
Data Description, Populations and the Normal Distribution 

Introduction 
This course is about how to analyse data.  It is often stressed that it may be totally 
impossible to produce a meaningful analysis of a set of data, or at least it may not be 
possible to use the data to answer questions of interest, unless the data have been 
collected properly.  This is undoubtedly so, and correct design of studies is 
fundamentally important.  However, although correct design must obviously precede 
correct analysis in the conduct of any investigation, the principles of design are there 
simply to facilitate correct and efficient analysis, so a sound understanding of how 
data are analysed is needed in order to appreciate the tenets of sound design.  It is for 
this reason that this course concentrates on issues of analysis. 
 

Descriptive Statistics: the five number summary 
Once a set of data has been collected, one of the first tasks is to describe the data.  The 
following table contains the heights of 99 five-year-old British boys in cm. 
 
 
117.9 110.2 112.9 115.9 108.0 104.6 107.1 117.9 111.8
106.3 111.0 100.4 112.1 109.2 101.0 105.4 99.4 110.1
103.3 106.9 108.2 119.3 112.0 106.2 105.9 106.9 109.3
105.9 110.0 106.7 108.5 107.7 114.3 108.6 104.6 113.7
116.7 103.5 96.1 110.8 97.2 109.6 110.5 105.9 106.2
107.4 114.9 110.3 104.8 99.2 119.2 111.4 103.0 110.1
105.8 101.5 105.9 107.6 97.1 113.3 109.4 109.4 110.8
106.3 108.1 109.6 102.4 110.4 110.1 115.3 102.9 111.2
99.4 105.7 119.5 109.3 112.8 108.2 117.0 106.8 105.4

108.7 109.2 97.1 103.3 108.8 116.3 115.5 114.9 101.1
104.1 110.8 112.7 105.6 99.9 111.1 109.4 109.1 110.7
 
The immediate impression is of an indigestible mass of numbers.  Some of the 
numbers are under 100 cm, a few are above 115 cm but most seem to be between 100 
cm and 115 cm.  Little more can be said from this display.  Some progress can be 
made by re-arranging the table so that the heights are in numerical order, as in the 
following: 
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96.1 101.5 105.4 106.3 108.1 109.3 110.3 111.8 115.3
97.1 102.4 105.4 106.3 108.2 109.4 110.4 112.0 115.5
97.1 102.9 105.6 106.7 108.2 109.4 110.5 112.1 115.9
97.2 103.0 105.7 106.8 108.5 109.4 110.7 112.7 116.3
99.2 103.3 105.8 106.9 108.6 109.6 110.8 112.8 116.7
99.4 103.3 105.9 106.9 108.7 109.6 110.8 112.9 117.0
99.4 103.5 105.9 107.1 108.8 110.0 110.8 113.3 117.9
99.9 104.1 105.9 107.4 109.1 110.1 111.0 113.7 117.9

100.4 104.6 105.9 107.6 109.2 110.1 111.1 114.3 119.2
101.0 104.6 106.2 107.7 109.2 110.1 111.2 114.9 119.3
101.1 104.8 106.2 108.0 109.3 110.2 111.4 114.9 119.5

 
This is much better and the investigator can glean a good deal of information from 
this presentation, such as whether there are any unusual values in the sample, as well 
as getting a better appreciation of the distribution of these 99 heights.  However, it can 
hardly be said to be a succinct way to present the data, and when giving presentations, 
or publishing results or comparing different data sets (such as a set of heights of 
children from another country) and for many other purposes, more economical 
summaries are needed. 
 
A common way to summarise a data set is the five number summary, and for these 
heights the five numbers are the ones highlighted in the above table. 
 
The number in the cell with the bold double outline, 108.7 cm, is the ‘middle’ value 
of the sample when it is placed in ascending order: it is the 50th largest value, so 49 
values are smaller than it and 49 values are larger.  It is known as the median and is a 
widely used measure of the location of a sample. 
 
Samples can be located similarly but be quite different because they can be more or 
less dispersed around their location.  It is therefore useful to have a measure of the 
spread of the sample.  There are several possible measures and a widely used one is 
provided by the quartiles, which are the numbers with the lighter double outlines in 
the table.  The lower quartile, 105.6 cm, is defined as the number which is a quarter 
of the way from the smallest to the largest value in the sample.  The upper quartile, 
111.1 cm is three quarters of the way from the smallest to the largest value in the 
sample.  The inter-quartile range (IQR) is defined as the difference between the 
figures, i.e. 5.5 cm.  An alternative measure of spread, which will be seen later to have 
severe deficiencies, is the range, which is the difference between the maximum in the 
sample (119.5 cm) and the minimum (96.1 cm), i.e. 23.4 cm. 
 
