
1

Measuring Measuring Errors

Backgound
An important part of statistical analysis, perhaps the most important part, is the

identification and quantification of sources of variation.  For example, in a t-test the
variation between groups is compared with variation within the groups to see if the
former can be explained by the latter alone.  The main tool for measuring variation is
the standard deviation (SD), although it is sometimes useful to consider the variance,
which is simply the square of the SD.

Given a set of numbers it is straightforward to compute their SD using the
Descriptive Statistics  command in the Basic Statistics  item under the Stat  menu in
Minitab, as in figure 1.  The six numbers entered there are plasma glucose levels in
mmol/l.  The "STDEV" of 0.0845 mmol/l measures variation, but variation of what?

The answer is that without further information about how the six numbers were
collected a meaningful answer is not possible.  If the numbers are from six different
patients then the SD will measure the variation between the observed plasma glucose
levels in those patients.  However, these numbers were, in fact, obtained by dividing a
single sample from a patient into six aliquots.  Thus, each sample contains the same
underlying plasma glucose level (assuming the sample was well mixed before it was
divided), so the measured variation cannot represent variation in plasma glucose level
itself.  In fact it measures the error in the assay used to obtain the measurements.

Put more formally, if the true plasma glucose in the sample is X, then the
observed values can be written as:

X + error1, X + error2, X + error3, X + error4, X + error5, X + error6.

It is clear that the spread of these values does not depend on X and that the SD is
simply the SD of the errors.  The errors will be random quantities and it is often
reasonable to assume these have a Normal distribution as in figure 2.  The SD of this

Figure 1: computing an SD in Minitab
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distribution is the SD of the errors, which will be referred to as the error SD, its mean
will be zero, unless then measuring instrument contains a systematic bias.  From the
properties of a Normal distribution it follows that for 95% of measurements the

observed value will differ from the true value by less than 2σ.

Variation between individuals and the value of replication
The SD in figure 1 measured the measuring error only because each number

was obtained by different measurements of the same sample, that is they differed from
one another only because of imprecision in the measurement process.  If the six
measurements had been on different patients, then the above representation would
have had to be rewritten as

X1 + error1, X2 + error2, X3 + error3, X4 + error4, X5 + error5, X6 + error6.

where there are now six underlying (i.e. unobserved) true plasma glucose levels, X1,
X2, X3, X4, X5, X6: the SD of the observed values will now measure two components of
variation, namely the variation in the true plasma glucose levels (the Xs), in addition to
the measurement error SD, which is an inescapable component of any measured
quantity.  If the SD of the true glucose level (the Xs) is written as σX, say, then the
variance of the above observations is:

σ σX
2 2+ ,

as shown in figure 3.  It is clear that if we only have one measurement on each patient
then we can only estimate σ σX

2 2+ , we cannot estimate σ and σX individually (because
the same total variability, which is all this type of sample allows us to see, would be
obtained if, e.g. σX = 1 and σ = 2, or if σX = 2 and σ = 1).
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Figure 2: distribution of measurement errors
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Why should this be a problem?  It is true that in many circumstances the
relevant measure of SD is √(σ σX

2 2+ ), which can be obtained from the usual sort of
sample.  However, there are many circumstances in which it is very important to know
the precision of your measurements.  One example concerning the use of height
velocity is given in the example sheet.  In the construction of a new assay, it will be
important to know its error characteristics.  Sometimes it is necessary to use an assay
with a rather high error SD; the influence of the measurement errors can be reduced if
the value quoted from the assay is the mean of the measurements on several replicates.
How many replicates it is sensible to choose will depend on several factors, including a
knowledge of the relative sizes of σX and σ, as will now be discussed.

The value of replication
One of the reasons for taking the mean of a group of independent observations

is that the mean is less variable than an individual observation: if the SD of an
observation is σ, then the SD of the mean of n of these observations (known as the
standard error) is σ n : so the mean of four independent observations is 1

2 σ , of 25
observations is 1

5 σ  and so on.

If we return to the original situation, where there were six observations on a
single sample, i.e.

