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Data Description, Populations and the Normal Distribution

Introduction
This course is about how to analyse data.  It is often stressed that it may be totally
impossible to produce a meaningful analysis of a set of data, or at least it may not be
possible to use the data to answer questions of interest, unless the data have been
collected properly.  This is undoubtedly so, and correct design of studies is
fundamentally important.  However, although correct design must obviously precede
correct analysis in the conduct of any investigation, the principles of design are there
simply to facilitate correct and efficient analysis, so a sound understanding of how data
are analysed is needed in order to appreciate the tenets of sound design.  It is for this
reason that this course concentrates on issues of analysis.

Descriptive Statistics: the five number summary
Once a set of data has been collected, one of the first tasks is to describe the data.  The
following table contains the heights of 99 five-year-old British boys in cm.

117.9 110.2 112.9 115.9 108.0 104.6 107.1 117.9 111.8
106.3 111.0 100.4 112.1 109.2 101.0 105.4 99.4 110.1
103.3 106.9 108.2 119.3 112.0 106.2 105.9 106.9 109.3
105.9 110.0 106.7 108.5 107.7 114.3 108.6 104.6 113.7
116.7 103.5 96.1 110.8 97.2 109.6 110.5 105.9 106.2
107.4 114.9 110.3 104.8 99.2 119.2 111.4 103.0 110.1
105.8 101.5 105.9 107.6 97.1 113.3 109.4 109.4 110.8
106.3 108.1 109.6 102.4 110.4 110.1 115.3 102.9 111.2

99.4 105.7 119.5 109.3 112.8 108.2 117.0 106.8 105.4
108.7 109.2 97.1 103.3 108.8 116.3 115.5 114.9 101.1
104.1 110.8 112.7 105.6 99.9 111.1 109.4 109.1 110.7

The immediate impression is of an indigestible mass of numbers.  Some of the numbers
are under 100 cm, a few are above 115 cm but most seem to be between 100 cm and
115 cm.  Little more can be said from this display.  Some progress can be made by re-
arranging the table so that the heights are in numerical order, as in the following:
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96.1 101.5 105.4 106.3 108.1 109.3 110.3 111.8 115.3
97.1 102.4 105.4 106.3 108.2 109.4 110.4 112.0 115.5
97.1 102.9 105.6 106.7 108.2 109.4 110.5 112.1 115.9
97.2 103.0 105.7 106.8 108.5 109.4 110.7 112.7 116.3
99.2 103.3 105.8 106.9 108.6 109.6 110.8 112.8 116.7

99.4 103.3 105.9 106.9 108.7 109.6 110.8 112.9 117.0

99.4 103.5 105.9 107.1 108.8 110.0 110.8 113.3 117.9
99.9 104.1 105.9 107.4 109.1 110.1 111.0 113.7 117.9

100.4 104.6 105.9 107.6 109.2 110.1 111.1 114.3 119.2
101.0 104.6 106.2 107.7 109.2 110.1 111.2 114.9 119.3
101.1 104.8 106.2 108.0 109.3 110.2 111.4 114.9 119.5

This is much better and the investigator can glean a good deal of information from this
presentation, such as whether there are any unusual values in the sample, as well as
getting a better appreciation of the distribution of these 99 heights.  However, it can
hardly be said to be a succinct way to present the data, and when giving presentations,
or publishing results or comparing different data sets (such as a set of heights of
children from another country) and for many other purposes, more economical
summaries are needed.

A common way to summarise a data set is the five number summary, and for these
heights the five numbers are the ones highlighted in the above table.

The number in the cell with the bold double outline, 108.7 cm, is the ‘middle’ value of
the sample when it is placed in ascending order: it is the 50th largest value, so 49 values
are smaller than it and 49 values are larger.  It is known as the median and is a widely
used measure of the location of a sample.

Samples can be located similarly but be quite different because they can be more or less
dispersed around their location.  It is therefore useful to have a measure of the spread
of the sample.  There are several possible measures and a widely used one is provided
by the quartiles, which are the numbers with the lighter double outlines in the table.
The lower quartile, 105.6 cm, is defined as the number which is a quarter of the way
from the smallest to the largest value in the sample.  The upper quartile, 111.1 cm is
three quarters of the way from the smallest to the largest value in the sample.  The
inter-quartile range (IQR) is defined as the difference between the figures, i.e. 5.5 cm.
An alternative measure of spread, which will be seen later to have severe deficiencies,
is the range, which is the difference between the maximum in the sample (119.5 cm)
and the minimum (96.1 cm), i.e. 23.4 cm.

