
1

Research Methods 2

Week 6: Document 1

How good is my estimate? The meaning of Standard Errors

Recapitulation
In Document 1 of Week 3, you met a sample that had been obtained from the
population of heights of 5-year-old boys.  If we assume that this variable has a
Normal distribution (an assumption that is, in fact, entirely reasonable) then it will
have a population mean, µ.  For many purposes, such as assessing the height of a five-
year-old in the follow-up clinic, the value of µ is of interest.  As this is a population
parameter we will never know its true value, because we will never have a complete
enumeration of the population.  As we learnt in Week 4 we have to content ourselves
with whatever information about µ that can be gleaned from a random sample drawn
from the population.

As was learnt in Week 4, the natural way to estimate µ is to compute the mean, m, of
the sample and say that this value is our estimate of µ.  The mean of the sample of 99
heights is 108.34 cm.  Had we only measured the heights of the first ten boys in this
sample the value obtained would have been 107.77 cm.  If the first 20 boys had been
measured then the value would have been 107.68 cm.  The three means are
summarised below.

Sample size Sample mean (cm.)
10 107.77
20 107.68
99 108.34

Each of these sample means is a legitimate estimate of µ.  Indeed, even a single height
measurement, such as the first measurement, 117.9 cm, is a legitimate estimate of µ.
If we only had a single measurement and we were asked what was our best estimate
of µ then we could give this one value (it can be thought of as the mean of a sample of
size 1).  However, in this instance we have a range of alternatives, so which one
should we use to estimate µ and, more importantly, why?

Most investigators would intuitively say that the mean of the sample of size 99 was
the best one.  This intuition would be based on the notion that by using data from 99
boys the sample mean was based on more information and so must be ‘better’ in some
sense.  In this instance intuition turns out to be a reliable guide and the basic idea that
a sample mean based on a larger sample is ‘better’ than one based on a smaller sample
is correct.  However, it is useful to be more precise about what we mean by ‘better’.

It will also be helpful to try to be more quantitative about the relative merits of
samples of different sizes.  The larger sample provides a ‘better’ estimate only in a
narrow statistical sense.  It may well be that a larger sample is more expensive to
collect and it is likely to be important to know how much improvement will be
obtained for a given increase in sample size.
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Principles behind the Standard Error

The mean of a larger sample will tend to be closer to the mean of the population than
the mean of a smaller sample.  This observation is an important step to a more precise
understanding of why the mean of a larger sample is ‘better’ than the mean of a
smaller sample.  It is more precise because we are now focussing on a specific
quantity, the difference between the population mean and the sample mean.  However,
it remains unsatisfactory from a practical point of view because it has not been made
clear what is meant by the phrase ‘…will tend to be closer to …’ used above.

Of course, as the population mean is unknown we cannot evaluate the difference
between µ and any particular sample mean.  So what basis is there for the assertion
that the mean of a larger sample ‘tends’ to be closer to µ and does this allows us to be
more specific about what ‘tends’ means?

This is most readily approached by considering the following.  In practice we have a
single sample from a population and must base our inferences on this one sample.
However, suppose for the moment that we have available not one but many samples
from the same population.  For each sample we can compute the sample mean and
then we can look at how the sample means are distributed, for example by drawing
the histogram of these means.  If the sample mean is a useful estimator of the
population mean then the distribution of sample means will cluster about the
population mean.  Moreover, if the sample mean ‘tends’ to be closer to the population
mean for larger samples then the histogram of sample means for samples of size 1000,
say, will be more tightly clustered around the central value then the distribution of
means of samples of size 10.

This can be demonstrated using the technique you have met in the exercises in weeks
4 and 5, namely asking Minitab to generate data from specific populations.  Minitab
can be asked to generate a sample of size 10 from a Normal population with
population mean of 108 cm and population SD of 4.7 cm.  It can be asked to do this
repeatedly.  If this is done 500 times, and the mean of each sample is computed then
you will have a collection of 500 means.  A histogram of 500 such numbers is shown
in figure 1.  As a comparison, figure 2 shows a histogram of 500 individual heights
values from the same population.

There are three things to note about figures 1 and 2.

1. Like the individual heights, the sample means have a Normal distribution.
2. Like the individual heights, the mean of the distribution of sample means seems to

be close to 108 cm (evaluating the mean of the 500 means gives 107.96 cm).
3. While the heights are spread between about 95 cm and over 120 cm, the spread of

the sample means is much less, being between about 104 and 114 cm.
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Samples of size 10
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The distribution of the sample means is very similar to that of the population – it
appears to be Normal, with a mean which is the same as that of the population, but
which is more tightly clustered around the mean.  We can measure spread and
computing the sample SDs for the sample means of figure 1 gives 1.50 cm, whereas
the corresponding quantity for the individual heights is 4.66 cm, (in line with what we
would expect for a sample from a population known to have an SD of 4.7 cm),
confirming that the distribution of sample means is less spread out than the
distribution of individual heights.

