in the biologicd and
clinical sciences. While there seems to be some sort of relaionship — tdler sudents tend to
have alarger FEV1 —itisby no meansasclear cut asthat in Figure 1 @). There are many
ingtances of students having alarger FEV 1 than that of ataler peer. The chdlengeisto find
aquantitative description of thiskind of relationship.

Fitting a line to the data

A quantitative description for the dataiin Figure 1 @) is readily obtained by fitting a traight
linetothedata Whilein this case this might reasonably be done by eye, it is better,
especidly in less clear-cut cases, to have an objective dgorithm for doing this. Recdl that a
graight line has the equation

y=a +bx

where a istheintercept and b istheslope. The term *fitting alineé Smply means some sort
of dgorithm for finding suitable vauesfor a and b.
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Figure 2: lines fitted to the datain figure 1

The mogt widdly used dgorithm for finding a and b isthe Method of Least Squares. This
has been gpplied to obtain the linesin Figure 2. It is eader to see how it works by
consdering its gpplication in Figure 2 b). A lineis drawn on the figure and the vertica
distance of each point from the line is found — the dashed linesin Figure 2 b). Itisusud to
count the distances of the points above the line as positive but as negative for points below
the line. Simply adding these up would lead to cancellation between the positive and
negative distances. To overcome this, the distances are squared (and therefore all postive)
before be being added up — a device reminiscent of the way a sandard deviation is
computed. All possible lines are congdered and the one which gives the smdlest vaue for
this sum of squares isthe fitted line. Of course, you cannot actudly try drawing dl possible
lines— the method works by applying methods from the caculus.




If dl datalooked like Figure 1 @) then thiswould be the end of the matter — least squares
has provided an objective way to cdculate the best fitting line and its meaning would be
clear. However, what has been achieved by fitting aline such as that shown in Figure 2 b)?
Least squares by itsdlf is essentially a geometrica tool and to make sense of itsusein cases
such as Figure 2 b) requires agtatistical context.

A statistical perspective —the method of linear regression

In order to make progress when consdering the Satistica relationship between two
variables, let’s go back to the case of one variable. The fundamentd idea was that the
variable was measured on a population and we observed a sample from that population.
The digtribution of the varigble in that population is defined in terms of parameters and for a
Normal digtribution these are the mean, mand standard devition, s .

For the datain Figure 1 b), the distribution of FEV 1 in the population could aso be thought
of as having amean and standard deviation. However, in order to acknowledge the fact
that FEV 1 islikely to belarger in larger people, it istoo redtrictive to consder the mean of
this population to be a single number, m Rather, we should expect the mean to depend on
the height, x, of the individud: i.e the mean isafunction of haght n{x). In order to keep
things as smple as possible we aso assume that the way the mean depends on height isas
ample as possble, namely asraight line — so:

m(x) =a +bx.

This dependence of the mean of they variable on the x varigble is known asthe regression
of y on x. Other forms of dependence, such as something more complicated than a straight
line or dependence on more than one x variable, are possble but will not concern us
presently.

It would be possible to alow the other parameter, s, to depend on height, but in most
gpplications thisis not found to be necessary and we will assume that the digtribution of the
FEV1 has the same standard deviation regardless of the height of the student.

To summarise, we have approached the analyss of two variables by considering the
following.

The mean of the population of one variable depends linearly on the vaue of the
other variable. So, eg. we consder the FEV 1sfor the population of students who
have a given height and assume that this mean varies linearly with height. We do
not assume that the FEV 1 of a given student depends on his height viaa draight line
relationship — aglance a Figure 1 b) shows that this would be untenable.

We adso assume that the spread of FEV 1 about this mean is measured by a
standard deviation, s, about the line and that this does not change with height.

Consequently, in aregresson analysis there are three parameters to estimate — the
intercept and dope of the line defining the mean, a and b (note now why Greek
letters were chosen for these quantities) and the standard deviation about the line, s .
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In FHgure 3 some atificia data have been generated using parameter values smilar to those
which obtain in Figure 1 b). This shows how data from the gpproach just outlined would
look for three groups of students. Within each group dl the students have the same height
but the heights differ between the groups. Note that the mean FEV 1 increases linearly with
height but note that FEV 1 vaues for individuals do not inevitable increase with the height of
theindividua. Note dso that with the present gpproach the spread about the line isthe
samefor dl the heights.