The exact definitions of these quantities need care so that several awkward
technicalities are overcome consistently.  In the present example there is a value that is
unequivocally the ‘middle’ value because there are an odd number of observations in
the sample.  Had there been an even number, for example 100 observations, there
would be problems of definition: the 50th largest number would exceed 49 values but
be exceeded by 50 values, whereas the 51st largest number would exceed 50 values but
be exceeded by 49 values, so neither would be exactly in the middle, but each would
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have an equal claim to this status.  The solution is to define the median as being half-
way between the 50th and 51st values.  Similar issues attend the quartiles and the
requisite formulae are given in appendix 1.

The minimum, lower quartile, median, upper quartile and maximum collectively
comprise the five number summary.

Graphical Displays

A useful graphical display of this way of summarising data is the boxplot, or box and
whisker plot, shown in figure 1.
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Figure 1

The top and bottom of the ‘box’ of the box and whisker plot are drawn at the level of
the upper and lower quartiles respectively.  A line is drawn across the box at the level
of the median.  This is the usual form the box and variations from this are very rarely
encountered.

The ‘whiskers’ are lines drawn from the top and bottom of the box to the maximum
and minimum and this is what is shown in figure 1.  This is how the box and whisker
plot was originally conceived.  However variants on this are quite common.  Usually
they involve drawing the whiskers up to points that are within a given multiple of the
height of the box from the top or bottom of the box.  Any points beyond the whiskers
are plotted individually.  This approach is often adopted in computer packages and can
be useful insofar as unusual or outlying values are plotted explicitly and do not simply
distort the lengths of the whiskers.  The exact multiple of box widths varies between
packages: typical values are between one and two.

An alternative way to display data is a histogram.  The range of the data is divided into
intervals of equal width1 (often called bins) and the number of observations in each
interval is counted.  The histogram is the plot of bars, one for each bin, with heights

                                               
1 The intervals can be of unequal width but this leads to complications and is best avoided
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proportional to the number of observations in the corresponding bin.  The height can
be the number in each interval but the number expressed as a proportion of the total
number of observation in the sample can given a picture of the distribution of the data
that is not dependent on sample size.

The analyst must exercise judgment in the choice of number of bins.  Figure 2 shows
the data on the heights of 99 boys using different numbers of bins.  With just two bins
there is very little indication of how the heights are distributed.  With six bins matters
are clearer but a better picture is probably given by the case with 15 bins.  When the
number of bins increases further there is too little smoothing of the data and the
histogram start to look rather jagged.
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Figure 2: histograms with 2, 6, 15 and 50 bins (clockwise from top left)

Unlike box and whisker plots, which only attempt to provide a graphical version of the
five number summary, histograms show the entire sample and allow the full
distribution of the sample to be viewed (to within the effects of the chosen bin width).
Also, as the size of the sample increases deeper aspects of the nature of the distribution
may become apparent.  Figure 3 shows histograms for the above sample of 99 heights
together with histograms for three (simulated) larger samples, of sizes 300, 1000 and
10000.

It can be seen that as the sample size gets larger the form of the distribution becomes
more regular and seems to approach an idealised form depicted by the curve, which
has been superimposed on the last two histograms.
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Figure 3: histograms for 99 heights and simulated samples of 300, 1000 and 10000 heights

Here the use of histograms has revealed that in very large samples a certain regularity
of form, to which it appears the shape of histograms tend as the sample size increases.
The form shown in the figure is symmetric and bell-shaped and in this case actually
represents the well-known Normal distribution.  Not all measurements will tend to
distributions with this shape, although many do.  Incidentally it should also be noted
that the form accords closely with the hypothetical form only for a very large sample,
an observation which has implications for assessing distributional form in smaller
samples.

However, before the notion of a Normal distribution can be fully explained, the notion
of a population must be introduced, and together with it the basic ideas of inferential
statistics.

Populations, Parameters and Inference

The data on heights of 99 boys in the above example may well be of interest in their
own right, but more often they are of value for what information they contain about a
larger group of which they are representative.  Similarly when conducting a clinical
trial, the results obtained from the patients in the trial are, of course of value, for those
involved, but they are much more important to the medical community at large for
what they tell us about the group of all similar patients.  In other words there is usually
considerable interest in making inferences from the particular of the sample to the
more general group.  It is for this reason that much of statistics is built around a logical
framework that allows us to determine which inferences can and cannot be drawn.

The important component of inferential statistics is the idea of a population.  This is
the group about which we wish to learn but which we will never be able to study in its
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entirety.  Populations are often perforce conceptual: for example, the above data may
come from a study in which aim is to learn about the heights of males at school entry in
the UK.