The exact definitions of these quantities need care so that several awkward 
technicalities are overcome consistently.  In the present example there is a value that 
is unequivocally the ‘middle’ value because there are an odd number of observations 
in the sample.  Had there been an even number, for example 100 observations, there 
would be problems of definition: the 50th largest number would exceed 49 values but 
be exceeded by 50 values, whereas the 51st largest number would exceed 50 values 
but be exceeded by 49 values, so neither would be exactly in the middle, but each 
would have an equal claim to this status.  The solution is to define the median as 
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being half-way between the 50th and 51st values.  Similar issues attend the quartiles 
and the requisite formulae are given in appendix 1. 
 
The minimum, lower quartile, median, upper quartile and maximum collectively 
comprise the five number summary. 
 

Graphical Displays 
 
A useful graphical display of this way of summarising data is the boxplot, or box and 
whisker plot, shown in figure 1. 
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Figure 1 

 
The top and bottom of the ‘box’ of the box and whisker plot are drawn at the level of 
the upper and lower quartiles respectively.  A line is drawn across the box at the level 
of the median.  This is the usual form the box and variations from this are very rarely 
encountered. 
 
The ‘whiskers’ are lines drawn from the top and bottom of the box to the maximum 
and minimum and this is what is shown in figure 1.  This is how the box and whisker 
plot was originally conceived.  However variants on this are quite common.  Usually 
they involve drawing the whiskers up to points that are within a given multiple of the 
height of the box from the top or bottom of the box.  Any points beyond the whiskers 
are plotted individually.  This approach is often adopted in computer packages and 
can be useful insofar as unusual or outlying values are plotted explicitly and do not 
simply distort the lengths of the whiskers.  The exact multiple of box widths varies 
between packages: typical values are between one and two. 
 
An alternative way to display data is a histogram.  The range of the data is divided 
into intervals of equal width1 (often called bins) and the number of observations in 
each interval is counted.  The histogram is the plot of bars, one for each bin, with 
heights proportional to the number of observations in the corresponding bin.  The 
height can be the number in each interval but the number expressed as a proportion of 

                                                 
1 The intervals can be of unequal width but this leads to complications and is best avoided 
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the total number of observation in the sample can given a picture of the distribution of 
the data that is not dependent on sample size. 
 
The analyst must exercise judgment in the choice of number of bins.  Figure 2 shows 
the data on the heights of 99 boys using different numbers of bins.  With just two bins 
there is very little indication of how the heights are distributed.  With six bins matters 
are clearer but a better picture is probably given by the case with 15 bins.  When the 
number of bins increases further there is too little smoothing of the data and the 
histogram start to look rather jagged. 
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Figure 2: histograms with 2, 6, 15 and 50 bins (clockwise from top left) 
 
 
Unlike box and whisker plots, which only attempt to provide a graphical version of 
the five number summary, histograms show the entire sample and allow the full 
distribution of the sample to be viewed (to within the effects of the chosen bin width).  
Also, as the size of the sample increases deeper aspects of the nature of the 
distribution may become apparent.  Figure 3 shows histograms for the above sample 
of 99 heights together with histograms for three (simulated) larger samples, of sizes 
300, 1000 and 10000. 
 
It can be seen that as the sample size gets larger the form of the distribution becomes 
more regular and seems to approach an idealised form depicted by the curve, which 
has been superimposed on the last two histograms. 
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Figure 3: histograms for 99 heights and simulated samples of 300, 1000 and 10000 heights 
 
Here the use of histograms has revealed that in very large samples a certain regularity 
of form, to which it appears the shape of histograms tend as the sample size increases.  
The form shown in the figure is symmetric and bell-shaped and in this case actually 
represents the well-known Normal distribution.  Not all measurements will tend to 
distributions with this shape, although many do.  Incidentally it should also be noted 
that the form accords closely with the hypothetical form only for a very large sample, 
an observation which has implications for assessing distributional form in smaller 
samples. 
 
However, before the notion of a Normal distribution can be fully explained, the notion 
of a population must be introduced, and together with it the basic ideas of inferential 
statistics. 
 

Populations, Parameters and Inference 
 
The data on heights of 99 boys in the above example may well be of interest in their 
own right, but more often they are of value for what information they contain about a 
larger group of which they are representative.  Similarly when conducting a clinical 
trial, the results obtained from the patients in the trial are, of course of value, for those 
involved, but they are much more important to the medical community at large for 
what they tell us about the group of all similar patients.  In other words there is 
usually considerable interest in making inferences from the particular of the sample to 
the more general group.  It is for this reason that much of statistics is built around a 
logical framework that allows us to determine which inferences can and cannot be 
drawn. 
 
The important component of inferential statistics is the idea of a population.  This is 
the group about which we wish to learn but which we will never be able to study in its 
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entirety.  Populations are often perforce conceptual: for example, the above data may 
come from a study in which aim is to learn about the heights of males at school entry 
in the UK. 
 