X + error1, X + error2, X + error3, X + error4, X + error5, X + error6.

then each reading has an SD of σ σX
2 2+  but their mean does not have an SD of

σ σX
2 2+ /√6 because these are not independent observations, the same X contributes

to each one.  In fact the mean of these readings is

X error error error+ + + +1
6 1 2 6( )�

i.e. the "X part" stays the same because the same value of X appears in each
measurement.  As such the variance (square of the SD) contains the same component
for the variation in X but the error variance is reduced because the error on the mean is
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Figure 3: superposition of biological and error variation
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the mean of the errors, so does have an SD of σ/√6, giving a variance for the mean of
the six readings of:

σ σX
2 1

6
2+ .

In general, if a sample is measured n times, the SD of the mean will be σ σX n
2 1 2+ .  

Although some of the details behind this formula may still be a little opaque
(e.g. why it is the variances and not the SDs which add), the general implications are
sensible.  If a sample is remeasured many times and the mean of the replicate
measurements is taken, then the SD of the resulting mean gets smaller as the number of
replicates gets bigger, essentially because the error variance is effectively reduced.
However, the SD of the mean does not get closer and closer to zero, it gets closer and
closer to σX.  This is reasonable because while repeatedly measuring the same sample
might be expected to reduce the measuring error, it can do nothing about the
underlying biological variation.

[Note: there are two caveats which should be entered here.  First, it is assumed that if the
replicate measurements are taken by dividing a blood sample or a biopsy specimen, then there
is a sufficient supply that repeatedly dividing the sample does not produce an amount that is
so small that the precision of the assay is affected.  Second, it is assumed that the replicate
measurements are unaffected by one another; violation of this assumption can have a marked
effect, as demonstrated by Voss and colleagues in a study of the measurement of heights (Arch.
Dis. Child., 1990, 65, 1340-44)]

So, replicating a measurement and taking a mean will effectively reduce the
measurement error, but the biological component of the variation is unaffected.  As
such it may well be sensible to perform a few replications but once the contribution of
the error SD to the total is small, it is pointless to take more replicates.  How many
need to be performed depends on how much of the total SD √(σ σX

2 2+ ) is due to
biological variation and how much the measurement error.  As an example, the effect
of replication in two hypothetical cases is shown in table 1: the first case is when σX =
5 and σ = 1, a relatively precise measurement, and case 2 is a much noisier one, where 
σX = 5 and σ = 4.

Total SD

n Case 1 Case 2

1 5.09902 6.40312
2 5.04975 5.74456
3 5.03322 5.50757
4 5.02494 5.38516
5 5.01996 5.31037

10 5.00999 5.15752
15 5.00666 5.10555
20 5.00500 5.07937
25 5.00400 5.06360

Table 1: illustration of effect of replication

It can be seen that in case 1 two replicates reduces the total SD by only 1%, so in this
case the value of any replication is questionable.  In the second case, 2 replicates effect
a reduction of 10%, whereas 3 replicates give a 14% reduction.  Increasing the
replication to 4 and 5 gives reductions of 16% and 17% respectively.  However the
reduction achieved by replicating 25 times is only 21%, showing that beyond a certain
point, extra replication has limited benefits.
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In any application the number of replications that are required is a matter of
judgment, but calculations such as these provide a basis for striking the balance
between increased precion and the extra effort and cost of greater replication.

Estimation of σ and σX

So far this note has been concerned with establishing a framework to clarify the
issues involved with measurement error and replication.  For many purposes it is useful
to have an estimate of the error SD σ and in some circumstances (such as assessing the
value of replication) it is also helpful to have an estimate of σX.  We now turn to the
methods for obtaining these estimates.

