MRes in Medical Statistics
 MMB8028

School of Mathematics and Statistics

Practical session on Minitab, descriptive statistics and the Normal distribution: outline solutions

1.

The file HEIGHT.MTW is opened by clicking on File $\rightarrow \underline{\text { Open Worksheet and then selecting the }}$ file in the usual Windows manner. When the box stating that a "copy of the content of this file will be added to the current project" appears, click $\underline{O} K$ The screen below shows the results of selecting Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics... and entering C1 (or 'Heights cm') in the Variables: box. The boxplot is obtained by clicking on the Graphs... button in the Display Descriptive Statistics box and then selecting Boxplot of data and then clicking on OK (twice).

The mean (labelled Mean) and standard deviation (labelled StDev) appear in the output in the session window. The median is labelled as such and the lower and upper quartiles are labelled Q1 and Q3 respectively. Note that this command gives other information, such as the standard error and the minimum and maximum.

The boxplot could have been obtained independently by clicking on $\underline{B} 0 x p l o t . .$. under the $\underline{\text { Graph }}$ item on the menu.
2.

The data can be typed into the data window and the column for haemoglobin concentrations is named as Hbs. Applying the method for finding means used in question 1 gives a mean of $15.253 \mathrm{~g} / \mathrm{dl}$ and an SD of $1.461 \mathrm{~g} / \mathrm{dl}$. If the second column of data is entered in a column which has name 'sex' then the way to obtain separate means and SDs for the sexes is to click OK on the screen as set out below.

Doing this gives the following output in the session window ${ }^{\dagger}$.

Descriptive Statistics: Hbs

| Variable | sex | N | $\mathrm{N} *$ | Mean | SE Mean | StDev | Minimum | Q1 | Median | Q3 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Hbs | 1 | 7 | 0 | 13.929 | 0.283 | 0.750 | 12.900 | 13.200 | 14.200 | 14.600 |
| | 2 | 8 | 0 | 16.413 | 0.250 | 0.706 | 15.800 | 15.825 | 16.200 | 16.900 |
| | | | | | | | | | | |
| Variable | sex | Maximum | | | | | | | | |
| Hbs | 1 | 14.800 | | | | | | | | |

All the descriptive statistics are now shown separately for the sexes.

[^0]3.

Clicking on the path suggested in the question leads to the following dialogue box, which should be filled in as shown.

On clicking $\underline{O} K$ the following is written to the Session window.

```
MTB > CDF 1.65;
SUBC> Normal 1.78 0.172.
```


Cumulative Distribution Function

```
Normal with mean = 1.78 and standard deviation = 0.172
    x P( X <= x )
1.65 0.224880
```

This shows that a proportion 0.22488 , or about $22 \frac{1}{2} \%$ of this population lies below $1.65 \log$ units.
4.

The answer to this question is found in a way that is almost the same as for question 3. The dialogue box is that shown in the answer to question 3 but the Inverse cumulative probability button, rather than the C-umulative probability button should be checked. The value 77.5% must be entered in the Input constant box as 0.775 , i.e. as a probability or proportion, not a percentage. Doing this and clicking on OK gives the following output in the Session window:

```
MTB > InvCDF 0.775;
SUBC> Normal 1.78 0.172.
```


Inverse Cumulative Distribution Function

```
Normal with mean = 1.78 and standard deviation = 0.172
```

$P(X<=x) \quad x$

Thus 77.5% of patients in the population have a value of the variable measuring phototoxicity that is less than approximately $1.91 \log$ units.

The proportion above this value is $1-0.775=0.225$, i.e. the same proportion that is below 1.65 (cf. question 3). From the symmetry of the Normal distribution this implies that 1.91 is the same distance above the mean as 1.65 is below it. As the mean is 1.78 , this is indeed the case, $1.78-1.65=1.91-1.78=0.13$.
5.

Using the method of question 4, with an Input constant box of 0.05 gives a threshold of 8.35515 .

Following the procedure for generating random numbers given in the question leads to the following screen:

Clicking on OK produces 100 Normal numbers from a population with mean 10 and SD 1 (i.e. this is a special case where we know $\mu=10, \sigma=1$).

Computing descriptive statistics using the methods of questions 1 and 2, and then using the method suggested in the question to determine the number of values less than the threshold and computing a classification table leads to the following session window.

Notice that the sample mean and SD, m and s, are not exactly 10 and 1 , but vary from these values by sampling variation. Their values in the sample I generated are, respectively, 9.6704 and 0.9591 (shown below) but your values will vary from these as everyone will have a different random sample from the population.

The table shows that 8 of the 100 values are below 8.35515 , so 8% rather than 5% fall below the 5% threshold. This is only to be expected - the number falling below 8.35515 will, on average, be 5%, it just will not be guaranteed to be 5% in every sample. This can be appreciated by repeating the instruction to form a column of 100 numbers from a Normal population of mean 10 and SD 1. The proportion below the 5% threshold in this sample will, in general, be different to that obtained from the first sample you drew. For my second sample it was 3 .

If the instruction to form a column of 100 values is replaced by a similar instruction to form 10000 values then the descriptive statistics obtained are:

Descriptive Statistics: C1

Variable	N	N^{*}	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
C1	10000	0	10.004	0.0100	1.004	6.398	9.331	9.989	10.680
Variable	Maximum								
C1	13.692								

Note that the sample mean and standard deviation, 10.004 and 1.004, are closer to their population counterparts, 10 and 1 , in this much larger sample.

Using exactly the same methods as before shows that 487 of the 10,000 values are below 8.3551 , i.e. 4.87% of this sample is below the 5% point.

[^0]: ${ }^{\dagger}$ Note that the output shown (here and in other examples) is only displayed if the commands prompt is enabled.

