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Research Methods 2 

Week 14: Document 1 

Survival Analysis. 

Background 
In several areas of medicine, including oncology and palliative care, the time to some event is an 
important variable.  For example, in many clinical trials in oncology the principal outcome is the time a 
patient survives from the date they were enrolled.  The event which defines the time need not be death 
– it could be the time to when metastatic disease is first detected, or it could be something more 
positive, such as the time it takes for the plaques to clear in a patient with psoriasis.  However, 
regardless of the type of event used to define the time, this kind of data are habitually referred to as 
‘survival data’, or as ‘failure time data’, and they are subjected to survival analysis . 
 

General feature of survival data 
In general survival data need specially developed statistical methods.  Why is this?  The main reasons 
are outlined below. 

• One feature of survival data is that they are often very skewed and methods based on Normal 
distributions cannot be applied.  This is not inevitably the case but something that experience 
suggests usually obtains; an example is shown below 

0 15 30 45 60 75

Survival time (weeks)

0.0

1.5

3.0

4.5

6.0

7.5

N
u

m
b

er
 o

f p
at

ie
n

ts

Mean survival time = 17.9 wks
S.D.                 20.3 wks

Median survival time =  7.5 wks
Lower quartile 3.25 wks
Upper quartile 28 wks

 
                        Figure 1: histogram of typical set of survival data. 
 

• Perhaps the feature of survival data that is most obviously beyond the reach of general statistical 
methods is that some survival times are only partially observed.  If you want to measure a patient’s 
haemoglobin concentration at the next clinic visit, then you might obtain a sample but on the other 
hand you might not.  The patient might not attend as planned (or you might drop the tube 
containing the sample).  Whatever happened you will or will not get a haemoglobin concentration 
– there is no half-way house. 
This is not the case with survival data.  If at the end of your study you observe a patient is still 
alive you do not know the survival time but you do know something about it.  You know it exceeds 
the length of time you have already observed on the patient.  So, for example, if a patient presented 
in January and was seen at clinic the following December but you closed the study at the end of the 
year, then you do not know the survival time of that patient, as they are still alive.  However, you 
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do know, e.g., that the survival time was not 2 months or 6 months.  You know that it was 
something in excess of 11 months.  Times such as this, where the final event has not been 
observed, are known as censored observations. 

• Not only do you encounter censored observations, you need your analysis to take them into 
account appropriately.  If you omitted them then you would be losing information and if you 
treated them as ordinary observations, i.e. as if the event occurred just after you last saw them then 
you would almost certainly be underestimating the length of survival of your patients. 

How to describe survival data 
 
Another difference with survival data is that one of the most widely used ways to describe the data is 
through the survival curve.  This contrasts with the situations you have met before in the course, where 
the aim has usually been to estimate a parameter, i.e. a single number. 
 
The survival curve plots time t on the horizontal axis and a quantity denoted by S(t) on the vertical axis.  
The latter is defined as the probability an individual survives more than time t.  An example of what the 
curves for two different populations of patients could look like is in figure 2. 
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Figure 2: hypothetical examples of population survival curves. 

 
Another way to think of the survival curve is  that at time t you plot the proportion of your population 
that is still alive at time t. 
 
If you knew the survival curve for the population under study, then you would be able to look up the 
proportion of patients who survive any time you chose to consider, such as a 12 month survival 
proportion, a three-year survival proportion or a five-year version. 
 
There are some consequences of the definition of the survival curve. 
 
i) The proportion of the population that survives beyond time 0 is 1 (or 100%).  Therefore all 

survival curves start from 0 on the horizontal axis and 1 in the vertical axis (cf. Figure 2). 
ii) All patients who survive six months have necessarily survived all other times less than six 

months.  Consequently the proportion of patients surviving a given time must get smaller as 
the time increases.  The curves in figure 2 illustrate this: they go down as the time increases.  
It is impossible for a survival curve to increase as time proceeds. 
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How to estimate the survival curve 
 
Several methods for estimating survival curves are available, with different methods being pertinent to 
different forms of data.  The most widely used method is called the Kaplan-Meier estimator (an 
alternative name is the product-limit estimator). 
 
The method is most easily illustrated by means of an example.  The following data set are survival 
times (in days from entry to a trial) for patients with stage 3 diffuse hystiocytic lymphoma (from 
McKelvey et al., 1976, Cancer, 38, 1484-1493). 
 
6, 19, 32, 42, 42, 43*, 94, 126*, 169*, 207, 211*, 227*, 253, 255*, 270*, 310*, 316*, 335*, 346*. 
 
The times marked * are censored, so, e.g., 43* means that when these data were collated this patient 
was still alive 43 days after entry to the trial. 
 
The above times are entered into a column in Minitab, say C1, ignoring the *s.  A second column, say 
C2, containing two values, say 0 and 1, with a 1 if the corresponding entry in C1 is a fully observed 
survival time and a 0 if it is a censored observation. 
 