A second important component of inferential statistics is the idea of a sample.
Although we can never study a whole population, we can select several individuals
from the population and study these.  The selected individuals are know as a sample.
The hope is that by studying the sample we can make inferences about the population
as a whole, and it is this process which is the central concern of modern statistics.  The
way the selection is made must ensure that the sample is representative of the
population as a whole.  The main tool for ensuring representativeness is random
sampling.  If some process supervenes which makes the selection unrepresentative then
the sample is often referred to as biassed.

Most of the subject of statistical design is concerned with methods for selecting
samples for study in a way that ensures inferences about a relevant population will be
valid.  A further issue is deciding how large a sample needs to be in order to attempt to
ensure that the inferences will be useful.

Populations are not samples and therefore cannot be pictured by histograms.  The
natural way to describe how a measurement is distributed through a population is by
means of a suitably defined curve, such as that superimposed on the histograms in
figure 3.  For continuous measurements, such as heights, weights, serum
concentrations etc. by far the most important distribution is the Normal distribution
and an example is pictured in figure 4.
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Figure 4: a Normal distribution

A Normal distribution has a central peak with the curve descending symmetrically on
either side: for obvious reasons the curve is often described as being ‘bell-shaped’.
The height of the curve indicates that most values in the population fall near the central
value, with fewer values further from the centre.  The decline is symmetric, so there
will be equal amounts of the population located at the same distance above the peak as
there is at that distance below the peak.
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All Normal distribution have the same basic shape but they may have different
locations and different spreads or dispersions.  The location is determined by the
position of the central peak and the dispersion by the width of the bell.  These two
attributes are determined by two population parameters: the peak is located at the
population mean µ and the width is determined by σ, the population standard
deviation.  Most populations are described in terms of a distributional form together
with a few population parameters.  The mean and standard deviation are the only
parameters that are needed to determine a Normal distribution.  Other kinds of
distributions may be specified in terms of other kinds of parameters.

Population parameters are unknown, as they are defined in terms of the whole
population, which we can never study.  There are sample analogues of population
parameters and these can be estimated from the data in the sample.  A fundamental
idea in statistical inference is that we use these sample analogues, known as sample
statistics, to estimate the corresponding population parameters.  In statistical analyses
it is important to distinguish clearly between population parameters, which we can
never know but about which we wish to learn, from sample statistics which we can
compute.  To help maintain this distinction there is a widely used convention which
reserves Greek letters for population parameters, such as µ and σ, and the
corresponding roman letter for the corresponding sample statistic, such as m and s.

Sample Statistics for a Normal Distribution

Given a sample of data from a Normal distribution, the sample mean and sample
standard deviation (sample SD) can be calculated.  The sample mean2 is what is loosely
referred to as the ‘average’ and is found by adding up all the numbers in the sample
and dividing by the number of values that have been added.  As well as being
mathematically the right thing to do, it is also a common-sense way to arrive at a
typical value.  In mathematical notation this is written as:

sample mean = m
x x x

n
n=

+ + +1 2 ...

where x x xn1 2, ,...,  represent the individual observations in the sample.  In a similar
notation the sample SD can be written as:

sample SD = s
x m x m x m

n
n=

− + − + + −
−

( ) ( ) ( )1
2

2
2 2

1

K
.

For the sample of 99 heights the mean is 108.34 cm and the sample SD is 5.21 cm.
Note that units should be given for both the mean and the SD.

In general there is little need these days to work directly with either of these formulae,
as the computations will be done by computer, but however they are executed they are

                                               
2 Strictly the arithmetic mean
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fundamental to inferences for Normally distributed data.  Those interested can consult
appendix 2 for an explanation of why the SD is computed in the way described above.

Means and SDs are important if the data follow a Normal distribution.  Ways of
assessing whether data are Normal and the extent to which such assessment is
necessary are discussed below.  If data are found not to be Normally distributed then
are means and SDs inappropriate?  It is not easy to give a general answer to this
question.  Use of medians and quartiles will offer a correct alternative so if there is
doubt means and SDs can be avoided.  Certainly, if the data have a skew distribution,
as illustrated in figure 5, then the mean can be alarmingly sensitive to the values of a
few large observations in a way that the median is not.  However, this is not a simple
question and being too ready to opt for the use of medians and quartiles can lead to
inefficient and unnatural analyses.  There are many methods for dealing with non-
Normal data, such as transforming data and using forms of means other than the
arithmetic mean and these approaches can be far preferable.  There will be further
material on this point later in the course.
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Figure 5: data having a skewed distribution (data from Dr PM Farr)

Quantitative use of the Normal curve

If the observations in the population follow a Normal distribution then this can be
characterised by the population mean and SD, µ and σ.  These can be estimated by the
sample mean and SD, m and s.  The shape of the Normal curve gives an impression of
how the observations will be distributed but can anything more quantitative be made of
the fact that the observations have a Normal distribution?  Essentially the answer is
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that knowledge of the values of µ and σ allows all aspects of the distribution to be
described.

