
The Analysis of categorical data 
 
 
Introduction: Normal, non-Normal and categorical data 
 
The methods described so far in this course have been appropriate for the analysis of 
data that are recorded on a continuous scale, e.g. stature, serum concentrations, 
systolic blood pressure.  Much of the discussion has also assumed that a Normal 
distribution is also appropriate, although there are numerous continuous outcomes that 
do not follow a Normal distribution.  For example bilirubin concentrations are usually 
very skew, as are various survival times.  Special methods and approaches for some of 
these variables are discussed elsewhere in the course. 
 
Continuous variables might or might not be Normal.  However, strictly speaking 
variables that are not continuous cannot be Normal, so the methods discussed hitherto 
are not appropriate and we need to consider new methods of analysis. 
 
Types of categorical variable 
 
A variable that is not continuous will be recorded as being in one of several 
categories, hence the term categorical variable.  For example, the ABO blood group 
will be one of A, B, AB or O.  Tumour stage is often recorded as stages I, II, III or IV.  
Both of these variables are categorical but there is a difference between them.  A 
patient with a tumour in stage II is, in some sense worse, off than a patient with 
tumour stage I and better off than a patient with tumour stage IV.  In other words 
there is an ordering between the categories and statistical analyses should usually take 
account of this.  A categorical variable in which the categories are ordered, often 
referred to as an ordinal variable, occupies a half-way house between a an unordered 
categorical variable and a continuous variable.  However, unlike a continuous 
variable, a patient with tumour stage IV cannot be said to be twice as bad as one with 
a stage II tumour. 
 
Ordinal variables, especially those with large numbers of categories and collected on 
large samples, can sometimes be analysed as though they were continuous variables.  
However, for smaller samples and variables with only a few categories, special 
statistical methods are needed and these are beyond the scope of this course.  In 
general the analysis of ordinal data requires specialist help. 
 
The simplest form of categorical variable is a binary variable, being a categorical 
variable with just two categories.  Examples are everywhere: does a grafted kidney 
exhibit delayed function (yes or no); does a patient die before discharge (yes or no); 
does the patient’s condition resolve, does the baby have a severe handicap, does the 
infant need treating for hypoglycaemia.  In some cases the binary variable is a crude 
summary of some more informative underlying variable.  For example, a severe 
handicap may be defined as a score being above or below some threshold.  Whether 
or not a patient is hypoglycaemic will be based on their blood glucose concentration.  
In such cases you should always ask if the underlying variable ought to be analysed 
rather than the binary summary.  However, as many clinical actions follow naturally 
from a binary summary (e.g. a patient either is or is not treated for hypoglycaemia), 
there may well be a good reason to analyse the binary variable. 
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Most of the rest of this document will be concerned with the analysis of binary 
variables. 
 
 
Summarising a binary variable: what parameter are we dealing with? 
 
A population of binary variables comprises patients (or volunteers or other 
experimental or observational subjects) some having one value for the variable and 
the remainder having the other value.  A terminology that is sometimes used is that a 
patient either does or does not possess an ‘attribute’.  Not much can differ between 
different populations of this type.  In fact the only thing which can change is some 
measure of how many in the population possess an attribute and how many do not.  
Most populations are conceived of as having infinite size, so the issue is addressed in 
terms of the proportion of the population possessing the attribute.  This value is the 
sole parameter we need to define the population: in keeping with the convention that 
parameters are given Greek letters, it is usually written as π. 
 
The parameter π can be thought of as the proportion of the population possessing the 
attribute in question.  An equivalent interpretation is that it is the probability that a 
randomly chosen member of the population has the attribute.  Of course, the 
proportion 1-π is simply the proportion not having the attribute or the probability of 
not having the attribute.  In common with other population parameters, π is unknown, 
and our analyses will be directed towards estimating it and answering questions about 
it. 
 
Estimating π is very straightforward.  If we have a sample of n patients from a 
population, r of them will possess the attribute and n-r will not.  The estimator of π is 
simply r/n, or if you wish to express it on a percentage scale, 100r/n%. 
 
For example, in an audit of in-hospital mortality from abdominal aortic aneurysm 
repair†, 689 patients not on diuretics were sampled and 34 of these died before they 
could be discharged from hospital.  Here n=689 and r = 34, so the estimate of the 
population proportion dying before discharge is 34/689 = 0.049, or 4.9%. 
 
Why do we need new methods? 
 
An immediate answer to this question is that the methods discussed in earlier chapters 
were derived assuming that a Normal distribution applied (as in the t-test), or at the 
least variables had a range of values (as in a histogram).  However, this answer is 
rather superficial and unsatisfying.  If we score 1 for those dying before discharge in 
the above example and 0 for those being discharged alive then the mean of these 0s 
and 1s is precisely the observed proportion of 1s in the sample.  In other words, the 
summary suggested for the binary outcome, an observed proportion, is the same as the 
summary suggested for many continuous variables, namely the mean, provided that a 
simple and natural scoring system is adopted.  So what is the deeper reason why we 
need new methods? 
 
                                                 
† Bayly, PJM et al. (2001) Br J Surgery, 88, 687-692. 
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The answer is to do with the standard deviation of the variable.  In the case of a 
continuous variable, the population was described in terms of a mean parameter μ 
(estimated by a sample mean m) and a quite independent parameter, σ the population 
standard deviation.  In principle, any value of μ could go with any (positive) value of 
σ.  For the case of a binary variable there is only one parameter, π, and this is clearly 
an analogue of the mean, μ, of a continuous population. 

For a binary variable things have to different – the standard deviation must, in some 
way be related to the mean.  This is indeed the case and the easiest way to see this is 
by considering how well r/n estimates π  i.e. we consider the standard error rather 
than the standard deviation. 
 