This is why we take means of samples – while both the mean of a sample and an
individual height will cluster around the population mean, the sample mean will stray
less far from the population mean.  This effect gets more marked as the size of the
sample increases.  Figure 3 shows the result of repeating the exercise for figure 1 but
now with samples of size 1000 rather than 10, and this is much more concentrated
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about its central value than that in figure 1, with no mean smaller than 107.4 and none
greater than 108.6 cm.  Again the distribution is Normal and the mean of these means
is 107.99 cm, in line with previous values.  The SD of these means is 0.15 cm,
indicating that the mean of a sample of size 1000 will not stray very far at all from the
population mean.

The key quantity we have used to summarise the differences between these
histograms is the standard deviation of the distribution of sample means.  This such an
is an important quantity in statistical inference it is given its own name: it is called the
standard error (SE)or sometimes the standard error of the mean (SEM).  Some points
about nomenclature are given in the information bar at the end of the document.

Samples of size 1000
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Figure 3

In practice we just have a single sample, for example one obtained in the course of
some investigation.  We can compute its mean and the foregoing analysis shows that
it will tend to be closer to the population mean if it is based on a larger sample.

So far we have been relative in our claims for the effect of sample sizes.  We have
said that means from larger samples are less dispersed than those from smaller
samples.  Can we be more quantitative about the mean of a single sample of a given
size?  Can we say something about how far a sample mean is likely to stray from the
population mean?

The answer to both these questions is yes, but both answers require us to evaluate the
standard error and this presents a problem.  We were only able to estimate SEs in the
above examples because we used the unrealistic device of assuming that we had
access to arbitrarily many samples, not to just one sample.  Fortunately there is a way
round this difficulty and this will now be described.
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Calculating the Standard Error from a single sample

The solution to the problem is to use a theoretical result of great importance in
statistics.  This result states that:

If a variable has population standard deviation σ then the standard error of

the mean of a sample of size n from this population is 
n

σ
.

In practice we do not know σ so we must estimate it using the sample SD s and hence
the estimate of the SE of the mean of a sample of size n is s/√n.  All of these
quantities are available from a single sample.

So, e.g. the sample of 500 heights shown in figure 2 has SD 4.66 cm and the SE of the
mean of the sample is computed as 4.66/√500 = 0.21 cm.

As another example , generate a sample of size 10 from the same Normal population.
This has a sample SD of 3.89 cm, giving an estimate of the SE of the mean of this
sample as 3.89/√10 = 1.23 cm.  This is quite close to the value of 1.50 cm we obtained
as the SD of the sample of means plotted in figure 1.  {The two should not be expected to be
exactly equal because of sampling error}.

As a third example a sample of size 1000 is generated from the Normal population
underlying figure 3.  This has SD 4.78 cm, giving a SE for the mean of that sample of
4.78/√1000 = 0.15 cm, which is (to two d.p.s) the same as that obtained as the SD of
the 500 sample means in figure 3. {The agreement is much closer than in the previous example
because sampling error is much reduced in larger samples}

The formula shown above is worth thinking about for a moment or two (not least
because it is one of very few you will encounter in this course!).

• It shows that as the sample size gets bigger, the SE must get smaller (the n in the
denominator gets large, so the ratio gets small).

• Indeed, the SE can be made as small as we like provided we collect a large enough
sample (and provided it is collected appropriately).

• The square root sign in the denominator means that the SE does not get small
quite as quickly as we would like when we increase the sample size.  For example,
in order to halve the SE we need to quadruple the size of our sample.

Nomenclature
It might be asked, when the SE is simply the standard deviation of the distribution of sample
means, why a term other than standard deviation is necessary.  While a reasonably cogent
argument can be made for abandoning the term standard error  there are at least three
reasons why standard error is used and should be retained.

i) While the standard error is a form of standard deviation, it is a very special form. It is
the standard deviation of a hypothetical distribution that is never actually observed.
Values for the standard error usually need to be computed using a theoretically
derived formula.
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ii) Standard errors and standard deviations are put to different uses.  Standard
deviations are descriptive tools that indicate the dispersion in a sample.  A standard
error is an inferential tool, which measures the precision of estimates of population
parameters.

The fact that a standard error is a form of standard deviation can readily give rise to
confusion.  Standard error is the term that has been widely used for the standard deviation of
the distribution of sample means and to change nomenclature now may cause even greater
confusion.

Practical use of the Standard Error

So far we have learnt what the Standard Error of the mean is, and how it can be
calculated.  What we have not covered is how it can be used in practice to improve
our inferences.  This will be covered next week.