Mean FEV1

at Ht=185cm is 4.57
! sp=0591
54 J
Mean FEV1 -
at Ht=165cm is 3.08 | B
SD=0.591

N

FEV1 ()

Height (cm)

Figure 3: artificia data from the standard regression set-up

Notice how this approach to analysing the data has introduced an asymmetry into the
andyss— we are consdering the distribution of FEV 1 given the height of the student.
While this sometimes means that regresson is not the right tool to usein the andyss of two
variables, it isfar more common to find that the problem to hand is best posed in this
asymmetric way.

What do we estimate?

For asingle variable we can estimate the population mean, mand population standard
deviation, s by the mean and standard deviation from asample. In aregresson anayss
things are no different in principle. However the population mean now depends on height as
a +bx and we now need to estimate two parameters, a and b, the population intercept
and dope. If alineisfitted to the data as in Figure 2, then the dgorithm will produce vaues
for the dope and intercept of the least squares line fitted to the sample. So if the line fitted to
the sample has equation y = a + bx then a isthe sample intercept and b is the sample dope



and these estimate a and b respectively. Finaly we need an estimate of the spread about
theling, namdy s. Thisisedimated by a quantity s related to the minimised sum of squares
about the fitted line, dthough the details need not concern us.

It isworth noting that when you calculate these estimates, they should be given units. The
intercept is on the same scale asthe y variable and so has the same units. Thisis adso true of
the standard deviation about the line, The dope has units of y per X, sointhe examplein
Fgure 1 b) it will bein litres per cm.

How good are the estimates and testing a hypothesis

The intercept parameter a is often of little direct interest. In practice, because aregression
andydssisamed a eucidating the relationship between y and x it isthe dope parameter, b,
which is of the greatest interest. Thisis because it measures the rate at which the mean of
the y variable changes as the x variable changes.

We saw in an earlier part of the course that it isimportant to know how good our sample
mean, mis as an estimate of the population mean mand that we could measure this by the
standard error. In just the same way we can ask how good the sample dope, bisasan
esimateof b. Theanswer isagain asandard error, dbet one cdculated usng adightly
more complicated formula. The complexity need not concern us, as Minitab does the
caculation for us and the interpretation of the standard error is the same as for the standard
error of the mean.

So far we have discussed regression andysisin terms of the meaning of the approach, the
parameters used and their estimation and little has been said about testing any hypotheses.
Thisis probably asit should be, as hypothesistesting has alimited role here. The one
hypothesis whichis often of interest is whether b=0. The reason for thisisthat if b=0 then
the mean of the y variable does not change with the x variable. In other words, at least in
terms of thisform of linear dependence, if b=0 then there is no association between they
and x variables. Aswith the t-test the appropriate standard error plays an important rolein
testing this hypothess. The details are beyond our present scope and we leave Minitab to
do the work.

Estimation in Minitab

If alinear regression isfitted in Minitab then the Sesson Window will look like thet shown
Fgure 4.

The regresson command in Minitab will, in fact, fit a multiple regresson with severd x
variables. While this does not concern usit explains some gpparent redundancy in the
output shown in Figure 4. All of the materid from the heading Anal ysi s of

Var i ance canbeignored. When thereisjust one x variable (but not when there are
more) this section merely repests information aready given in the first part of the output.
Thesection Unusual Obser vat i ons triesto draw attention to possibly erroneous
or outlying vdues. Whilethisis laudable, this particular automation of the important process
of ingpecting data for outlying vaues highlights rather too many points and we will not use it.



The key part of the output is the fitted line, reported as

The regression equation is
FEVI = - 9.19 + 0.0744 Ht

Of coursg, thisredlly should read ‘Mean FEV1 =..." but the output overlooks this point.
From this we see that the sample intercept, a, is-9.19 | and the sample dope, b, is
0.0744 l/em.

=S minitab - bland regression data.MPJ - [Session] Bl)eonvnomon| @ - o lF] x|
gﬁbmllﬂiﬁmt&atmmmhlm&mtbb alald
| LR Jﬂllﬂh LSRN TS - mﬂa'ﬁ“ﬁﬂﬂﬁ 'g"""""ﬂ"
-]—_l"**"' o e |

HTE » Begraps 'FEWLY | ‘Hois :I
SUBC:  Canzkanc:
nmee Briee 2.