For a continuous variable this would be σ/√n, whereas for a binary variable it is 
√[π(1-π)/n].  The formulae share the presence of √n on the denominator: the larger the 
sample, the smaller the standard error.  However the numerators are rather different: 
that for the binary variable being defined in terms of π rather than being a separate 
parameter.  The details of the formula are not important (although they are needed if 
you want to construct a confidence interval for π: see Appendix I), rather it is the fact 
that once π has been estimated there is no need for further estimation of spread.  As 
this is not the case for continuous variables the formulae, and hence the methods we 
have used for them cannot be applied directly to binary variables. 
 
Before going on to consider the binary analogue to the t-test, it is instructive to 
consider the following fictitious and extreme example.  It certainly does not prove the 
formula √[π(1-π)/n], but it serves to illustrate why some of its features must be as they 
are. 
 
Suppose π = 0, i.e. no member of the population has the attribute.  In this case, no 
element of any sample can possess the attribute, so necessarily r=0 and hence p = 0, 
an estimate which is without error.  Consequently, the standard error of this estimator 
must be zero, which explains the presence of π in the numerator of the above formula.  
A similar argument can be made when every element in the population has the 
attribute, i.e. π = 1.  Now p = 1 for every sample and again there is no error, so the 
standard error must be zero.  This explains the factor (1- π ) in the numerator. 
 
The binary analogue of the unpaired t-test: the χ2 – test (or chi-
squared test) 
 
In addition to the 689 patients mentioned in the above example who were not taking 
diuretics, 241 patients were taking diuretics.  Of the latter, 25 were not discharged 
alive.  The sample proportions dying before discharge are, therefore, 25/241 = 10.4% 
on diuretics and 34/689 = 4.9% off diuretics.  This information is conveniently 
arranged in a 2 × 2 contingency table, viz. 
 
 Dead Alive Total 
Not on diuretics 34 655 689 
On diuretics 25 216 241 
Total 59 871 930 

Table 1 
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The italicised row and column giving the totals are known as the margins of the 2 × 2 
table.  They will play an important role in our analysis. 

A corresponding table of (row) percentages is 

 Dead Alive Total 
Not on diuretics 4.9 95.1 100 
On diuretics 10.4 89.6 100 
Total 6.3 93.7 100 

Table 2 

The population proportions dying before discharge in the groups taking or not taking 
diuretics are πD and πN, respectively.  Does the difference in the corresponding sample 
proportions provide evidence that the population proportions differ?  The test of this 
hypothesis is the χ2 – test (sometimes written as the ‘chi-squared test’) and this will 
be described in what follows. 
 
There are two unpaired groups, those taking or not taking diuretics, and the proportion 
is a parameter that is analogous to the mean of a continuous variable.  Consequently 
the test of the null hypothesis that πD = πN, is the binary analogue of the unpaired t-
test. 
 
General rationale 
 
In this example, 34 out of the 689 patients not on diuretics die before discharge, 
whereas 25 out of 241 on diuretics die before discharge.  Are these numbers different?  
Clearly, if the proportions dying in the two groups were the same, we would not 
expect equal numbers to die in each group because one group is almost three time the 
size of the other.  What we can do is to work out how many we would expect to die in 
each group if the two population proportions (i.e. πD and πN) were equal.  We can 
arrange the results of this calculation in a table analogous to Table 1 and then try to 
decide if the disparity between the tables is too large to be reasonably ascribed to 
chance.  In other words, we work out what we might expect if the null hypothesis is 
true and then see if the difference between this expectation and the real data should 
surprise us.  That is, we adopt the same general approach as in the t-tests, or indeed 
any hypothesis test. 
 
Calculating the ‘expected’ values. 
 
If the proportions dying before discharge are the same in the two groups, then the 
numbers dying in the groups should be in the ratio of the sizes of the two groups.  
That is, the expected number dying in the diuretic group is 241 × k and the number in 
the no diuretic group is 689 × k where k is an estimate of the proportion dying that is 
common to the two groups.  How do we get an estimate of k?  If the two groups do 
share a common death rate then the best estimate of k comes from the data combined 
across the two groups.  This has been done in the bottom (Total) row of Table 1, 
namely a total of 59 out of 930 patients died before discharge, so the estimate of k is 
59/930. 
 
We now have the numbers that we ‘expect’ to die before discharge in the two groups.  
The numbers we expect to survive can be calculated by repeating the above, but with 
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k now calculated as the proportion surviving, namely 871/930.  Alternatively, the 
number surviving in a group of size 689 must be 689 – the number dying, and 
similarly for the diuretic group (you can check to see that these two methods give the 
same answer). 
 
We can now set out the table of expected values as table 3a below: 
 
 Dead Alive Total 
Not on diuretics 

930
59689×  

930
871689×

 

689 

On diuretics 
930
59241×  

930
871241×

 

241 

Total 59 871 930 
Table 3a 

 
Doing the arithmetic gives the following table. 
 
 Dead Alive Total 
Not on diuretics 43.71 645.29 689 
On diuretics 15.29 225.71 241 
Total 59 871 930 

Table 3b 
 
Notes: 

i) The expected values add up along the rows and columns to give the same 
margins as in the table of observed values (Table 1).  In fact, this is a 
consequence of the way the expected values have been calculated. 

ii) The expected values are not whole numbers, so this table could not have been 
observed.  It is a sort of ‘average’ table that would be obtained over many 
observations of samples that give these margins and have equal proportions 
dying before discharge in the two groups. 

 
Measuring how far apart are the observed and expected tables. 
 
If the basis on which Table 3b has been computed, i.e. the null hypothesis, is true, 
then we would expect Tables 1 and 3b to be ‘close’ in some sense.  One way to assess 
this is informally, and this is most easily done by putting the two tables into the same 
frame, as in Table 4 below.  The observed values are in plain type and the expected in 
italics 
 
 Dead Alive Total 
Not on diuretics 34 

43.71 
655 
645.29 

689 

On diuretics 25 
15.29 

216 
225.71 

241 

Total 59 871 930 
Table 4 
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The two sets of figures do not look very close, but such an impression is hopelessly 
vague for any sensible attempt at inference.  What is needed is a way of calculating 
the difference between the expected and observed tables. 
 