A second important component of inferential statistics is the idea of a sample.  
Although we can never study a whole population, we can select several individuals 
from the population and study these.  The selected individuals are know as a sample.  
The hope is that by studying the sample we can make inferences about the population 
as a whole, and it is this process which is the central concern of modern statistics.  
The way the selection is made must ensure that the sample is representative of the 
population as a whole.  The main tool for ensuring representativeness is random 
sampling.  If some process supervenes which makes the selection unrepresentative 
then the sample is often referred to as biassed. 
 
Most of the subject of statistical design is concerned with methods for selecting 
samples for study in a way that ensures inferences about a relevant population will be 
valid.  A further issue is deciding how large a sample needs to be in order to attempt 
to ensure that the inferences will be useful. 
 
Populations are not samples and therefore cannot be pictured by histograms.  The 
natural way to describe how a measurement is distributed through a population is by 
means of a suitably defined curve, such as that superimposed on the histograms in 
figure 3.  For continuous measurements, such as heights, weights, serum 
concentrations etc. by far the most important distribution is the Normal distribution 
and an example is pictured in figure 4. 
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Figure 4: a Normal distribution 

 
A Normal distribution has a central peak with the curve descending symmetrically on 
either side: for obvious reasons the curve is often described as being ‘bell-shaped’.  
The height of the curve indicates that most values in the population fall near the 
central value, with fewer values further from the centre.  The decline is symmetric, so 
there will be equal amounts of the population located at the same distance above the 
peak as there is at that distance below the peak. 
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All Normal distribution have the same basic shape but they may have different 
locations and different spreads or dispersions.  The location is determined by the 
position of the central peak and the dispersion by the width of the bell.  These two 
attributes are determined by two population parameters: the peak is located at the 
population mean μ and the width is determined by σ, the population standard 
deviation.  Most populations are described in terms of a distributional form together 
with a few population parameters.  The mean and standard deviation are the only 
parameters that are needed to determine a Normal distribution.  Other kinds of 
distributions may be specified in terms of other kinds of parameters. 
 
Population parameters are unknown, as they are defined in terms of the whole 
population, which we can never study.  There are sample analogues of population 
parameters and these can be estimated from the data in the sample.  A fundamental 
idea in statistical inference is that we use these sample analogues, known as sample 
statistics, to estimate the corresponding population parameters.  In statistical analyses 
it is important to distinguish clearly between population parameters, which we can 
never know but about which we wish to learn, from sample statistics which we can 
compute.  To help maintain this distinction there is a widely used convention which 
reserves Greek letters for population parameters, such as μ and σ, and the 
corresponding roman letter for the corresponding sample statistic, such as m and s. 
 

Sample Statistics for a Normal Distribution 
 
Given a sample of data from a Normal distribution, the sample mean and sample 
standard deviation (sample SD) can be calculated.  The sample mean2 is what is 
loosely referred to as the ‘average’ and is found by adding up all the numbers in the 
sample and dividing by the number of values that have been added.  As well as being 
mathematically the right thing to do, it is also a common-sense way to arrive at a 
typical value.  In mathematical notation this is written as: 
 

sample mean = m x x x
n

n=
+ + +1 2 ...  

 
where x x xn1 2, ,...,  represent the individual observations in the sample.  In a similar 
notation the sample SD can be written as: 
 

sample SD = s x m x m x m
n

n=
− + − + + −

−
( ) ( ) ( )1

2
2

2 2

1
K . 

 
For the sample of 99 heights the mean is 108.34 cm and the sample SD is 5.21 cm.  
Note that units should be given for both the mean and the SD. 
 
In general there is little need these days to work directly with either of these formulae, 
as the computations will be done by computer, but however they are executed they are 
fundamental to inferences for Normally distributed data.  Those interested can consult 
appendix 2 for an explanation of why the SD is computed in the way described above. 

                                                 
2 Strictly the arithmetic mean 

 7



 
Means and SDs are important if the data follow a Normal distribution.  Ways of 
assessing whether data are Normal and the extent to which such assessment is 
necessary are discussed below.  If data are found not to be Normally distributed then 
are means and SDs inappropriate?  It is not easy to give a general answer to this 
question.  Use of medians and quartiles will offer a correct alternative so if there is 
doubt means and SDs can be avoided.  Certainly, if the data have a skew distribution, 
as illustrated in figure 5, then the mean can be alarmingly sensitive to the values of a 
few large observations in a way that the median is not.  However, this is not a simple 
question and being too ready to opt for the use of medians and quartiles can lead to 
inefficient and unnatural analyses.  There are many methods for dealing with non-
Normal data, such as transforming data and using forms of means other than the 
arithmetic mean and these approaches can be far preferable.  There will be further 
material on this point later in the course. 
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Figure 5: data having a skewed distribution (data from Professor PM Farr) 
 
 