Regression Anakysis! FEV] versis U

Ths Tagrsaxicn sguation iz
FE¥1 = - 2.10 + D.0744 HE

Feedlacox Coef FE Coel T F
L tle =9, 180 4,30 & 13 0,047
He D07 Da02dE] 303 0,007

5 = 0.5FRRRZ  R-Sq o+ J1.Bk  R-Sqimd)) = 30.1%

Analyais of Yarisee

Ampgs IF ag Ha F P

BEgpeasion 1 %1984 9.1594 4,18 0.007

Besidual Excor 15 F.2483 .32

Tocal 12 D438y

Unumual Chascraticna J

s Ho FEVL Fit &E Fit Pesidual 5t Resld
13 177 5.810 34977 DLL3E 1,453 2. 58

B demores an abservacion wich & laege scandepdized residasl,

HTE >

v
I | .
Currerk Wirksheet Workdert 1 Editnble

Figure 4: Minitab output after fitting aregression line tothe datafrom Figure 1 b)

The next part of the output, namely

Predi ct or Coef SE Coef T P
Const ant -9.190 4,306 -2.13 0.047
Ht 0.07439 0.02454 3.03 0.007
is aso important.

The column headed Coef smply repeats the values of a and b, abet with more Sgnificant
figures. Notethat theterm Const ant isused to identify what we have cdled the
intercept. The standard error of b isgiven under the heading SE Coef as0.02454. The



test of the hypothesisb=0 is based on the t-gtatistic 3.03" given under T, with the
corresponding P-vaue given as 0.007 under P.

The last part of the output which is of rdlevanceis

S =0.589222 RSq = 33.8% R-Sq(adj) = 30.1%

Thevadue of S (which iswhat we have cdled s), namely 0.589 | isthe estimate of the
standard deviation which measures the spread of the FEV 1 about the fitted line.

In summary the key items we usually need to extract from the output are:
the estimated dope and intercept, given under Coef ;
the standard error of the dope, given under SE Coef ;
the P-vaue for the test of the hypothesis b=0;
the standard deviation about the line, given as S.
It is perhgps worth considering some points regarding these quantities.

1. Theedimaeof ais-9.19 |: how can something in litres be negative?
Remember that the intercept is the mean FEV 1 when the individuad has
height equa to 0. Consequently we should not expect the value to make
sensedirectly. Itisfor thisreason that little attention is focused on the
intercept. If we omit the intercept then the fit of the lineis distorted and we
could get quite the wrong vaue for the dope, so the intercept needs to be
there, it isjust that its value needs to be interpreted appropriately.

2. Thevaue P=0.007 indicates that the data provide very strong evidence that
the mean FEV 1 does depend on the height of the student, i.e. that the data
discredit the hypothesis b=0. This does not mean that FEV 1 is determined
once height isknown — Figure 1 b) showsthisisfar from the case.

However it shows that the mean FEV 1 changes with height, and the value of
b shows that the mean FEV 1 increases by about 0.074 | for each 1 cm
increase in height.

3. Thevariation left in the FEV 1 vaues once the effect of the height of the
student has been taken into account is measured by s. In many andyseswe
make no explicit use of sbut it isused implicitly when we test hypotheses,
derive confidence intervals or assess predictions.

TThisis, infact, Coef / SE Coef =0.07439/0.02454.



Using regression to make predictions

One of the gpplications of regressonisits use to use one variable to predict the vaue of
another. This sounds quite useful: some dinicaly important varigble might be difficult or very
invasve to measure and predicting it from other, related variables would be attractive.
Equdly variables which will only become gpparent in the future, such as survivd time, might
be predicted from variables known at presentation. In practice these advantages are more
gpparent than real. Any proper attempt at prediction needs to take into account the natural
vaiability in the system and this often places wide limits on the prediction made for an
individual. Despite thisamore detailed consderation of prediction methodsis ingructive,

On the basis of the sample in Figure 1 b) how would we predict FEV 1 for astudent if we
knew nothing about the student? The best value we could use would be the mean of the
FEV1 vdues, namey 3.86 |. How would this change if we were told that the student had a
height of h cm — eg. we might be told h = 180 cm?