An immediate reaction might be to compute the difference (observed – expected) in 
each cell of the table and add up the four differences so obtained.  Unfortunately this 
won’t do: by the method of construction the sum of the four differences will always 
be zero.  This is a similar problem to that we encountered when attempting to define 
the standard deviation.  A temptation is to adopt the solution used there and add up 
the squared differences, (observed – expected)2. 
 
This is almost what we do, but not quite.  In fact we divide this squared difference by 
expected and then add these quantities over the cells of the table.  The rationale for 
this is given in Appendix II.  This measure of the difference between the tables is 
known as the χ2 – statistic (or chi-squared statistic, from the Greek letter χ (chi), 
pronounced ‘kye’).  This can be written symbolically as: 
 

∑ −
=

E
EO 2

2 )(χ . 

 
This formula is seen in many textbooks, with O and E standing for observed and 
expected counts respectively.  Notice that it can never be negative and is zero only 
when the observed and expected tables coincide. 
 
Computing (observed – expected)2/expected for each cell in Table 4, we get 
 
 Dead Alive Total 
Not on diuretics 

157.2
71.43

)71.4334( 2

=
−  146.0

29.645
)29.645655( 2

=
−

 

689 

On diuretics 
168.6

29.15
)29.1525( 2

=
−  418.0

71.225
)71.225216( 2

=
−

 

241 

Total 59 871 930 
Table 5 

 
Adding these values gives χ2 = 2.157+6.168+0.146+0.418 = 8.889. 
 
This is the measure of the difference between the observed and expected tables that is 
used in the χ2 test. 
 
Should I be surprised? 
 
The answer arrived at above, namely 8.889, shows that the two tables differ.  But we 
knew that from looking at them, so it is tempting to react to the value of 8.889 by 
asking ‘so what’? 
 
We computed the statistic so that we could address the question of whether or not we 
should be surprised by the size of the difference between our observed table and the 
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table we would ‘expect’ of the null hypothesis were true.  If it is surprising, then we 
have evidence against the null hypothesis, the amount of evidence is measured by the 
probability of seeing a difference of, in this case, 8.889, if the null hypothesis is true, 
i.e. the P-value.  So what we need is a way of turning 8.889 into a P-value. 
 
In considering this question we focus attention solely on those tables which have the 
same marginal totals as the observed table, i.e. tables like 
 
 Dead Alive Total 
Not on diuretics ? ? 689 
On diuretics ? ? 241 
Total 59 871 930 

Table 6 
Clearly, it is sensible to keep the group sizes fixed, as this is part of the formulation of 
the problem.  We also assume that the total numbers discharged dead or alive are 
fixed, as these give information on the size of the common proportion dying 
(remember we are assuming that the null hypothesis is true).  However, even with this 
restriction, many tables are possible, with some being more likely than others.  Which 
tables are more likely depends on the relative values of π1 and π2.  If the null 
hypothesis is true, then tables such as the following are quite likely. 
 
 Dead Alive Total 
Not on diuretics 44 645 689 
On diuretics 15 226 241 
Total 59 871 930 

Table 7a 
 
 Dead Alive Total 
Not on diuretics 47 642 689 
On diuretics 12 229 241 
Total 59 871 930 

Table 7b 
 
These tables are quite plausible if the null hypothesis is true because the proportions 
dying before discharge in the two groups are similar.  For Table 7a they are 6.3% & 
6.2% and for Table 7b they are 6.8% & 4.9%. 
 
The χ2 statistic can be computed for these tables, giving, respectively, 0.008 and 1.02. 
These are smaller than the value of 8.889 we obtained from the real data, but we are 
not that much clearer what they mean. 
 
If we had some way of generating tables with these margins and for which we knew 
the null hypothesis was true, then we could generate many such tables, say 10000, and 
calculate χ2 for each of them and then we would know what values of χ2 occurred 
when the null hypothesis was true.  If our observed value were larger then most of 
these, then we would be able to conclude that our data were unlikely to occur if the 
null hypothesis were true.  In fact, the proportion of the 10000 χ2 values exceeding 
our observed value of 8.889 would serve as a P-value for the test. 
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Is this what we do?  Well, with modern computers we certainly could, but generally 
we adopt a solution that was worked out mathematically in the early 1900s.  All good 
statistical packages will compute χ2 and the corresponding P-value.  The latter will 
have been computed using a mathematical approach which essentially anticipates the 
result of generating a large number of tables and hence determines the distribution of 
the χ2 statistic if the null hypothesis is true.  The technique uses what is known as an 
asymptotic approximation and the details need not concern us. 
 
For our data, with χ2 = 8.889, this method gives P=0.003.  So, if the population 
proportions dying before discharge in the two groups were the same, a table with 
proportions as disparate as those in Table 1 would arise by chance on 3 occasions in 
every 1000.  In other words we have to conclude either that we have seen a very rare 
event, or that the null hypothesis is false.  Therefore, as we do not accept that we have 
seen such a rare event, our data provides strong evidence against the null hypothesis. 
 
The computational alternative, which is not generally used but which might give you 
further insight into how we derive the P-value, is outline briefly in Appendix III. 
 
Larger tables 
 
So far we have considered only tables made up from two classifications, each with 
two levels, giving rise to a 2 × 2 table.  It is, of course, possible that factors classifying 
data can have more than two levels.  An example from the audit of aortic aneurysm 
surgery used above is in Table 8. 
 