Quantitative use of the Normal curve 
 
If the observations in the population follow a Normal distribution then this can be 
characterised by the population mean and SD, μ and σ.  These can be estimated by the 
sample mean and SD, m and s.  The shape of the Normal curve gives an impression of 
how the observations will be distributed but can anything more quantitative be made 
of the fact that the observations have a Normal distribution?  Essentially the answer is 
that knowledge of the values of μ and σ allows all aspects of the distribution to be 
described. 
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The main thing to realise about the Normal curve is that the aspect which is easiest to 
interpret quantitatively is the area under the curve.  Figure 6 shows a Normal 
distribution with population mean and SD of 108 cm and 4.7 cm respectively.  The 
area under the curve up to 112 cm has been shaded and is interpreted as the 
probability that an individual from this population has a height below 112 cm.  In 
general the area up to a point X is P and necessarily the area under the whole curve is 
1. 
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x

Shaded area =
Probability a child's height < X (= 112 cm here)

 
Figure 6: interpretation of area under a Normal curve 

 
The value of P corresponding to a given X is the cumulative probability of the 
distribution at X, or the cumulative distribution function at X.  Unfortunately there is 
no simple formula for this, which would allow P to be determined from X or vice 
versa.  Computer packages will return the value of P for a given value of X if values 
are entered for X, μ and σ .  If MINITAB is used and the ‘Normal’ sub-menu is 
chosen from the ‘probability distributions’ part of the Calc menu, the population mean 
108, the population SD, 4.7, can be entered along with the target value 112 as the 
‘input constant’.  Selection of the Cumulative probability option returns a value 
0.8026, which is the value for P. 
 
The calculations are not restricted simply to the probability of being less than a 
particular value.  Clearly the probability that a value is above X is 1-P.  Also the 
symmetry of the Normal curve can be exploited: for example if Y is so many units 
below the mean and there is a probability Q of having a value below Y, then the 
probability of being above an equal number of units above the mean is also Q, as 
illustrated in figure 7.  The probability of being between any pair of values can be 
found by working out the probability of being below the lower value, the probability 
of being above the upper value and then adding these two values and subtracting them 
from 1. 
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Figure 7: use of symmetry to find probabilities above as well as below given values 
 
 
A further use of the Normal curve is to ask questions such as ‘what is the height such 
that only 3% of boys are shorter than that value?’ i.e. given a value of P what is the 
corresponding X?  This also needs to be computed in a statistical package.  In 
MINITAB the same method is used as described above but selecting the inverse 
cumulative probability option.  So, for example, using the mean and SD used 
previously it can be found that only 3% of boys have a height less than 99.16 cm (n.b. 
the 3% must be entered as 0.03). 
 
For each X there is a corresponding P, but things can be made simpler than that.  If the 
value X is written as a multiple of σ above or below the mean, then P depends only on 
that multiple, not on the values of μ and σ.  Writing X = μ σ+ Z , this assertion states 
that P depends only on the value of Z.  So, for example if X = 112 cm, as iin the above 
example, then 112 = 108 + Z×4.7, so Z = (112-108)/4.7 = 4/4.7 = 0.85.  If X had a 
Normal distribution with different mean and SD, say 100 cm and 3.5 cm, then the 
proportion of this population below 100 + 0.85 × 3.5 = 102.975 cm is the same as the 
proportion of the original population below 112 cm, i.e. 0.8026. 
 
What is the advantage of knowing that P depends only on the Z value?  After all, if 
you want to compute P for a given X you can usually tell the program values for the 
mean and SD.  The value is actually that knowing a few pairs of Z and P values can 
be a considerable aid to understanding how your data are distributed.  Once you know 
(or have estimates of) the mean and SD you can readily compute what proportion of 
the data is below certain values, at least for the pairs of Z and P you know.  Some 
useful values are shown below. 
 
Z 0 1 2 1.96 0.675 2.58 
P 0.5 0.84 0.977 0.975 0.75 0.995 
Proportion within Z SDs of mean 
(=2P-1) 

0 0.68 0.954 0.95 0.5 0.99 

Note that if the proportion falling below Z (>0) is P, then the proportion above Z is 1− P  and by the 
symmetry of the Normal curve the amount falling below -Z is also 1− P  (cf. Figure 7), so the amount 
below Z but above -Z (the proportion within Z SDs of the mean) is P P P− − = −2( )1 1 . 
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Using these pairs of Z and P it can be seen that 68% of the population is between 
μ σ−  and μ σ+ .  About 95% lie between μ σ± 2 : in fact 95.4% fall in this interval 
and a more accurate interval containing 95% of the population is μ σ±196. .  Intervals 
containing 95% of some population are widely used in statistics and if the population 
is, at least approximately, Normal then this corresponds to one of μ σ±196.  or 
μ σ± 2 .  Strictly the former should be used but the convenience of the latter means 
that the two versions are used almost interchangeably. 
 