The main thing to realise about the Normal curve is that the aspect which is easiest to
interpret quantitatively is the area under the curve.  Figure 6 shows a Normal
distribution with population mean and SD of 108 cm and 4.7 cm respectively.  The
area under the curve up to 112 cm has been shaded and is interpreted as the
probability that an individual from this population has a height below 112 cm.  In
general the area up to a point X is P and necessarily the area under the whole curve is
1.
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x

Shaded area =
Probability a child's height < X (= 112 cm here)

Figure 6: interpretation of area under a Normal curve

The value of P corresponding to a given X is the cumulative probability of the
distribution at X, or the cumulative distribution function at X.  Unfortunately there is
no simple formula for this, which would allow P to be determined from X or vice
versa.  Computer packages will return the value of P for a given value of X if values
are entered for X, µ and σ .  If MINITAB is used and the ‘Normal’ sub-menu is chosen
from the ‘probability distributions’ part of the Calc menu, the population mean 108,
the population SD, 4.7, can be entered along with the target value 112 as the ‘input
constant’.  Selection of the Cumulative probability option returns a value 0.8026,
which is the value for P.

The calculations are not restricted simply to the probability of being less than a
particular value.  Clearly the probability that a value is above X is 1-P.  Also the
symmetry of the Normal curve can be exploited: for example if Y is so many units
below the mean and there is a probability Q of having a value below Y, then the
probability of being above an equal number of units above the mean is also Q, as
illustrated in figure 7.  The probability of being between any pair of values can be
found by working out the probability of being below the lower value, the probability of
being above the upper value and then adding these two values and subtracting them
from 1.
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Q = probability height < 101cm
 = mean - 7 cm = 0.068
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Figure 7: use of symmetry to find probabilities above as well as below given values

A further use of the Normal curve is to ask questions such as ‘what is the height such
that only 3% of boys are shorter than that value?’ i.e. given a value of P what is the
corresponding X?  This also needs to be computed in a statistical package.  In
MINITAB the same method is used as described above but selecting the inverse
cumulative probability option.  So, for example, using the mean and SD used
previously it can be found that only 3% of boys have a height less than 99.16 cm (n.b.
the 3% must be entered as 0.03).

For each X there is a corresponding P, but things can be made simpler than that.  If the
value X is written as a multiple of σ above or below the mean, then P depends only on
that multiple, not on the values of µ and σ.  Writing X = µ σ+ Z , this assertion states
that P depends only on the value of Z.  So, for example if X = 112 cm, as iin the above
example, then 112 = 108 + Z×4.7, so Z = (112-108)/4.7 = 4/4.7 = 0.85.  If X had a
Normal distribution with different mean and SD, say 100 cm and 3.5 cm, then the
proportion of this population below 100 + 0.85 × 3.5 = 102.975 cm is the same as the
proportion of the original population below 112 cm, i.e. 0.8026.

What is the advantage of knowing that P depends only on the Z value?  After all, if you
want to compute P for a given X you can usually tell the program values for the mean
and SD.  The value is actually that knowing a few pairs of Z and P values can be a
considerable aid to understanding how your data are distributed.  Once you know (or
have estimates of) the mean and SD you can readily compute what proportion of the
data is below certain values, at least for the pairs of Z and P you know.  Some useful
values are shown below.
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Z 0 1 2 1.96 0.675 2.58
P 0.5 0.84 0.977 0.975 0.75 0.995
Proportion within Z SDs of mean
(=2P-1)

0 0.68 0.954 0.95 0.5 0.99

Note that if the proportion falling below Z (>0) is P, then the proportion above Z is 1− P  and by the
symmetry of the Normal curve the amount falling below -Z is also 1− P  (cf. Figure 7), so the amount
below Z but above -Z (the proportion within Z SDs of the mean) is P P P− − = −( )1 2 1 .

Using these pairs of Z and P it can be seen that 68% of the population is between
µ σ−  and µ σ+ .  About 95% lie between µ σ± 2 : in fact 95.4% fall in this interval
and a more accurate interval containing 95% of the population is µ σ±196. .  Intervals
containing 95% of some population are widely used in statistics and if the population
is, at least approximately, Normal then this corresponds to one of µ σ±196.  or
µ σ± 2 .  Strictly the former should be used but the convenience of the latter means
that the two versions are used almost interchangeably.