Elective cases 
 Low volume Medium volume High volume Total 
Discharged dead 19 24 13 56 
Discharged alive 261 319 175 755 
Total 280 343 188 811 

Table 8 
 
The table shows the numbers of patients discharged alive or dead according to 
whether or not they had their operations in a unit that did a low, medium or high 
volume of aortic aneurysm surgery.  There are, e.g., more cases in the low volume 
than the high volume class because the data are aggregated across many units, only a 
few of which did a high volume of this kind of operation.  Also, the total number of 
cases is not the same as in Table 1 because this table considers only elective 
operations: urgent cases are excluded. 
 
The same kind of analysis can be performed on a table like this.  The null hypothesis 
would be that the pre-discharge death rates are the same in each of the volume groups.  
The table of expected values is calculated in a way that is entirely analogous to the 2 
× 2 case.  For example, the 56 deaths are allocated to the low, medium and high 
volume categories in the ratio 280:343:188.  The results are shown in table 9. 
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Elective cases (expected values under the null hypothesis) 
 Low volume Medium volume High volume Total 
Discharged dead 19.33 23.68 12.98 56 
Discharged alive 260.67 319.32 175.02 755 
Total 280 343 188 811 

Table 9 
 

From these values χ2 can be found from the usual formula ∑ −
=

E
EO 2

2 )(χ , giving 

a value of 0.011.  The low value reflects the fact that the expected values are, in this 
case, very close to the observed values.  From this value of χ2 we can find P, in much 
the same way as for the 2 × 2 table, yielding P = 0.995‡.  Therefore, in this table there 
is no evidence at all that the proportion dying before discharge differs between the 
volume categories. 

Some items to remember about the χ2 test. 

Make sure the entries in the table you analyse are counts, not proportions 
 
The data in our example in Table 1 comprises the counts in each cell.  These can be 
analysed using the χ2 test.  It is useful to present the estimated proportions (or more 
usually percentages), as in Table 2.  However, it is imperative that you do not apply 
the χ2 test to the table of percentages. 
 
The reason for this is to do with standard errors.  When we discussed the t-test the 
way differences in means were compared to the standard error of the difference was 
quite explicit.  Although nothing like as apparent, the χ2 test does the same – 
differences in observed proportions are compared with the standard error of the 
difference.  In order to do this properly it is essential that not only the proportions in 
the groups are presented but that the denominators are available.  If you observe two 
events from a sample of size 10 then that is the same proportion as if you observed 
200 events out of a sample of 1000.  However, in the latter case the estimate of the 
true proportion is much more precise than in the former case†.  Consequently when 
comparing with another proportion, the test will be much more sensitive to departures 
from the value for this population in the case with the larger sample size.  
Consequently it must be remembered (as it sometimes is not!) that by analysing the 
table of percentages, you are overlooking this vital aspect of your data. 
 
 
Make sure the entries in the table you analyse count independent entities 

This is a much more subtle problem than that above.  It can be a particular nuisance to 
ophthalmologists (pairs of eyes) and orthopaedic surgeons or rheumatologists (pairs 
of knees, hips), who have pairs of things to deal with on each patient.  However, it is 
                                                 
‡ As the statistic is computed in a larger table by summing over more cells, the precise value of χ2 that 
corresponds to a given P will be different for tables of different sizes or more precisely, for tables with 
different degrees of freedom: a table with r rows and c column has (r-1)(c-1) degrees of freedom. 
† 95% confidence intervals for population proportion is (0.025,0.56) for 2/10 and (0.18,0.23) for 
200/1000 
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most easily exemplified using an example from accident prevention in community 
paediatrics.  The following is a fictitious dataset but which is based on a real study. 
 
Suppose you want to compare the risk to children walking to school in different areas 
of a city.  In particular you want to compare between two areas the number of 
uncontrolled major road crossings children have to make in their school journey.  To 
do this you carry out a survey of children arriving at the school gates on a Monday 
morning in the two areas.  You classify the data according to whether or not a child 
has had to make more than two uncontrolled crossings or not.  The data might well be 
as follows: 
 
 Two or fewer crossings More than two crossings 
Area 1 35 105 
Area 2 45 92 

Table 10 
The usual χ2 test gives a value of 2.076 and corresponding P value of 0.15.  In this 
table 277 children have been surveyed. 
 
So far all is well.  However, suppose that the research workers go out and repeat the 
survey every day of the week.  This could plausibly give a table like the following: 
 
 Two or fewer crossings More than two crossings 
Area 1 171 526 
Area 2 214 450 

Table 11 
This gives a χ2 value of 9.96 and P=0.002.  However, what is the total in the table?  
Arithmetically it is 1362 but what does it count?  The schools in the two areas have 
not suddenly become about five times bigger, so this is not 1362 children, it is 1362 
children-journeys.  However, these are not independent.  Most children will take the 
same route to school every day, so the entries in the table for the week will 
necessarily be about five times those for a single day.  Absences and changes in route 
for some children will mean the tables are not exactly in the ratio 5:1, but they are 
likely to be of this order.  However the χ2 test does assume that five times the 
information has been collected (e.g. by surveying five times more schools) rather than 
that more or less the same information has been collected five times over.  Therefore 
it is no surprise that the test statistic is larger and the P-value much more exciting. 
 
Indeed, in the table collected over the week the observed and expected counts will 
each inevitably be about five times bigger than in the table based on the data for 
Monday.  If the observed and expected values for Monday are denoted by O and E, 
then the χ2 statistic for the full week will be (approximately): 
 

2
2222

2 5)(5
5

)(5
5

)55( χχ ×=
−

=
−

=
−

≈ ∑∑∑ E
EO

E
EO

E
EO  for data for Monday 

 
Given reasonably constant day to day behaviour of the pupils the χ2 statistic based on 
the data for the full week is about five times that for the data for Monday.  A 
consequence of this is that whatever the value of the statistic for Monday (other than 
the very unlikely value of 0) it can be made as large as the investigator wishes (and 
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therefore as statistically significant as wished) simply by observing the same process 
for as long as necessary. 
 