Also, the above shows, fairly obviously, that the median of the Normal distribution is 
μ and, less obviously, the upper quartile is μ σ+ 0 675.  (and hence the lower quartile 
is μ σ− 0 675. ).  Indeed, for any proportion P the value cutting off the bottom 100P% 
of the population, often referred to as the 100Pth percentile or centile is μ σ+ Z  and 
this can be estimated by m Zs+ . 
 
From the above observations on the value of the quartiles in a Normal population the 
Inter-quartile range (IQR) for a Normal distribution is ( . )μ σ+ 0 675 - ( . )μ σ− 0 675  = 
1.35σ.  A crude and inefficient but valid way to estimate of σ would be to compute 
the quartiles of a sample, as described in appendix 1, find the IQR and divide it by 
1.35.  What would be the corresponding result for the range (i.e. the maximum - 
minimum values)?  The answer is that the range is expected to be proportional to σ 
but the divisor analogous to 1.35 for the IQR is no longer a constant but depends on 
sample size.  A moment’s reflection will show that is sensible: if you draw a sample 
of size 10 from a population you would expect the extremes of that sample to be 
substantially less extreme than the extremes from a sample of a 1000.  The conclusion 
is that the range of a sample not only reflects the spread of the measurements, it also 
reflects the sample size.  As such it is seldom a useful measure or estimate of a 
population attribute such as spread. 
 

Why is the Normal distribution important? 
 
The Normal distribution is important in statistics for different reasons, although in 
some circumstances these reasons do overlap somewhat. 
 
i)  it arises empirically: many variables have been studied intensively over the years 

and have been found to be Normally distributed.  If a variable is Normally 
distributed then it is important to take advantage of this fact when devising and 
implementing statistical analyses.  Moreover, many of the statistical techniques 
that require data to be Normally distributed are robust, in the sense that the 
properties of these methods are not greatly affected by modest departures from 
Normality in the distribution of the data. 

ii)  Some variables are Normally distributed because, or partly because of the 
biological mechanism controlling them.  Variables under polygenic control are an 
example of this and this is illustrated in appendix 3. 

iii)  The Normality arising from polygenic control is related to another reason why 
Normality is important.  This is that the distribution of the mean of a sample tends 
to have a distribution close to a Normal distribution even when the individual 
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variables making up the mean are not Normally distributed.  The departure from 
Normality decreases as the sample size increases. 

 By way of illustration of this, figure 8 shows four histograms, with the best fitting 
Normal distribution superimposed.  The first shows a sample of 10000 from a 
population that has a non-Normal distribution (in this case highly skewed).  This 
illustrates the underlying distribution of the variables.  The remaining histograms 
are each of 500 sample means: in the first each sample is of size 10, the second of 
50 and the third of 100. 
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Figure 8: histograms of 10000 observations form a population and of 500 sample 
means for samples of size 10, 50 and 100. 
 

It is seen that even for a population that is very skew, sample means have 
distributions that are much more symmetric and that are much closer to Normal 
than the population distribution.  The effect is noticeable even in samples as small 
as 10. 

 

Assessing Normality 
 
Many statistical techniques assume that the data to which they are applied follow a 
Normal distribution.  Many analysts are therefore anxious to determine whether or not 
their data are Normally distributed so that they will know if it is legitimate to use the 
methods that require Normality.  Some ways of doing this are described below but 
before going into details several general points ought to be made. 
 

Non-parameteric or Distribution-free methods 

A set of methods is available that perform a range of statistical techniques, such as 
performing hypothesis tests, constructing confidence intervals, that do not require an 
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assumption of Normality.  Workers therefore might wonder why it is necessary to 
bother with methods that make troublesome assumptions when such assumption-free 
approaches are available.  Indeed, distribution-free methods are widely encountered in 
the medical literature. 
 
While distribution-free methods can occasionally be useful, there are several reasons 
why a tendency to opt too readily for distribution-free methods should be resisted. 
 
i)  In many common applications the assumption of Normality is not all that crucial, 

and may not even be the most important of several assumptions underlying the 
method.  For example, the unpaired t-test for comparing two groups assumes the 
data in each group is Normal and has a common SD.  However, quite marked 
departures from Normality can be tolerated and unequal SDs is probably a more 
serious violation of the specified conditions. 

ii)  Related to this is the fact that for some important purposes, such as constructing 
confidence intervals, distribution-free methods are certainly not assumption-free.  
E.g. in the unpaired two-sample comparison the distributions are assumed to have 
the same shape and differ only by a shift. 

iii)  Distribution-free methods are at their best for hypothesis tests and their reliance 
on the ranks of the data can make some aspects of estimation seem unnatural. 

iv)  Distribution-free methods, at least those widely available, cannot cope with data 
that has anything more than the simplest structure. 