Also, the above shows, fairly obviously, that the median of the Normal distribution is µ
and, less obviously, the upper quartile is µ σ+ 0 675.  (and hence the lower quartile is
µ σ− 0 675. ).  Indeed, for any proportion P the value cutting off the bottom 100P% of
the population, often referred to as the 100Pth percentile or centile is µ σ+ Z  and this
can be estimated by m Zs+ .

From the above observations on the value of the quartiles in a Normal population the
Inter-quartile range (IQR) for a Normal distribution is ( . )µ σ+ 0 675 - ( . )µ σ− 0 675  =

1.35σ.  A crude and inefficient but valid way to estimate of σ would be to compute the
quartiles of a sample, as described in appendix 1, find the IQR and divide it by 1.35.
What would be the corresponding result for the range (i.e. the maximum - minimum
values)?  The answer is that the range is expected to be proportional to σ but the
divisor analogous to 1.35 for the IQR is no longer a constant but depends on sample
size.  A moment’s reflection will show that is sensible: if you draw a sample of size 10
from a population you would expect the extremes of that sample to be substantially
less extreme than the extremes from a sample of a 1000.  The conclusion is that the
range of a sample not only reflects the spread of the measurements, it also reflects the
sample size.  As such it is seldom a useful measure or estimate of a population attribute
such as spread.

Why is the Normal distribution important?

The Normal distribution is important in statistics for different reasons, although in
some circumstances these reasons do overlap somewhat.

i)  it arises empirically: many variables have been studied intensively over the years
and have been found to be Normally distributed.  If a variable is Normally
distributed then it is important to take advantage of this fact when devising and
implementing statistical analyses.  Moreover, many of the statistical techniques that
require data to be Normally distributed are robust, in the sense that the properties
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of these methods are not greatly affected by modest departures from Normality in
the distribution of the data.

ii)  Some variables are Normally distributed because, or partly because of the
biological mechanism controlling them.  Variables under polygenic control are an
example of this and this is illustrated in appendix 3.

iii)  The Normality arising from polygenic control is related to another reason why
Normality is important.  This is that the distribution of the mean of a sample tends
to have a distribution close to a Normal distribution even when the individual
variables making up the mean are not Normally distributed.  The departure from
Normality decreases as the sample size increases.

 By way of illustration of this, figure 8 shows four histograms, with the best fitting
Normal distribution superimposed.  The first shows a sample of 10000 from a
population that has a non-Normal distribution (in this case highly skewed).  This
illustrates the underlying distribution of the variables.  The remaining histograms
are each of 500 sample means: in the first each sample is of size 10, the second of
50 and the third of 100.
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Figure 8: histograms of 10000 observations form a population and of 500 sample
means for samples of size 10, 50 and 100.

It is seen that even for a population that is very skew, sample means have
distributions that are much more symmetric and that are much closer to Normal
than the population distribution.  The effect is noticeable even in samples as small
as 10.

Assessing Normality

Many statistical techniques assume that the data to which they are applied follow a
Normal distribution.  Many analysts are therefore anxious to determine whether or not
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their data are Normally distributed so that they will know if it is legitimate to use the
methods that require Normality.  Some ways of doing this are described below but
before going into details several general points ought to be made.

Non-parameteric or Distribution-free methods

A set of methods is available that perform a range of statistical techniques, such as
performing hypothesis tests, constructing confidence intervals, that do not require an
assumption of Normality.  Workers therefore might wonder why it is necessary to
bother with methods that make troublesome assumptions when such assumption-free
approaches are available.  Indeed, distribution-free methods are widely encountered in
the medical literature.

While distribution-free methods can occasionally be useful, there are several reasons
why a tendency to opt too readily for distribution-free methods should be resisted.

i)  In many common applications the assumption of Normality is not all that crucial,
and may not even be the most important of several assumptions underlying the
method.  For example, the unpaired t-test for comparing two groups assumes the
data in each group is Normal and has a common SD.  However, quite marked
departures from Normality can be tolerated and unequal SDs is probably a more
serious violation of the specified conditions.

ii)  Related to this is the fact that for some important purposes, such as constructing
confidence intervals, distribution-free methods are certainly not assumption-free.
E.g. in the unpaired two-sample comparison the distributions are assumed to have
the same shape and differ only by a shift.

iii)  Distribution-free methods are at their best for hypothesis tests and their reliance on
the ranks of the data can make some aspects of estimation seem unnatural.