The estimated survival curve is found in Minitab by clicking on Stat -> Reliability/Survival and 
then on Distribution Analysis (Right Censoring)† and then select Nonparametric 
Distribution Analysis …  .  The column containing the survival times needs to be entered into the 
Variables: box.  Next the Censor…  box should be clicked and the column containing the censoring 
indicator should be entered into the Use censoring columns: box and the value which indicates 
censored times should be entered in Censoring value:.  Click on OK and then on Graphs…  and in 
the resulting dialogue box check the Survival plot box and click OK.  Then click on OK in the main 
box and you will obtain the following plot. 
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Figure 3: Kaplan-Meier survival plot of the hystiocytic lymphoma data. 

 
This kind of curve is frequently seen in reports of oncology trials.  It is worth making a few general 
comments. 
                                                                 
† The form of censoring we have just met is more fully referred to as Right Censoring: Left Censoring, 
where we only know that a value is less than some observation will not concern us in this course. 
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i) It follows the basic requirements of a survival curve – at time 0 it is 1 and as you move to the 

right on the horizontal axis the plotted value never gets bigger. 
ii) The curve has the strange step-like pattern because of the method underlying its calculation.  

The survival probability only changes when a death is observed.  The curve changes level at 
times 6, 19, 32, 42 etc.  It does not change level at censored values. 

iii) The final change occurs when the last failure is observed.  As there is no information about 
deaths after 253 days, the curve stops at this time. 

iv) When censored survival times occurred cannot readily be seen on this plot.  In some 
programs, small tick marks are p laced on the curve at times corresponding to censored 
observations; see Bland, figure 15.7 for an example. 

 
The curve can be used in the obvious way – the probability of surviving 100 days can be read off the 
curve as approximately 0.68.  However, you can get the value precisely because in addition to the 
graph, Minitab produces the following output in the Session window. 
 
Kaplan-Meier Estimates 
 
      Number 
          at  Number     Survival  Standard   95.0% Normal CI 
Time    Risk  Failed  Probability     Error     Lower    Upper 
   6      19       1     0.947368  0.051228  0.846964  1.00000 
  19      18       1     0.894737  0.070406  0.756744  1.00000 
  32      17       1     0.842105  0.083655  0.678145  1.00000 
  42      16       2     0.736842  0.101023  0.538841  0.93484 
  94      13       1     0.680162  0.107988  0.468510  0.89181 
 207      10       1     0.612146  0.116659  0.383498  0.84079 
 253       7       1     0.524696  0.128661  0.272526  0.77687 
 
All the details of the table need not concern us but it is useful to consider the first and fourth columns.  
The first column is just the times at which deaths occur and the corresponding value in the fourth 
column is the survival probability shown on the Kaplan-Meier plot.  So the value at 94 days is 0.6802, 
which is the value of the survival probability until the next death at 207 days, hence the proportion of 
patients surviving 100 days is estimated as 0.6802. 

Comparing survival curves – the log-rank test and Cox regression 
 
The Kaplan-Meier estimator is the most widely used estimator of the survival curve.  Unlike the 
situation with Normally distributed data or binary data, where estimation of parameters is 
straightforward, we have just seen that the main estimator for survival analysis is quite complicated to 
compute.  Partly for this reason, and partly because of the increasing technical complexity involved, we 
will not dwell long on further aspects of survival analysis, such as the survival analogues of hypothesis 
tests .  However, one of these is frequently encountered in the literature and a brief description is in 
order. 
 
If the survival experience of a group of patients is measured by the survival curve, then it is natural to 
compare the survival of groups of patients by comparing their respective survival curves.  A technique 
which tests the null hypothesis that the survival curves in the different groups are the same is known as 
the log-rank  test.  If two survival curves are compared, then the log-rank test will provide a P-value to 
test the null hypothesis that the two population survival curves are the same. 
 
Figure 4 shows the Kaplan-Meier plots for two groups of patients with leukaemia, those that are 
classed as AG+ and those that are AG-.  The time is the time to death in weeks : data from Feigl and Zelen, 
1965, Biometrics, 21, 826-838. 
 
The log-rank test gives P= 0.0037.  This indicates that whatever the reason for difference between the 
survival curves, it is very unlikely that the difference is simply due to chance. 
 
The difference between the curves can also be described by a quantity called the hazard ratio , which is 
essentially the ratio between the risk of death in one group relative to the other.  For the example below 
the hazard ratio is 2.4, i.e. the risk of death is 2.4 times larger in the AG- group than in the AG+ group.  
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It is also possible to compute a 95% confidence interval for this quantity, here it is 1.1 to 5.1.  However 
the use of a hazard ratio embodies assumptions and a discussion of these is beyond our scope.  See 
Bland, section 15.6 and references therein for a fuller discussion. 
 
You will also see the term ‘Cox regression’ in the literature.  This is a way of assessing how a variety 
of variables affect survival times.  However, it leads to very deep water and we will not consider it 
here: see Bland section 17.9 for some details. 
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Figure 4: Kaplan-Meier plots for two groups (AG+ and AG-) with leukaemia (times in weeks) 
 