v)  Transformations can be useful in changing the distribution of data to a more 
manageable form: an example of this is given later in the course 

 
For many purposes it is therefore misguided to be too pre-occupied with the accurate 
assessment of the Normality of data.  This remark is certainly reasonable when the 
data is to be used for things such as tests on means and confidence intervals for 
means.  There are exceptions, when the inferences are based more strongly on the 
assumption of Normality.  This typically arises when trying to estimate features of the 
data that depend on the extremes of the distribution.  For example, if an estimate of 
the third centile of a population is required from a sample of 200 heights, the sample 
can be sorted and the 6th largest value chosen.  However, if the sample is from a 
Normal distribution a much more precise estimate is m-1.88s: in fact the precision of 
this is about the same as that found by the sorting and counting method from a sample 
of size 800.  In other words the assumption of Normality has saved you from having 
to measure 600 heights.  However, m-1.88s is only a valid estimate of the 3rd centile if 
the Normality assumption holds.  Moreover, as the estimate is concerned with the 
location of points in the tail of the distribution then the validity of the estimate is 
much more dependent on the distribution being very close to a Normal distribution 
than is the case for, say, a t-test. 
 

Relative size of mean and SD: a quick and dirty test for positive variables 
 
A feature of the Normal distribution is that it describes data that are distributed over 
all values, both positive and negative.  If the variable so described can take negative 
as well as positive values then this presents no problem, either conceptual or practical.  
However, many variables encountered in medical science can only be positive, e.g. 
heights, bilirubin concentrations, haemoglobin concentrations cannot be negative.  It 
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would be too strict to deem that the Normal distribution could not be used to describe 
such variables, because this would preclude many useful analyses.  If the Normal 
distribution used to describe a necessarily positive outcome ascribes very little 
probability (say, less than 1 to 5%) to negative values, then there will be no practical 
problems, even though the conceptual difficulty may remain.  However, if the  
Normal distribution fitted to a positive variable ascribes substantial probability to 
negative values then this indicates that the use of  Normal distribution may not be 
appropriate for this variable. 
 
Above it was noted that 16% of a Normal population falls below μ σ−  and 2½% 
below μ σ− 2 .  So, if a positive variable that is assumed to be Normal has an 
estimated mean, m, less than the estimated SD, s, i.e. m/s < 1 then a Normal 
distribution may well be inappropriate.  As the ratio m/s increases towards 2 the 
suspicion that Normality is inappropriate will diminish.  Of course, the shape of the 
distribution could make the use of a Normal distribution inappropriate whatever the 
value of m/s.  This is far from a foolproof assessment: it is simply a useful rule of 
thumb.  It can be particularly useful when reading the literature, where it may be the 
only method that can be applied using the published material. 
 

Histograms and other graphical methods 
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Figure 9: histograms of samples of size 10 from a Normal distribution 
 
One of the simplest and most obvious ways to assess Normality is to plot the 
histogram, as was done in figure 3.  This allows the general shape of the distribution 
to be estimated (and, incidentally, allows reasonable assessment of possible outlying 
values in the sample).However, some care is needed in the assessment because too 
strict an insistence on a suitable ‘bell-shaped’ appearance can lead to genuinely 
Normal data being dismissed as non-Normal.  This is especially true of small samples.  
As an extreme example figure 9 shows histograms of nine samples, each of size 10, 
randomly generated from a Normal random number generator on the computer - so 
the data are known to be Normal.  It is seen that several of the plots look far from 
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Normal, emphasising that recognition of Normality, at least in small samples, is very 
difficult. 
 
A slightly more sophisticated approach is to use a Normal probability plot.  This can 
be obtained in Minitab by choosing Probability plot … and Single from the Graph 
menu.  Selecting the column containing the heights of the boys and selecting the 
Normal distribution from the Distribution… button (do not enter a mean or SD) 
provides the Normal probability plot (see figure 10).   
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Figure 10: Normal probability plot of heights of 99 boys 
 
The idea behind this method can be explained as follows.  If a sample of size 1 were 
available from a from a Normal population then you would ‘expect’ this value to be 
μ.  If the sample were of size two you would expect the larger value to be a little 
above μ and the smaller to be the same amount below μ.  If the sample were of size 
three the smallest of the values would be expected to be below μ (by a slightly greater 
amount than in the sample of size two, as smaller samples would be expected to throw 
up less extreme maxima and minima), the largest value would be the same amount 
above μ and the middle value would be near μ.  As the sample size increases, the 
smallest value is ‘expected’ to fall further and further below μ, with the middle of the 
sample being close to μ.  Intermediate values will fall in-between, with values 
clustering more tightly near the mean as their rank increases, because of the nature of 
the bell shape of the Normal curve.  The largest values will be arranged above μ  
symmetrically relative to the smallest values.  This idea is illustrated in figure 11 for 
increasing sample sizes. 
 