A student with height of 180 cm isamongst the taller sudents, so we would expect them to
have an FEV 1 above the average. In one sense this does not ater our approach - we
would still use the mean but we could now use the regression analyss to quote a mean that
is specificaly for those sudents with thisheight. Our approach assumes that the mean
FEV1 for astudent of height hisa + b h, which in thisexample would bea + 180" b.

Of course, asa + 180" b depends on the parametersa and b this cannot be caculated

because we never know the value of a parameter. Instead we have to use the estimates of
a and b, a and b which we have obtained from the regresson analysis. So the prediction
we can caculateis.

a+180"b=-9.19+180" 0.07439=4.201.

Aswe might expect for atdler than average student, his FEV 1 is dso above the average.
Thissmple use of the estimated regression equation is dl that is needed for a prediction
comprisng asngle vaue.

Intervals for prediction

The matter becomes more complicated if we wish to place limits on this prediction. The
problem isthat two possible pairs of limits can be computed and their interpretation is very
different.

Thefirg type of interva is a confidence interva — exactly the same in principle as we have
dready cdculated for amean of asingle variable. In this case we acknowledged the
uncertainty in the sample mean, m say, as an estimate of m by computing an interval (my,
my) within which we ‘expect’ mto lie. Animportant observation hereisthat as the Sze of
the sample from which theintervd is caculated increases so the width of the interva
decreases. Thisreflects the fact that from a bigger sample we will have a more precise
edimate of m The width of the interval reflects only one source of variation, namely the
uncertainty of m asan estimate of m The Stuationisthe sameinregresson —a and b are
edimatesof a and b and this uncertainty can be quantified. If we estimate the mean of the



population of students with height h by a + bh then the uncertainty in a and b will naturdly
give rise to uncertainty in this estimate and this can be quantified through a confidence
intervd. Actudly computing the confidence intervd is alittle more complicated and has
some features which need allittle thought to understand. For example the width of the
interval varieswith the vdue of h. However, we do not dwell on thisfeature. Asinthe case
for asingle variable, the larger the sample the narrower will be the confidence interva.

In most cases where prediction is contemplated it is likely to be gpplied to an individud.
While aprediction consgting of asngle vaue is useful, it is much more hdpful if aninterva
can be given in whichthe vadue for the individud islikdy to lie. It is very important when
computing such an interva that it is not confused with a confidenceinterval. That a
confidence interva isinappropriate can be gppreciated by redisng that it makes no sense
computing an interva for an individua which can be made as precise as possible by making
the sample on which a and b are estimated as large as possible. To appreciate this consider
figure 2 b). Even once the height of the student is prescribed there remains considerable
vaiation inthe vdue of FEV1, 0 any sensbleintervd for the prediction of the value for an
individua cannat shrink to zero width under any circumstances.

The issueisthat while the prediction for an individud isa + bh, the variability of this
quantity, as a prediction for an individual, comes not only from the uncertainty inaand b
asedimatesof a and b, but dso from the variability an individud will have about its mean —
something measured by the estimate of the standard deviation about theline, s. Thisgives
rise to adifferent way to compute the interva, and a different name for the intervd: the terms
prediction interval or tolerance interval are encountered. Minitab will compute such
interva and indeed can graph the intervals across arange of heights h.

Example

For a student with height 180 cm we have seen that the estimated FEV1is4.201. The
intervals Minitab computes are:

95% confidence interval 95% prediction interva

3.83,4.571 2.91,5.491

The 95% confidence interva indicates that the mean FEV 1 for sudents with height 180 cm
iswithin 3.83l to 4.571 with 95% confidence. The prediction interva indicates that 95% of
students with height 180 cm have FEV 1 vaues between 2.91 | and 5.491.

Figure 5 shows these intervas, together with the raw data and fitted line, for al heightsh
from 165 to 185 cm. Note that the confidence intervas are curved, indicating that our
estimate of the mean FEV 1 is better near the ‘centre’ of the data. The prediction interva is
amogt a draight line because the interva is dominated by the intringc varigbility in the data.