This is clearly illegitimate because the rates in the two areas are either the same or 
different, and whether or not this is the case should not be affected by choosing to 
replicate essentially the same observation arbitrarily often.  In practice it can 
sometimes be awkward to detect when dependent observations are being entered into 
an analysis in this sort of way.  A useful way that often spots problems is to make sure 
that the total number in any table (i.e. the number which usually appears in the bottom 
right-hand corner of the table) is equal to the total number of independent units in the 
analysis.  In this example, the number of children at the different schools is the total 
number of independent units. 
 
Tables with small expected values: Fisher’s exact test 
 
In the aortic aneurysm audit the mortality among patients in two age groups 
undergoing an elective procedure in centres with a low volume is described in the 
following table. 
 
 Age < 65 yrs Age ≥ 75 yrs Total 
Discharged dead 2 8 10 
Discharged alive 72 71 143 
Total 74 79 153 

Table 12 
 
Whether these data support the hypothesis that the death rate is the same in the two 
age groups could be assessed by the application of a χ2 test. 
 
If such a test is applied then the value of χ2 is 3.45 and P = 0.063.  The table of 
expected values is  
 
 Age < 65 yrs Age ≥ 75 yrs Total 
Discharged dead 4.84 5.16 10 
Discharged alive 69.16 73.84 143 
Total 74 79 153 

Table 13 
 
One of the expected values is less than 5 and in many packages this will prompt a 
warning.  This will be to the effect that the expected values are too small.  This is 
because the mathematics which allows a P-value be computed from the χ2 statistic 
may not be reliable in these circumstances. 
 
The usual response is to employ a method of analysis which does not use this 
mathematical approximation.  The method is known at Fisher’s Exact test and differs 
from the tests mentioned hitherto as it calculates a P-value directly from the data, 
rather than calculating a test statistic, such as a t value or a χ2 value, and finding a P-
value from that. 
 
It is useful to introduce the technique by enumerating all the tables that could occur 
which have the marginal totals equal to those in Table 12, although it is not necessary 
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to do this when using the method.  There are eleven of these, all shown in Table 14.  
The tables are found by successively increasing and decreasing the entry in the top 
left cell.  In order to maintain the same totals in the margins, the other cells must 
decrease or increase in concert.  The process stops when one of the cells in the table 
goes to zero. 
 
       
Probability 0 10  6 4  
0.001 74 69  68 75 0.194 
       
 1 9  7 3  
0.011 73 70  67 76 0.099 
       
 2 8  8 2  
0.049 72 71  66 77 0.032 
       
 3 7  9 1  
0.131 71 72  65 78 0.006 
       
 4 6  10 0  
0.223 70 73  64 79 0.001 
       
 5 5     
0.253 69 74     
       

Table 14 
 
The table we actually observed is outlined with a double line.  The other ten possible 
tables are given, in order of the value of the top left cell. 
 
While all these tables are possible, they are not equally likely.  How likely different 
tables are depends on the relative values of the probabilities of death before discharge.  
If the two probabilities are the same, i.e. the null hypothesis is true, then the 
probabilities of the occurrence of each of the eleven possible tables can be calculated 
mathematically†.  Each of these probabilities is given next to the corresponding table 
in Table 14.  Note that these eleven values add up to 1, i.e. given these margins you 
are certain to have one of these tables.  Given that the two groups are of similar size, 
tables with similar numbers of deaths, i.e. tables with 4, 5 and 6 in the top left cell and 
6,5 and 4 in the top right cell, are the most likely if the null hypothesis is true. 
 
The P-value testing the null hypothesis is found by adding up those of the eleven 
probabilities that are less than or equal to the probability of the observed table.  These 
are the italicised probabilities in Table 14, so  
 

P = 0.001 + 0.011 + 0.049 + 0.032 + 0.006 + 0.001 = 0.100. 
 

                                                 
† see, e.g., Armitage, P, Berry, G & Matthews, JNS (2002) Statistical Methods in Medical Research, 4th 
ed., Blackwells, Oxford, p.134-137. 
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(An alternative which has some merit is to take the sum of the probabilities that are smaller than that of 
observed and in the same tail, in this case 0.001+0.011=0.012 and add half the probability of the 
observed table: the P value is then double this quantity, i.e. 0.049+0.024 = 0.073: a rationale for this 
mid-P value is in Armitage, Berry and Matthews (2002), see previous footnote). 
 
Some questions naturally arise about the use of Fisher’s exact test. 
 
‘Exact’ sounds attractively precise but what is ‘exact’ about the exact test?  The 
exact test gives a P-value that is calculated on the basis of the correct, i.e. ‘exact’ 
probability distribution for the different tables.  In other words there is no need to 
resort to the kind of asymptotic approximation that underpins the P-values calculated 
from the χ2 statistic.  However, this precision is rather spoilt because of the irritating 
lack of agreement among statisticians about the probabilities of which tables should 
be aggregated to give the right P-value, especially the correct two-sided value.  Of 
course, this represents a disagreement over the underlying principles, which is solved 
once and for all by the practitioner deciding which principles he or she wishes to use.  
The user never knows quite when an asymptotic approximation is breaking down. 
 
Why not use the Exact test all the time?  If the relevant statistical science had been 
derived after the advent of today’s computing power then we might all be doing this.  
For tables containing larger counts the list of all possible tables, in the style of Table 
14, is very long and before powerful (and accurate) computers were available this 
would be present an insuperable arithmetical challenge.  There is also a more subtle 
reason why ‘exact’ methods are not all their name might lead you to believe.  
Confidence intervals are often derived from related hypothesis tests, and confidence 
intervals derived from exact tests often are rather wider than they need to be for their 
nominal level of confidence.  So while exact tests might be all we need in principle 
for tests, the corresponding confidence intervals are often not too good. 
 