If a sample is from a Normal distribution then if it is sorted into ascending order and 
each point is plotted against the ‘expected’ position of that point in the ordering, a 
straight line should result.  Of course, sampling variation means that the line will 
never be exactly straight and some judgment must be used in the interpretation of 
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these plots.  That in figure 10 is more than satisfactory: an example of a Normal plot 
of a non-Normal sample is shown in figure 12 and is clearly far from straight: the data 
are a sample of 99 from the population used in the first panel of figure 8. 
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Figure 11: expected locations of ordered elements of a sample from a Normal distribution for various 
sample sizes 
 
The labelling of the graphs in figures 10 and 12 needs a brief word of explanation.  
The ordered sample values are plotted on the horizontal axis and the vertical axis is 
the corresponding expected value.  However it is not labelled as such.  The scale is 
labelled as a percentage and this is best explained by an example.  If the sample has 
100 points then the smallest is plotted at about 1%, the next at about 2% etc.   
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Figure 12: Normal probability plot and histogram for a grossly non-Normal sample of size 99 
 
There are other methods for assessing Normality, including formal hypothesis tests 
but these generally lack power.  The Normal probability plot is one of the best and, in 
experienced hands, one of the most useful ways to assess Normality. 
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Appendix 1: computing medians and quartiles 
 
Once the sample has been sorted into ascending order the median is the middle value.  
More precisely, if the sample contains n values then the median is the ½(n+1)th 
largest value.  In the example n=99, so n+1=100 and the median is the 50th largest 
value.  Had the sample been of size 100, for example another child, of height 
118.1cm, been measured, then the median would have been the ½(100+1)th = 50½th 
largest value.  Of course, there is no 50½th largest value until we interpret what is 
meant by a fractional rank.  In this augmented sample the 50th largest value is 108.7 
cm and the 51st largest value 108.8 cm: the 50½th largest value is interpreted as being 
½ way between these values, i.e. the median of the augmented sample is 108.7 + ½ 
(108.8 - 108.7) = 108.75 cm. 
 
The definitions for the quartiles follow by analogy.  The lower quartile for a sample of 
size n is the ¼ (n+1) th value and the upper quartile is the ¾ (n+1) th largest value.  In 
the example above where n+1 = 100, the lower quartile is the 25th largest value and 
the upper quartile is the 75th largest value.  This definition could result in fractional 
ranks of ¼ and ¾ which are interpreted in the same way as above.  In the augmented 
sample of size 100, n+1 = 101 and lower quartile is the 25¼ th largest value: this is ¼ 
of the way from the 25th to the 26th largest value.  The 25 th largest value is 105.6 cm 
and the 26 th largest value is 105.7 cm, so the lower quartile is 105.6+ ¼ (105.7-
105.6) = 105.625 cm. 
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Appendix 2: the form of the SD (Not assessed) 
 
The idea in computing a measure of spread is first to define a measure of location and 
then to measure how dispersed the observations are about that point.  In this instance 
the mean is the measure of location, so it is natural that the SD should be based on the 
differences of the individual points from the sample mean, i.e. the expression is based 
on x m x m x mn1 2− − −, , ,K . 
 
However, one ‘obvious’ measure of spread, namely to find the average of these 
deviations, will not work.  This is because if you add up x m x m x mn1 2− − −, , ,K  the 
result will always be zero because of the definition of the mean: there will always be 
the same total deviation on the negative side (below m) as there is on the positive side 
(above m).  A simple way round this difficulty would be to find the average of these 
deviations without regard to their sign.  This is known as the mean absolute deviation 
about the mean and is a legitimate measure of spread.  However its mathematical 
properties are poor and the theory based on this measure of spread is not as rich as 
that using the SD, so it is seldom used. 
 
An alternative way to remove the balance between positive and negative deviations is 
to square all the deviations, making them all positive and then take the ‘mean’ of 
these values.  This results in a quantity which is known as the variance.  It is a very 
important quantity in theoretical work but is of little direct use in practice because it is 
on the scale of squared units, i.e. the variance of the heights would be in cm2.  This is 
readily rectified by taking the square root, and it is this quantity which is the SD, and 
which has the same units as the original measurements. 
 
The ‘mean’ of the squares deviations was placed in quotes because, instead of 
dividing the sum of the n squared deviations by n, the divisor n-1 is used.  This is 
largely a technical matter and is related to the fact that the spread would ideally be 
measured about the population mean μ, rather than the sample mean m.  The sample 
mean, being determined as, in some sense, the ‘centre’ of the sample is actually 
slightly more central to the sample than the population mean.  Consequently the 
dispersion around the sample mean is slightly less then it would be about the 
population mean.  A correction which slightly inflates the SD is therefore appropriate 
and is achieved by dividing by n-1 rather than n. 
 
