Premedical course Solution to MINITAB practical 1

Question 1. The first illustration shows the MINITAB system after the data have been entered - the haemoglobins for males in column 1 and those for females in column 2 - and the Help menu has been invoked to find out how to produce stem-and-leaf plots. The windows have been arranged for maximum legibility; you should make a habit of this. (By using the 'print screen' key the screen may be copied to the notepad and pasted in to a word-processing document. Practicals should be written up in this way, though not necessarily as extensively as is done here.)

Although the exact form of the stem-leaf plot may be controlled by the user, we have only used the defaults (which are satisfactory in this instance) and the output to the Session window is shown in the next illustration. The column of figures to the left of the graph contains a cumulative count of the observations from either end of the distribution. The number in parentheses is the frequency count for the interval containing the median. We may easily read the male median as 16.4 and the female median as $13.9 \mathrm{mg} / 100 \mathrm{ml}$. Notice that names have been given to the variables in the Data window to make the output more understandable. Make sure that you can do this.

The next illustration shows how the $\underline{\text { Help }}$ system is invoked to enquire about basic statistics.

And this one shows the result. The other windows have been minimised (symbol at the top right) for convenience.

The following window is typical of one way of using MINITAB; sometimes it is easier to type the commands direcly into the Session window.

Here we see the command which has been produced, the route through the menus to produce it, and the output. When you write down the relevant numbers for the fivepoint summaries only use the appropriate number of decimals; here one is enough.

By arranging the windows you can compare male and female boxplots, but it is preferable if they both use the same scale. To achieve this you must put all of the haemoglobins in one column and indicate in another to which group (male or female) they belong. In general this will be a better way to store data. You should make sure that you can use the Manip and Calc menus to do this. Sometimes it may also be convenient to select data items using the mouse and copy them to other parts of the spreadsheet.

It is essential to be able to label the graphs so that anyone may subsequently know what they represent; here the identification of the sexes has been added as a footnote.

You should look at the ? button on the boxplot menu so that you are sure what the "whiskers" represent. The values are Q1-1.5(Q3-Q1) and Q3+1.5(Q3-Q1). For a Normal distribution these are equivalent to the mean ± 2.7 standard deviations.