iv)  Distribution-free methods, at least those widely available, cannot cope with data
that has anything more than the simplest structure.

v)  Transformations can be useful in changing the distribution of data to a more
manageable form: an example of this is given later in the course

For many purposes it is therefore misguided to be too pre-occupied with the accurate
assessment of the Normality of data.  This remark is certainly reasonable when the data
is to be used for things such as tests on means and confidence intervals for means.
There are exceptions, when the inferences are based more strongly on the assumption
of Normality.  This typically arises when trying to estimate features of the data that
depend on the extremes of the distribution.  For example, if an estimate of the third
centile of a population is required from a sample of 200 heights, the sample can be
sorted and the 6th largest value chosen.  However, if the sample is from a Normal
distribution a much more precise estimate is m-1.88s: in fact the precision of this is
about the same as that found by the sorting and counting method from a sample of size
800.  In other words the assumption of Normality has saved you from having to
measure 600 heights.  However, m-1.88s is only a valid estimate of the 3rd centile if the
Normality assumption holds.  Moreover, as the estimate is concerned with the location
of points in the tail of the distribution then the validity of the estimate is much more
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dependent on the distribution being very close to a Normal distribution than is the case
for, say, a t-test.

Relative size of mean and SD: a quick and dirty test for positive variables

A feature of the Normal distribution is that it describes data that are distributed over all
values, both positive and negative.  If the variable so described can take negative as
well as positive values then this presents no problem, either conceptual or practical.
However, many variables encountered in medical science can only be positive, e.g.
heights, bilirubin concentrations, haemoglobin concentrations cannot be negative.  It
would be too strict to deem that the Normal distribution could not be used to describe
such variables, because this would preclude many useful analyses.  If the Normal
distribution used to describe a necessarily positive outcome ascribes very little
probability (say, less than 1 to 5%) to negative values, then there will be no practical
problems, even though the conceptual difficulty may remain.  However, if the  Normal
distribution fitted to a positive variable ascribes substantial probability to negative
values then this indicates that the use of  Normal distribution may not be appropriate
for this variable.

Above it was noted that 16% of a Normal population falls below µ σ−  and 2½%
below µ σ− 2 .  So, if a positive variable that is assumed to be Normal has an estimated
mean, m, less than the estimated SD, s, i.e. m/s < 1 then a Normal distribution may
well be inappropriate.  As the ratio m/s increases towards 2 the suspicion that
Normality is inappropriate will diminish.  Of course, the shape of the distribution could
make the use of a Normal distribution inappropriate whatever the value of m/s: this is
far from a foolproof assessment, it is simply a useful rule of thumb.  It can be
particularly useful when reading the literature, where it may be the only method that
can be applied using the published material.

Histograms and other graphical methods
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Figure 9: histograms of samples of size 10 from a Normal distribution
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One of the simplest and most obvious ways to assess Normality is to plot the
histogram, as was done in figure 3.  This allows the general shape of the distribution to
be estimated (and, incidentally, allows reasonable assessment of possible outlying
values in the sample).However, some care is needed in the assessment because too
strict an insistence on a suitable ‘bell-shaped’ appearance can lead to genuinely Normal
data being dismissed as non-Normal.  This is especially true of small samples.  As an
extreme example figure 9 shows histograms of nine samples, each of size 10, randomly
generated from a Normal random number generator on the computer - so the data are
known to be Normal.  It is seen that several of the plots look far from Normal,
emphasising that recognition of Normality, at least in small samples, is very difficult.

A slightly more sophisticated approach is to use a Normal probability plot.  This can
be obtained in Minitab (version 11) by choosing Probability plot … from the
Graph menu.  Selecting the Normal distribution button and inputting the column
containing the sample allows the Normal probability plot to be obtained.  The default is
to have confidence intervals on the plot but these are an unnecessary distraction and
can be omitted by removing the tick from the appropriate box in the Options… box.
Applying this to the data on heights of 99 boys gives:
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Figure 10: Normal probability plot of heights of 99 boys