At the start of these notes two forms of data were considered.  In the first a
single patient or subject was measured repeatedly, so although an estimate of the error
SD, σ, could be obtained, no information on between patient variability had been
collected, so no estimate of σX is available.  The second type of sample is when each
patient is measured only once, so σ σX

2 2+ , but not σX and σ individually, can be found.
The resolution to this is to collect several samples from each of several patients.  The
replication within a patient allows σ to be estimated and the replication between
patients allows σX to be estimated.  The balance between how many times to measure
each patient and how many patients should be measured varies from case to case.
Although it is possible (and indeed often desirable) to measure each patient three or
more times, it is simpler to obtain the estimates if each patient is measured just twice
and we will restrict consideration to this case.

In table 2 duplicate readings of plasma glucose on each of 20 patients are
shown.  In symbolic terms, the data from the first patient can be written

Y11 = X1 + error1, Y12 = X1 + error2

As outlined above, the average of these replicates, i.e. 1
2 11 12( )Y Y+ , has SD

σ σX
2 1

2
2+ .

The difference between the replicates, Y Y11 12− , is actually error1 - error2, i.e. it does
not depend on X, and hence on σX, at all.  Thus the variance of this difference must
depend only on σ2 and it can be shown that it is actually 2σ2 (see Armitage and Berry,
1994, p.88).

Patient Reading 1 Reading 2 Patient Reading 1 Reading 2
1 8.11 7.93 11 5.72 5.78
2 8.42 8.41 12 5.87 5.88
3 4.05 4.25 13 7.47 7.47
4 6.40 6.49 14 6.69 6.62
5 9.13 8.89 15 7.28 7.20
6 8.36 7.91 16 6.79 6.73
7 5.44 5.75 17 9.54 9.73
8 4.65 4.74 18 3.35 3.28
9 6.57 6.50 19 8.01 7.88

10 3.74 3.95 20 5.14 5.23
Table 2: duplicate plasma glucose readings on 20 patients (mmol/l)
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Thus the method is simply to form the 20 means and 20 difference of the pairs of
glucose measurements in table 2, something which is easily done in the Mathematical
Expressions  part of the Calc  menu.  The SDs and variances of these can then be
found in the Descriptive Statistics  command in the Basic Statistics  item under the

Stat  menu.  The SD of the 20 differences and means is shown in figure 4

The method can be summarised in the following table, where the above
formulae and the estimates are put together:

Quantity SD value variance value

Means σ σX
2 1

2
2+ 1.746 σ σX

2 1
2

2+ 3.049

Differences σ√2 0.1744 2σ2 0.0304

From this, it is easy to estimate σ, as 1
2 0 0304 0 0152. .=  = 0.123 mmol/l, that is,

measurements of plasma glucose are generally within ±0.246 mmol/l of the true value.

From the first row of the table it is seen that σ σX
2 1

2
2+  = 3.049, so σX

2  can be found by
using the above estimate of σ2 to find 1

2
2σ  = 0.0076 and then subtract this from 3.049,

giving 3.0414, so the estimate of σX = √3.0414 = 1.744 mmol/l.

In this instance the effect of measurement error on the total SD is very small.
Clearly it is very unlikely that any application of these values would benefit from any
replication.

More complicated situations
The case where two sources of variation, biological and measurement, are

disentangled by taking duplicate readings is probably the simplest case for this type of
analysis.  If each patient had been measured three times then the same quantities, σX

and σ, would be estimated but using more a more complicated method.  This method is

Figure 4: SDs of means and differences
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essentially one-way ANOVA although the interpretation of the sums of squares
changes from that covered in the note on that topic: details can be found in Armitage
and Berry (1994, p.219-222).  It is necessary to perform some calculations on the
ordinary output of ANOVA to obtain the relevant estimates; if the ANOVA is
performed using the Balanced ANOVA command in the ANOVA sub-menu of the Stat
menu then options can be set to produce these estimates directly.

A further extension of the method, which is generally known as random effects
ANOVA or components of variance, allows more than two SDs to be estimated: for
example when measuring fetal kidney dimensions on ultrasound there will be inter-
fetus variation and also measurement error within an ultrasonographer, but there may
well be between-ultrasonographer variation too.  This additional component of
variance can be found by a suitably designed study, in which each fetus is measured
repeatedly by each of the ultrasonographers in the study.  The details of this are
beyond the scope of the present note.
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