 
When should you use an exact test rather than χ2 test?  The traditional advice is 
that if any expected value in a 2 × 2 table is less than 5 you should use the exact test.  
In truth this is probably rather strict and the χ2 method would probably be OK down 
to much smaller expected values.  For larger tables the rule is that if over 20% of the 
cells have expected values below 5, or any cells with expected values below 1 then 
the χ2 method may be unreliable.  The problem here is what do you do?  Fisher’s 
exact test is for a 2 × 2 table.  One approach is to amalgamate categories 
appropriately, so that the expected values in the new table are larger than these 
thresholds.  An alternative that is becoming more widely available in statistical 
packages is the exact test for r × c table.  The theory of this test has been known as 
long as that for the 2 × 2 case but the practice was computationally infeasible.  If 
handled naively the task is still beyond the power of present-day computers.  
However, over the last 15 years or so advances in clever numerical algorithms have 
made exact tests on quite large tables entirely feasible.  However, specialist advice 
ought to be sought before embarking on analyses using this software. 
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Measuring difference between proportions: confidence intervals 

Measuring the difference between proportions: part a. 
 
The emphasis thus far has been entirely on testing hypotheses, whereas in practice the 
presentation of confidence intervals measuring the likely difference between 
proportions is probably more important.  However, before we can do this we need to 
decide how we are going to measure the difference between proportions. 
 
The main ways of doing this are the absolute difference, the relative risk and the odds 
ratio.  Therefore before the methods for providing confidence intervals for these 
quantities can be explained a brief digression to introduce odds is needed. 
 
Odds and Probabilities 
 
The parameter for a binary variable, π, is the proportion of the population which 
possesses the attribute in question and always lies between 0 and 1.  Another 
interpretation is that π is the probability that a randomly selected member of the 
population has the attribute.  So, e.g., if two in every three members of the population 
do not have blue eyes, then the probability that a member of the population does not 
have blue eyes is 2/3. 
 

Non-blue 
eyes 

   Non-blue 
eyes 

  Blue eyes   
 
Another way to express this is to observe that for every member of the population 
with blue eyes, there are two with eyes of some other colour.  In other words there is a 
chance of 2 to 1 of not being blue-eyed.  These are two ways of expressing the same 
degree of uncertainty: the former is a probability of 2/3, the latter is an odds of 2:1, or 
simply 2.  Notice that while a probability must be between 0 and 1, an odds can take 
any positive value. 
 
In general, if an event has probability π, then the same event has odds π:(1-π) or 
simply π/(1-π).  If you set π=2/3, then the odds is (2/3)/(1-2/3)=2, as required.  If you 
know the probability of an event, then you can find the odds.  Equally, if you know 
the odds of an event is η, then the probability is η/(1+η).  In other words the odds and 
the probability of an event are equivalent ways of quantifying the same degree of 
uncertainty: if you know one, then you can find the other.  Probabilities are always 
between 0 and 1, odds are bigger than 0. 
 
Odds are quite widely used, especially in epidemiology.  They arise naturally through 
logistic regression and are fundamental to the utility of case-control studies.  In the  
latter application, it is useful to note that if an event is very unlikely, or rare, then the 
value of the probability is very similar to that of the odds. Why the odds is important 
in these two areas is beyond our current scope.  However, it is important to be able to 
describe the difference between two odds as well as between two probabilities. 
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Measuring the difference between proportions: part b. 
 
The three main ways of describing a difference between parameters π1 and π2 are: 
 
i) the absolute difference  D = π1 - π2; 
ii) the relative risk   R = π1/π2; 
iii) the odds ratio    OR = {π1/(1-π1)}/{π2/(1-π2)} 
 
The null values for these three quantities, i.e. the values which correspond to no 
difference between the groups are D = 0, R = 1 and OR = 1.  The null hypotheses D = 
0, R = 1 and OR = 1 are all the same.  When the two groups are independent, or 
unpaired, the χ2 test is the one which is required. 
 
However, confidence intervals for each of these measures of difference are computed 
differently.  In fact, the differences between the methods for R and OR are slight, so 
only the confidence the OR is discussed here.  Those interested in confidence intervals 
for R should refer to Altman DG (1991, Practical Statistics for Medical Research, 
Chapman & Hall, London, pp.266-267) or to Armitage, Berry & Matthews (2002) 
p.126-127. 
 
Confidence intervals for D 
 
The data from Table 1, repeated below as Table 15 for convenience, are used to 
illustrate the computation of a confidence interval for D. 
 
 Dead Alive Total 
Not on diuretics 34 655 689 
On diuretics 25 216 241 
Total 59 871 930 

Table 15 (Table 1 reprinted) 
 
The proportion discharged dead  = 34/689 = 0.0493 (not on diuretics) 
     = 25/241 = 0.1037 (on diuretics) 
 
Therefore D = 0.1037 – 0.0493 = 0.054 (to three d.p.). 
 
A confidence interval for the difference can be found by extending the ideas in 
Appendix I.  The standard error of D can be found as: 
 

2
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1
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+
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This cannot be computed as the πs are unknown.  An estimate of the standard error 
can be found by replacing the parameters by estimates, in this case 0.0493 and 0.1037, 
with corresponding ns 689 and 241 respectively.  This gives an estimate of the 
standard error of: 
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The 95% confidence interval is found as D ± 1.96 × standard error and this is 
computed as = 0.054 ± 1.96 × 0.0213 = 0.012, 0.096. 
 
In other words, while the estimate of D is 0.054, there is a 95% chance it is between 
0.012 and 0.096.  The interval excludes the null value for D, namely 0, as it must 
when the test of the null hypothesis of no difference between the groups has P<0.05. 
 
The value 1.96 used above is what makes this interval a 95% interval.  Use of other 
values will give other confidence coefficients: e.g. a 99% interval results from using 
2.58 in place of 1.96. 
 