The idea behind this method can be explained as follows.  If a sample of size 1 were
available from a from a Normal population then you would ‘expect’ this value to be µ.
If the sample were of size two you would expect the larger value to be a little above µ
and the smaller to be the same amount below µ.  If the sample were of size three the
smallest of the values would be expected to be below µ (by a slightly greater amount
than in the sample of size two, as smaller samples would be expected to throw up less
extreme maxima and minima), the largest value would be the same amount above µ
and the middle value would be near µ.  As the sample size increases, the smallest value
is ‘expected’ to fall further and further below µ, with the middle of the sample being
close to µ.  Intermediate values will fall in-between, with values clustering more tightly
near the mean as their rank increases, because of the nature of the bell shape of the
Normal curve.  The largest values will be arranged above µ  symmetrically relative to
the smallest values.  This idea is illustrated in figure 11 for increasing sample sizes.
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If a sample is from a Normal distribution then if it is sorted into ascending order and
each point is plotted against the ‘expected’ position of that point in the ordering, a
straight line should result.  Of course, sampling variation means that the line will never
be exactly straight and some judgment must be used in the interpretation of these plots.
That in figure 10 is more than satisfactory: an example of a Normal plot of a non-
Normal sample is shown in figure 12 and is clearly far from straight: the data are a
sample of 99 from the population used in the first panel of figure 8.
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Figure 11: expected locations of ordered elements of a sample from a Normal distribution for various
sample sizes

The labelling of the graphs in figures 10 and 12 needs a brief word of explanation.  The
ordered sample values are plotted on the horizontal axis and the vertical axis is the
corresponding expected value.  However it is not labelled as such.  The scale is labelled
as a percentage and this is best explained by an example.  If the sample has 100 points
then the smallest is plotted at about 1%, the next at about 2% etc.
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Figure 12: Normal probability plot and histogram for a grossly non-Normal sample of size 99

There are other methods for assessing Normality, including formal hypothesis tests but
these generally lack power.  The Normal probability plot is one of the best and, in
experienced hands, one of the most useful ways to assess Normality.
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Appendix 1: computing medians and quartiles

Once the sample has been sorted into ascending order the median is the middle value.
More precisely, if the sample contains n values then the median is the ½(n+1)th largest
value.  In the example n=99, so n+1=100 and the median is the 50th largest value.  Had
the sample been of size 100, for example another child, of height 118.1cm, been
measured, then the median would have been the ½(100+1)th = 50½th largest value.
Of course, there is no 50½th largest value until we interpret what is meant by a
fractional rank.  In this augmented sample the 50th largest value is 108.7 cm and the
51st largest value 108.8 cm: the 50½th largest value is interpreted as being ½ way
between these values, i.e. the median of the augmented sample is 108.7 + ½ (108.8 -
108.7) = 108.75 cm.

The definitions for the quartiles follow by analogy.  The lower quartile for a sample of
size n is the ¼ (n+1) th value and the upper quartile is the ¾ (n+1) th largest value.  In
the example above where n+1 = 100, the lower quartile is the 25th largest value and the
upper quartile is the 75th largest value.  This definition could result in fractional ranks
of ¼ and ¾ which are interpreted in the same way as above.  In the augmented sample
of size 100, n+1 = 101 and lower quartile is the 25¼ th largest value: this is ¼ of the
way from the 25th to the 26th largest value.  The 25 th largest value is 105.6 cm and the
26 th largest value is 105.7 cm, so the lower quartile is 105.6+ ¼ (105.7-105.6) =
105.625 cm.
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Appendix 2: the form of the SD

The idea in computing a measure of spread is first to define a measure of location and
then to measure how dispersed the observations are about that point.  In this instance
the mean is the measure of location, so it is natural that the SD should be based on the
differences of the individual points from the sample mean, i.e. the expression is based
on x m x m x mn1 2− − −, , ,K .

However, one ‘obvious’ measure of spread, namely to find the average of these
deviations, will not work.  This is because if you add up x m x m x mn1 2− − −, , ,K  the
result will always be zero because of the definition of the mean: there will always be
the same total deviation on the negative side (below m) as there is on the positive side
(above m).  A simple way round this difficulty would be to find the average of these
deviations without regard to their sign.  This is known as the mean absolute deviation
about the mean and is a legitimate measure of spread.  However its mathematical
properties are poor and the theory based on this measure of spread is not as rich as that
using the SD, so it is seldom used.

An alternative way to remove the balance between positive and negative deviations is
to square all the deviations, making them all positive and then take the ‘mean’ of these
values.  This results in a quantity which is known as the variance.  It is a very
important quantity in theoretical work but is of little direct use in practice because it is
on the scale of squared units, i.e. the variance of the heights would be in cm2.  This is
readily rectified by taking the square root, and it is this quantity which is the SD, and
which has the same units as the original measurements.

