
MBBS Stage I: notes on the Normal Distribution

Samples and Populations

In the first row of figure 1 the percentage cumulative frequency curve and a
percentage relative frequency histogram of a sample of 63 haematocrit values taken
from male stage I medical students are shown.  These give a reasonable description of
the distribution of this clinical variable in a population of young adult males: the
distribution is centred, or located, at about 46% to 47% and most of the values are
between about 44% and the 51%.  A more precise description is that the median is
46% and the lower and upper quartiles are 45% and 48% respectively.  Although these
values are useful as some indication of the variation in the given population, they are
based on a single sample, and values obtained from another sample, perhaps from a
different year or different medical school, may well be different.  The sample is thought
of as providing an estimate of the underlying population of young adult males: graphs
in row 1 of figure 1 provide estimates the underlying population versions of the curves,
shown in row 2.

The vertical axis of the population cumulative curve shows the percentage of
the population whose haematocrit value falls below the corresponding point on the
horizontal axis.  The population relative frequency curve is perhaps more intuitive, as it
clearly conveys the impression of most values falling near the peak of the curve, and
progressively fewer as the values move away from the centre.  It is the natural
population analogue of the sample relative frequency histogram.  Its precise definition
is surprisingly complicated but the loose description just given is sufficient for the
present.

Population curves are never known exactly and those shown in figure 1 are
hypothetical.  Either of the two curves in row 2 defines the distribution of values in a
population and many shapes of distribution are possible.  Those shown correspond to a
particular distribution, known as the Normal distribution; it is very commonly used and
one of many reasons for this will be outlined below.  The Normal distribution is
sometimes called the Gaussian distribution but the former term will be used here, with
the capital letter to show that in this context the word 'normal' has now acquired a
technical meaning.

The Normal Distribution

What does it mean to say that a variable, e.g. haematocrit, follows a Normal
distribution?  Roughly speaking it means that most values in the population are close to
that of the single central peak and values get steadily less common as they move away
from the centre.  Values the same distance either side of the peak are equally common,
i.e. the distribution is symmetric.  Not all distributions are like this, and two
alternatives are shown in figure 2:  the one on the left is called a skew distribution and
the one on the right is a bi-modal distribution.  Skew distributions are encountered
quite often in medicine, for things such as skin-fold measurements and bilirubin values:
bi-modal and other distributions occur occasionally.  However, many common medical
variables, such as heights, haemoglobin concentrations, haematocrits and variables
from clinical chemistry have a symmetric distribution about a single central peak, that
is a Normal distribution*.

                                               
* Symmetric, single-peak distributions exist that are not Normal, but for practical purposes of data-
description these can be ignored.
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Figure 1
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Sample Cumulative Frequency (males)
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Population cumulative 'frequency' curve (males)
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Sample Relative Frequency (males)
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Population relative 'frequency' curve
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Male haematocrit values: 'cumulative' representation on left.  Sample cumulative percentage frequency and
percentage relative frequency histogram.  The smooth curves are possible population analogues of the sample
curves.
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One point that should be made is that, strictly speaking, only variables that can take 'any'
value, such as height or haemoglobin concentration, can possibly have a Normal distribution;
these are referred to as continuous variables.  Variables such as blood group or eye colour which
can take only a few distinct values, so-called discrete variables, cannot have a Normal
distribution.  In practice Normal distributions are often applied to variables, such as haematocrit,
which are in principle continuous (in theory they can take any value from 0 to 100%) but which
can be measured with only limited accuracy, so giving only whole-number percentage values.

There is no single reason why so many biological variables have a Normal distribution.
One reason is connected with the genetic control of continuously varying attributes, such as
height and this is explained in more detail in the next section.  Another is that measurements are

often the sum of many smaller components, e.g. the haematocrit measurement is the sum of the
volumes of the packed red cells.  This form of aggregation leads to Normal distributions, although
why this is so is related to deeper properties of the Normal distribution that are beyond the scope
of this note.  Another reason is simply observation, i.e. the shapes of distributions of many
commonly measured quantities have, over many years, been observed to conform to the pattern
seen in row 2 of figure 1.

A Genetic basis for the Normal Distribution.

This section presents an explanation of the way in which some types of genetic control of
continuously varying attributes can lead to distributions that appear Normal; height is taken as the
example.