Confidence intervals for OR 
 
The odds ratio 
 
[note: in this section it avoids tedious circumlocution if we use OR to stand both for the OR, which 
strictly speaking is a parameter, and its estimate] 
 
Perhaps the first thing to do is to compute the odds ratio itself.  The probability of 
death before discharge on the non-diuretic group is 34/689, so the odds is 34/(689-34) 
= 34/655 = 0.0519.  In the diuretic group the corresponding figure is 25/216 = 0.1157.  
Consequently the odds in the diuretic group is 0.1157/0.0519 = 2.230 times larger 
than the odds in the non-diuretic group: i.e. the odds ratio is OR = 2.230. 
 
[note: the OR could have been calculated directly as (25/216)/(34/655) = (25×655)/(34×216), i.e. the 
ratio of the products of the diagonals in the 2 × 2 table] 
 
Notice that if the odds of death is 2.23 times larger in the diuretic than the non-
diuretic group, then the odds of death is 1/2.23 = 0.448 times larger in the non-
diuretic than in the diuretic group.  In other words, if you compare the groups one way 
round the OR might be x, whereas if you arbitrarily choose to compare them the other 
way round the OR is simply 1/x.  There is therefore a connection between any odds 
ratio greater than 1 and its reciprocal, which is between 0 and 1.  The fact that all 
values from 1 up to infinity are, in some sense equivalent to the values between 0 and 
1, gives the distribution of the OR a natural skewness. 
 
Confidence interval 
 
A confidence interval for the OR is computed using a simple formula.  However, there 
are several points of detail to the procedure which can trip up the careless analyst. 
 
The key point is that the simple formula is not for the OR but for the natural logarithm 
of OR, i.e. logeOR or lnOR. 
 
The standard error of logeOR is the square root of the sum of the reciprocals of the 
entries in the 2 × 2 table underlying the odds ratio: i.e. 
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It is important to emphasise that the logarithm must be the natural logarithm, for 
otherwise this formula for the standard error is wrong. 
 
The natural logarithm of OR is 0.8019 and the 95% confidence interval for logeOR is  
 

0.8019 ± 1.96 × 0.2749 = 0.2631, 1.3407 
 
The confidence interval for the OR is found simply by taking the natural antilog of 
these values (sometimes written as the exponential of the values).  This gives the 
values 1.301 and 3.822. 
 
This means that the OR is estimated to be 2.23, with a 95% confidence interval 1.30 
and 3.82.  Notice that the null value for an odds ratio, namely 1, is excluded from the 
95% confidence interval – something which follows from the fact that the P-value for 
the comparison of the groups is < 0.05. 
 
With the confidence intervals met hitherto, the single-value estimate is the mid-point 
of the ends of the confidence interval.  However, this is not the case for the OR: the 
mid-point of the ends of the confidence interval is ½(1.30+3.82)= 2.56, which is 
larger than the OR. 
 
In fact, a moment’s thought will demonstrate that this apparent lack of symmetry is a natural 
consequence of the OR scale.  Consider a table in which the OR is 1, i.e. there is no difference between 
the groups.  If the confidence interval were symmetric, say from ½ to 1½ then the confidence interval 
for 1/OR would be from 2/3 to 2 (i.e. the reciprocals of ½ and 1½).  However, 1/OR is simply the odds 
ratio of group B relative to group A rather than group A to group B and because the two groups are 
indistinguishable the intervals for OR and 1/OR should be the same.  It follows that the interval for OR 
must be of the form (1/x,x) for some x>1, for example (½,2).  Such intervals are not symmetric about 1 
in the sense that they cannot be expressed as 1±y for some y (although they are symmetric about 0 on 
the log scale). 
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Appendix I: confidence interval for a proportion. 
 
We have seen that an estimator of π is r/n.  However, earlier in the course the value of 
estimating parameters not with single numbers but with intervals has been 
emphasised.  The 95% confidence interval for a proportion is constructed along lines 
very similar to that for a mean, namely: 
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The problem with this formula is that π is unknown, so we replace it in this formula 
with an estimate, namely r/n, giving the new formula as: 
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The formula works well if the proportion is not too small or large (between 0.1 and 
0.9, say) and n is larger than 10, or so.  In the extreme case when r=n, then the 
formula gives an interval with width of zero, which is not correct.  For such extreme 
outcomes more sophisticated methods are needed. 
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The reason we divide (observed – expected)2 by expected before summing to obtain 
the χ2 statistic is quite subtle.  It is to do with how much importance we should attach 
to the discrepancy between counts and their expected values as the size of the count 
changes.  We will not show precisely why we do this, but will give an indication that 
shows that it is plausibly a sensible thing to do. 
 
To think about this it is easiest to consider an experiment in which we want to assess 
whether a coin is fair, i.e. whether it is equally likely to come down heads (H) or tails 
(T).  In experiment 1 we toss a fair coin 30 times and we would ‘expect’ it to come 
down H 15 times.  In experiment 2 we toss the same coin 3000 times, so expect it to 
come down H 1500 times.  However, in the first experiment there is a chance that we 
will see only ten or fewer H.  This event has probability 0.0494, i.e. nearly 5%.  It is 
therefore quite unlikely that we will see so few H if the coin really is fair but it is 
certainly not a very rare event.  What would be a similarly discrepant difference for 
experiment 2?  Two possible events spring to mind. 
 