This description has considered various aspects of the formula for the sample SD.  It 
has not covered why the quantity defined as the sample SD is the appropriate 
estimator of the parameter which governs the width of the Normal curve.  It is, but a 
demonstration of this is beyond the scope of the present discussion. 
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Appendix 3: an illustration of how a Normal distribution may arise. (Not 
assessed) 

 This section presents an explanation of the way in which some types of 
genetic control of continuously varying attributes can lead to distributions that appear 
Normal; height is taken as the example. 

Figure 3 
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 The variability of some discrete variables, such as Rhesus blood groups, Rh+ 
or Rh-, are controlled by the action of a single gene.  There are alleles D and d, with D 
dominant; Rh+ results from DD and Dd, with dd giving Rh-.  In this example the 
heterozygous form is phenotypically indistinguishable from the dominant 
homozygote.  However, it is possible for an attribute under the control of a single 

gene to exhibit three phenotypes, that is the heterozygote is distinguishable from both 
forms of homozygote (a clinically important example is sickle-cell anaemia$). 

  Gene 1 
  hh hH Hh HH 
 hh -2cm -1cm -1cm 0cm 
Gene 2 hH -1cm 0cm 0cm 1cm 
 Hh -1cm 0cm 0cm 1cm 
 HH 0cm 1cm 1cm 2cm 

 For illustrative purposes, suppose for the moment that the inheritance of height 
is under the control of a single gene with alleles H and h.  Suppose also that 
individuals with genotype Hh are phenotypically of average height, that a genotype 
HH results in a phenotype 1cm taller than average and hh in a phenotype 1cm shorter 
than average.  There would then be only three heights in the population, namely 

                                                 
$ For details, see Fraser Roberts and Pembrey, An Introduction to Medical Genetics, Oxford, chapter 3 
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average (Hh), 1 cm below average (hh) and 1 cm above average (HH).  If the alleles 
H and h are equally prevalent each combination HH, hh, Hh and hH is also equally 
likely (where hH and Hh have been used to distinguish the heterozygote where h 
comes from, respectively the mother or father).  However, Hh and hH both have 
average height, so the final distribution of the phenotypes is as in figure 3. 

 Suppose now that instead of just one gene controlling height, two are needed, 
again each with alleles H or h.  The height of the phenotype is determined by the 
excess of the number of H alleles over the number of h alleles: equal numbers lead to 
average height, two more H than h results in an individual 1 cm above average, two 
more h than H results in an individual 1 cm below average, four more h than H gives 
a phenotype 2 cm below average and so on.  The possible outcomes are given in the 
table below: the entries in the body of the table are the departures from average height 
(so 0cm = average) of the phenotype corresponding to the genotypes obtained from 
the forms of genes 1 and 2 along the margins of the table.  Each of the 4×4=16 
possible combinations of gene 1 and 2 is equally likely, but these give rise to only five 
different heights, namely average and 1 and 2 cm above and below the average.  As 
only one of the sixteen possible outcomes gives an individual 2 cm above average, we 
know that only 1/16×100%=6.25% of the population are of this height, whereas 6 of 
the outcomes, or 6/16×100%=37.5%, have average height.  The full distribution is 

shown in figure 4. 

Figure 4 
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If the number of genes controlling height is now supposed to be 3, there are 4×4×
4=64 equally likely gene combinations, but these give rise to only seven phenotypes, 

namely heights at 1cm intervals from -3cm 
to 3 cm.  By counting the number of gene 
combinations giving rise to each height, we 
can construct the height distribution for this 
population, as we did above for one and two 
gene control of height above.  The 
distribution for three genes shown in figure 
5 is beginning to look quite like a Normal 
distribution, as the superimposed Normal 
curve indicates. 
 It is possible to extend this argument 
to any number of genes controlling height 
and figure 6 a) and b) show the distributions 
obtained when respectively 6 and 12 genes 

control height.  Clearly, as the number of genes controlling height increases, the 
number of possible heights increases and their distribution gets closer and closer to a 
Normal distribution.  This is an example of the polygenic control of a continuously 
varying attribute. 

Figure 5 
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Figures 6a and 6b 
 
 
 Of course, this is a greatly simplified model of how height is inherited because 
many important aspects have been ignored, including aspects of the influence of 
parental height on that of the offspring and the assumption that each gene 
contributions the same amount to the final height.  Perhaps even more important is 
that the final height of an individual is not wholly determined by genetic factors but is 
also influenced by environmental factors, such as nutrition and healthcare.  It should 
also be realised that if an attribute, such as height, has a Normal distribution it does 
not follow that it is under polygenic control, nor if an attribute has, e.g. a skew 
distribution, does it mean that the attribute is not genetically influenced to some 
extent.  Nevertheless, the preceding argument shows that a Normal distribution can 
occur as the result of a biologically plausible mechanism. 
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