Using a computer to generate data that are smilar to that in Figure 1 b), but now with a
sample of size 1000 rather than 20, the prediction for the student with height 180 cm
becomes 4.18 | and the intervals become




95% confidence interval 95% prediction interva

4.14,4.231 3.08,5.291

The prediction interval has changed little but the confidence interva is much narrower. This
illugtrates the fact that we now have much more information about the mean FEV1 at this
height but that the naturd variability of sudents remains largely unchanged.
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Figure 5: 95% confidence and prediction intervals for the datain figure 1 b)

Pitfalls and Assumptions

Pitfalls

Aswith any gatigtica technique, the method can be applied ingppropriately. Some
comments of relevance to this are given below.

1. Thetechnique, asusudly applied in the medica sciences, is rather awesk, empirica
technique which deduces a relaionship between two variables from that which can
be apprehended in the sample itself. There are some exceptions, for examplein
pharmacology where a regresson andysis might be guided by some sort of
compartmental modd.

2. It followsthat it would be unwise to use the regression line, such asthat fitted in
Figure 2 b), for other kinds of data, even if they gppear Smilar. So, for example,
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the line fitted in Figure 2 b) should not be extrapolated for usein, e.g., children,
older males or femae students.

Beware of outlying or unusud vaues, as these can have a noticeable influence on the
estimates you obtain. Problems of this nature can often be identified when ng
the assumptions underlying the technique, which will be discussed below.

. Theregresson of FEV1 on Height is shown in Figure 4 and givesrise to the
equation which might loosely be written:
FEV1=a+bhorinthisingance FEV1=-9.19 + 0.07439 h

It istempting to rearrange this equation to obtain
h=-a/b+ /b FEV1orinthisinganceh = 123.54 + 13.44 FEV'1

However, if you perform the regresson of height on FEV 1 in Minitab you obtain the
output in Table 6, which gives a different equation. Why isthis?

The answer liesin the looseness of the above equation. It should have read Mean
FEV1 = a+ b h and so the rearrangement would have led to the equation h = -
a/b + 1/b Mean FEV1, whichisnotintheform Mean h =c+ d FEV1.

The regressions of FEV 1 on height and of height on FEV 1 are quite different” and
essentialy address different questions. It is up to the analyst to ensure thet the
correct gpproach is chosen.

Regression Analysis: Ht versus FEV1

The regression equation is
H = 158 + 4.54 FEV1

Pr edi ct or Coef SE Coef T P
Const ant 157. 864 5.870 26.89 0.000
FEV1 4,542 1. 499 3.03 0.007

Figure 6: Minitab output for regresson of Height on FEV1

" Not wholly different — there are some points of overlap. For example the P-value for the slopeisthe

samein Figure 4 and Table 6. Wewill not pursue this point here.



Assumptions

Problems can dso arise in the application of regression because the method makes some
assumptions and in particular ingtance s these may not be met. Assessing the assumptions
givesriseto alarge and important field of gatistics known as regression diagnostics but we
will consder only some smple aspects here.

Before indicating how the assumptions are checked it is useful to reiterate what the
assumptions are.

1. That the mean of they varidble & a given vaue of the x variable changeslinearly
with X.

2. The spread of the data about this line is congtant, that isit does not change as x
changes.

3. Thedeviationsfrom the line follow a Normd digtribution (drictly this assumption is
only needed if you intend to compute confidence or prediction intervasfor the
estimates or predictions or to perform hypothess tests such astesting b=0).

Assessing the linearity assumption: an essentid first step is to draw a scatter plot of they
variable againg the x variable. This can be assessed by eyeto seeif the assumption is
plausible and that no other form of relationship is suggested by the data. Techniques which
go beyond this are surprisngly difficult and quickly become rather technicd.

Assessing the spread about the line: this can aso be assessed from a scatterplot but
defining quantities known asresiduals helps here. For each point in the dataset thereisa
resdud. They are shown diagramaticaly in Figure 2 b): the resdud isthe vertica disance
of apoint from the fitted ling, i.e. the lengths of the dashed red linesin the Figure. Resduds
are positive for points above the line and negative for points below the line. The reason
resduds are important in regresson diagnogticsisthat if thefitted line truly reflects the
gructure of the data then the resduds are a sample from a distribution with population mean
equal to zero and they dl have the same standard deviation. The most ussful way residuals
are used isgraphicdly. For example if the assumption of constant standard deviation istrue
then aplot of the resduds againg the height of the individua should show pointswith a
gporead that changes little with height. The method will be exemplified in the practica
sesson.