a) In experiment 1 we saw 5 fewer H than we expected to.  So an equally discrepant 

observation in experiment 2 might be to see 1495 or fewer H.  If these two events 
should be weighted equally in assessing evidence of the fairness of the coin then 
we would want to give (observed – expected)2 the same weight in both cases when 
computing the χ2 statistic.  However, in tossing a coin 3000 times there is bound 
to be more ‘noise’ in the observed number of H than in tossing the coin 30 times, 
so it perhaps ought to be expected that the number of H may be very likely to 
differ from 1500 by more than 5, even if the coin is fair.  In fact, the chance of 
seeing 1495 or fewer H in 3000 tosses of a fair coin is 0.435, i.e. nearly 50%.  So 
a discrepancy of the same absolute amount is much less evidence against the 
fairness of the coin when based on a larger number of tosses.  In calculating a χ2 
statistic, the contribution of the (observed – expected)2 from larger expected 
values ought to be increasingly downweighted for increasing expected values. 

b) In experiment we saw 10 H in 30 tosses, so an alternative for an an equally 
discrepant observation in experiment 2 might be if we saw 1000 or fewer heads, 
i.e. we work out the discrepancy pro rata rather than absolutely.  If these two 
events count equally when assessing the fairness then we would weight them 
equally in computing the χ2 statistics, so we would have divided (observed – 
expected)2 by expected2.  However, in 3000 tosses of a fair coin, the proportion of 
H gets closer and closer to its true value, so the chance of seeing 1000 or fewer 
heads will be very, very small indeed (it is, in fact, about 5×10-76).  Therefore, a 
given proportionate squared discrepancy (observed – expected)2/expected2, should 
clearly count more heavily in the calculation of χ2 if it is based on a larger 
expected value. 

 
It follows from these remarks that basing χ2 on the sum of (observed – expected)2 
would give relatively too much weight to cells with larger counts, whereas using the 
sum of (observed – expected)2/expected2 would give too little weight to these cells. 
Using (observed – expected)2/expected is intermediate between these and is, indeed, 
the right thing to do. 
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Appendix III: deriving P-values using the computer. 
 
The table of expected values, such as Table 3b, gives an average table assuming the 
null hypothesis is true but it does not give any indication of how the observed values 
vary between the tables which can be observed if the null hypothesis is true.  The 
computer can, in fact, be used to generate tables with the same margins as in the 
above example, with observed values varying as they would under the null 
hypothesis†. 
 
The result of asking the computer for 20 such simulated tables is shown below 
 
Simulation 1  χ2 value Simulation 11  χ2 value 

44 645 0.007886 46 643 0.494001 
15 226  13 228  

Simulation 2  χ2 value Simulation 12  χ2 value 
43 646 0.047619 37 652 4.24507 
16 225  22 219  

Simulation 3  χ2 value Simulation 13  χ2 value 
44 645 0.007886 47 642 1.019848 
15 226  12 229  

Simulation 4  χ2 value Simulation 14  χ2 value 
47 642 1.019848 43 646 0.047619 
12 229  16 225  

Simulation 5  χ2 value Simulation 15  χ2 value 
43 646 0.047619 39 650 2.091814 
16 225  20 221  

Simulation 6  χ2 value Simulation 16  χ2 value 
41 648 0.692663 49 640 2.637122 
18 223  10 231  

Simulation 7  χ2 value Simulation 17  χ2 value 
50 639 3.728548 42 647 0.275878 
9 232  17 224  

Simulation 8  χ2 value Simulation 18  χ2 value 
44 645 0.007886 46 643 0.494001 
15 226  13 228  

Simulation 9  χ2 value Simulation 19  χ2 value 
43 646 0.047619 43 646 0.047619 
16 225  16 225  

Simulation 10  χ2 value Simulation 20  χ2 value 
41 648 0.692663 47 642 1.019848 
18 223  12 229  

 
Next to each simulated table is the value for the χ2 statistic for that table.  If we bring 
these values together in a histogram, we begin to see how the χ2 value varies if the 
null hypothesis is true. 

                                                 
† This can be thought of as follows.  Assume the computer can be made to toss a biased coin, with 
chance of heads being 59/930.  Ask the computer to generate 689 tosses of this coin, which gives the 
number of deaths in the non-diuretic group.  Asking for a further 241 tosses gives the number in the 
diuretic group.  As the coin has the same probability of coming down heads in the two sets of 
simulations, the null hypothesis must be true.  If the number of deaths in the two groups adds to 59, 
then you have a simulated table.  Otherwise, discard the table and start again.  This is a valid way to 
proceed and shows that the exercise can be accomplished.  However, it is not the way used in practice 
as it is so inefficient – most of the tables generated have to be discarded. 
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The histogram of these twenty values is shown below in Table A1a. 
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Table A1a Twenty simulated χ2 values Table A1b One thousand simulated χ2 values 
 
The range of values obtained from the twenty tables goes up to about 3.7, so the 
observed value of 8.889 looks as though it may well be unusual if the null hypothesis 
were true.  However, 20 simulated tables may not give a wholly representative picture 
of the distribution, so the exercise is repeated to give 1000 simulated tables and the 
histogram of the corresponding 1000 χ2 values is shown in Table A1b.  These values  
go up to 12.92, so even if the null hypothesis were true, large values of χ2 do 
occasionally occur.  In fact, only 2 of these 1000 values exceed 8.889, so the observed 
value is certainly unusual.  We can quantify how unusual by computing the proportion 
of the simulated values which exceed the observed value, namely 2/1000, and this is 
the P-value testing the null hypothesis of equal pre-discharge death rates in the two 
groups, i.e. P=0.005.  This is not all that different from the value 0.003 obtained using 
the mathematical approximation. 
 
The precise P-values obtained by simulation vary according to the simulations 
obtained.  However, especially when based on large numbers of simulations, they 
vary little from run to run.  A second determination of the above P-value based on 
50000 tables gave P=0.002. 
 
The key point of the exercise is to realise that the simulations, being based on the 
assumption that the null hypothesis is true, give us an idea of the distribution of values 
of the test statistics if the null hypothesis is true.  It therefore allows us to assess the 
degree of conflict between our data and the assumption that the null hypothesis is 
true. 
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