MCQ Weeks 9-11		T or F
1 a)	A hypothesis test results in a P-value less than 0.01: this is strong evidence against the null hypothesis	
1 b)	A hypothesis test yields a P-value of 0.52: this provides evidence that the null hypothesis is true	
1 c)	For two groups of Normal variables, a <i>t</i> - test tests the null hypothesis that the two population means are unequal	
2 a)	An unpaired <i>t</i> -test assumes that the standard deviations of the two populations are the same	
2 b)	A paired <i>t</i> -test assumes that the data in each group are Normally distributed	
2 c)	How you interpret a P-value differs depending on whether you are using a paired or unpaired <i>t</i> -test	
3 a) 3 b)	A χ^2 test can be applied to binary data χ^2 tests must be applied to a table of counts, rather than percentages	
3 c)	χ^2 tests can be applied to paired binary data	
4 a)	An unpaired <i>t</i> -test is an alternative to the χ^2 test when analysing binary data	
4 b)	The standard error of a sample proportion depends on the sample size	
4 c)	The standard error of a sample proportion depends on population proportion	
5 a)	The mean blood pressure of a group of patients is compared before and after the administration of a beta-blocker. The unpaired <i>t</i> -test is likely to be the	
5 b)	correct test to use The heights of the girls and boys entering a first school are to be compared. This can be done correctly with a χ^2 test	
5 c)	A hypothesis test can never prove that the null hypothesis is true	