The ‘mean’ of the squares deviations was placed in quotes because, instead of dividing
the sum of the n squared deviations by n, the divisor n-1 is used.  This is largely a
technical matter and is related to the fact that the spread would ideally be measured
about the population mean µ, rather than the sample mean m.  The sample mean, being
determined as, in some sense, the ‘centre’ of the sample is actually slightly more
central to the sample than the population mean.  Consequently the dispersion around
the sample mean is slightly less then it would be about the population mean.  A
correction which slightly inflates the SD is therefore appropriate and is achieved by
dividing by n-1 rather than n.

This description has considered various aspects of the formula for the sample SD.  It
has not covered why the quantity defined as the sample SD is the appropriate estimator
of the parameter which governs the width of the Normal curve.  It is, but a
demonstration of this is beyond the scope of the present discussion.
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Appendix 3: an illustration of how a Normal distribution may arise.

This section presents an explanation of the way in which some types of genetic
control of continuously varying attributes can lead to distributions that appear Normal;
height is taken as the example.

The variability of some discrete variables, such as Rhesus blood groups, Rh+

or Rh-, are controlled by the action of a single gene.  There are alleles D and d, with D
dominant; Rh+ results from DD and Dd, with dd giving Rh-.  In this example the
heterozygous form is phenotypically indistinguishable from the dominant homozygote.
However, it is possible for an attribute under the control of a single gene to exhibit
three phenotypes, that is the heterozygote is distinguishable from both forms of

homozygote (a clinically important example is sickle-cell anaemia$).
For illustrative purposes, suppose for the moment that the inheritance of height

is under the control of a single gene with alleles H and h.  Suppose also that individuals
with genotype Hh are phenotypically of average height, that a genotype HH results in a
phenotype 1cm taller than average and hh in a phenotype 1cm shorter than average.
There would then be only three heights in the population, namely average (Hh), 1 cm

                                               
$ For details, see Fraser Roberts and Pembrey, An Introduction to Medical Genetics, Oxford, chapter
3
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below average (hh) and 1 cm above average (HH).  If the alleles H and h are equally
prevalent each combination HH, hh, Hh and hH is also equally likely (where hH and
Hh have been used to distinguish the heterozygote where h comes from, respectively
the mother or father).  However, Hh and hH both have average height, so the final
distribution of the phenotypes is as in figure 3.

Suppose now that instead of just one gene controlling height, two are needed,
again each with alleles H or h.  The height of the phenotype is determined by the
excess of the number of H alleles over the number of h alleles: equal numbers lead to
average height, two more H than h results in an individual 1 cm above average, two
more h than H results in an individual 1 cm below average, four more h than H gives a
phenotype 2 cm below average and so on.  The possible outcomes are given in the
table below: the entries in the body of the table are the departures from average height
(so 0cm = average) of the phenotype corresponding to the genotypes obtained from
the forms of genes 1 and 2 along the margins of the table.  Each of the 4×4=16
possible combinations of gene 1 and 2 is equally likely, but these give rise to only five
different heights, namely average and 1 and 2 cm above and below the average.  As
only one of the sixteen possible outcomes gives an individual 2 cm above average, we
know that only 1/16×100%=6.25% of the population are of this height, whereas 6 of
the outcomes, or 6/16×100%=37.5%, have average height.  The full distribution is

shown in figure 4.

Figure 4
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If the number of genes controlling height is now supposed to be 3, there are 4×4×4=64
equally likely gene combinations, but these give rise to only seven phenotypes, namely

heights at 1cm intervals from -3cm to 3 cm.
By counting the number of gene
combinations giving rise to each height, we
can construct the height distribution for this
population, as we did above for one and two
gene control of height above.  The
distribution for three genes shown in figure 5
is beginning to look quite like a Normal
distribution, as the superimposed Normal
curve indicates.

It is possible to extend this argument
to any number of genes controlling height
and figure 6 a) and b) show the distributions
obtained when respectively 6 and 12 genes

control height.  Clearly, as the number of genes controlling height increases, the
number of possible heights increases and their distribution gets closer and closer to a
Normal distribution.  This is an example of the polygenic control of a continuously
varying attribute.
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Figures 6a and 6b

Of course, this is a greatly simplified model of how height is inherited because
many important aspects have been ignored, including aspects of the influence of
parental height on that of the offspring and the assumption that each gene
contributions the same amount to the final height.  Perhaps even more important is that
the final height of an individual is not wholly determined by genetic factors but is also
influenced by environmental factors, such as nutrition and healthcare.  It should also be
realised that if an attribute, such as height, has a Normal distribution it does not follow
that it is under polygenic control, nor if an attribute has, e.g. a skew distribution, does
it mean that the attribute is not genetically influenced to some extent.  Nevertheless,
the preceding argument shows that a Normal distribution can occur as the result of a
biologically plausible mechanism.

Figure 5
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