Assessing the Normality of the deviations from the line: asthe resduds are essentialy
the deviations from the line then this assessment amounts to checking that the residuas come
from acommon Norma distribution. As described at the beginning of the course the best
way of doing thisisusng aNormd Probability plot for the resduas.

Notice how no assumptions are made concerning the x variable. It can be discrete or
continuous, observed from a population or determined by the experimenter.
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Correlation

Correlationis a gatistical concept which goes together with regresson and the two are
closly related. The ideabehind correlation is that there should be some way to
quantitatively express the difference between the data shown in Figure 7. The datain the
left-hand pandl seems to conform to a straight line more closdy than the datain the right-
hand pand. A regression line could be fitted to either panel but there is adifference
between the two sets of data and there may be circumstances when quantifying thisis useful.
The corrdaion coefficient attempts to do thisand it will now be described.

There are severd correlation coefficients defined in the literature. The one we consder is
the most commonly encountered and is known as the product-moment correlation or the
Pearson correlation and is universaly given the symbal r. Strictly spesking, and in keeping
with our convention on Greek and Roman letters, thisis the sample corrdation and the
underlying population correlation is given the Greek letter r (rho).

r=0.7 r=0.3
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Figure 7: two sets of fictitious data showing (left) closer conformity to aline and (right) greater dispersion.

Properties of the correlation

The corrdation coefficient r has the following properties:
1. itawaystakesvauesbetween -1 and 1;
2. if the pointswereto lie exactly on agraight linethen r would be either -1 or 1;
3. avaueof 0 correspondsto no linear relation between the variables,
4. it can be computed for data which comprise pairs of continuous variables.

Negetive vaues of r correspond to datain which the y variable tends to decrease as the x
variable increases, whereas for positive vaues of r they and x variables tend to increase or
decrease together. The ‘strength’ of relationship between the variables is unaffected by the
ggnof r, which amply reflects the direction of the rdationship. Thisisillustrated in Figure 8,
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where the data on the left have correlaion -0.7 and those on theright 0.7. Similarly data
with correlation 1 lie exactly on a straight line with pogtive dope whereas datawith r=-1lie

on aline with negative dope.
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Figure 8: two sets of fictitious data with (Ieft) correlation -0.7 and (right) correlation 0.7.

One of the problems with the correlation coefficient is that while the extreme vadues are
reedily interpreted, matters are less easy with intermediate values. In Figure 9 data with
correlaion coefficients 0 and 0.3 are shown and it is clear that there is little to digtinguish the

two.
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Figure 9: two sets of fictitious data with (Ieft) correlation 0 and (right) correlation 0.3.

Hypothesis tests for the correlation coefficient

Statements such as*... the variables exhibited a correlation r=0.35 (P=0.07)’ are often
encountered in the literature. The P-value indicates that a hypothesis has been tested, but
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which one? Infact it isatest that the population correation r =0, i.e. thet there is no (linear)
relation between the variables. In fact, this turns out to be exactly the same test astesting
b=0inaregresson of y on X, S0 the test and the P vadue is the same as would be obtained
in an output such asthat in Figure 4. In order to perform thistest it is necessary that one of
the variables has a Normd distribution. If both variables are Normal then a confidence
interva for r can be computed but as the vaue of the correlation coefficient is awkward to
interpret it is not much used.

One problem with the practica use of the correlaion coefficient is that the difficulty of
interpreting the vaue of the corrdation givesrise to atendency among usersto use the test
of r =0 in dichotomous way — as establishing that there is or there is not ardationship
between variables. Thisis unfortunate because even gpparently quite wesk levels of
correlation, such as those seen the right hand panel of Figure 9 can be deemed significant if
the sample szeif large enough. For example, avaue of r=0.3 will give P<0.05if the
sampleislarger than 41. Itisimportant to redlise that such a‘ sgnificant’ result essentidly
discredits the hypothesis that the two variables are unrelated, not that they are necessarily
closdly related. When interpreting a correlation coefficient it is useful to bear the right hand
panel of Figure 9in mind as areminder of the difficulty in interpreting intermediate vaues of
r.

In generd terms care needs to be exercised in the use of corrdation. The Satistica
relationship between two variablesis often too complicated to permit its summary by a
anglevdue. Whilethislevd of succinctness may be useful when there are many variablesto
consder, regression usudly provides a more comprehensible method for ng how two
variables are related.
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