The variability of some discrete variables, such as Rhesus blood groups, Rh+ or Rh-, are
controlled by the action of a single gene.  There are alleles D and d, with D dominant; Rh+ results
from DD and Dd, with dd giving Rh-.  In this example the heterozygous form is phenotypically
indistinguishable from the dominant homozygote.  However, it is possible for an attribute under
the control of a single gene to exhibit three phenotypes, that is the heterozygote is distinguishable
from both forms of homozygote (a clinically important example is sickle-cell anaemia$).

                                               
$ For details, see Fraser Roberts and Pembrey, An Introduction to Medical Genetics, Oxford, chapter 3

Figure 2
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For illustrative purposes, suppose for the moment that the inheritance of height is under
the control of a single gene with alleles H and h.  Suppose also that individuals with genotype Hh
are phenotypically of average height, that a genotype HH results in a phenotype 1cm taller than
average and hh in a phenotype 1cm shorter than average.  There would then be only three heights
in the population, namely average (Hh), 1 cm below average (hh) and 1 cm above average (HH).
If the alleles H and h are equally prevalent each combination HH, hh, Hh and hH is also equally

likely (where hH and Hh have been used to distinguish the heterozygote where h comes from,
respectively the mother or father).  However, Hh and hH both have average height, so the final
distribution of the phenotypes is as in figure 3.

Suppose now that instead of just one gene controlling height, two are needed, again each

with alleles H or h.  The height of the phenotype is determined by the excess of the number of H
alleles over the number of h alleles: equal numbers lead to average height, two more H than h
results in an individual 1 cm above average, two more h than H results in an individual 1 cm
below average, four more h than H gives a phenotype 2 cm below average and so on.  The
possible outcomes are given in the table below: the entries in the body of the table are the
departures from average height (so 0cm = average) of the phenotype corresponding to the
genotypes obtained from the forms of genes 1 and 2 along the margins of the table.  Each of the 4
×4=16 possible combinations of gene 1 and 2 is equally likely, but these give rise to only five
different heights, namely average and 1 and 2 cm above and below the average.  As only one of

Figure 3
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Distribution of Height: One gene

Gene 1
hh hH Hh HH

hh -2cm -1cm -1cm 0cm
Gene 2 hH -1cm 0cm 0cm 1cm

Hh -1cm 0cm 0cm 1cm
HH 0cm 1cm 1cm 2cm
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the sixteen possible outcomes gives an individual 2 cm above average, we know that only
1/16×100%=6.25% of the population are of this height, whereas 6 of the outcomes, or

6/16×100%=37.5%, have average height.  The full distribution is shown in figure 4.

If the number of genes controlling height is now supposed to be 3, there are 4×4×4=64
equally likely gene combinations, but these give rise to only seven phenotypes, namely heights at

1cm intervals from -3cm to 3 cm.  By counting the
number of gene combinations giving rise to each
height, we can construct the height distribution for
this population, as we did above for one and two
gene control of height above.  The distribution for
three genes shown in figure 5 is beginning to look
quite like a Normal distribution, as the
superimposed Normal curve indicates.

It is possible to extend this argument to
any number of genes controlling height and figure
6 a) and b) show the distributions obtained when
respectively 6 and 12 genes control height.
Clearly, as the number of genes controlling height
increases, the number of possible heights increases

and their distribution gets closer and closer to a Normal distribution.  This is an example of the
polygenic control of a continuously varying attribute.

Of course, this is a greatly simplified model of how height is inherited because many
important aspects have been ignored, including aspects of the influence of parental height on that
of the offspring and the assumption that each gene contributions the same amount to the final
height.  Perhaps even more important is that the final height of an individual is not wholly
determined by genetic factors but is also influenced by environmental factors, such as nutrition
and healthcare.  It should also be realised that if an attribute, such as height, has a Normal
distribution it does not follow that it is under polygenic control, nor if an attribute has, e.g. a skew
distribution, does it mean that the attribute is not genetically influenced to some extent.

Figure 4

-2 cm -1 cm Average 1 cm 2 cm

Heights

0

25

50

P
er

ce
nt

ag
e 

F
re

qu
en

cy

Distribution of Hei ght: Two genes

Figure 5
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Nevertheless, the preceding argument shows that a Normal distribution can occur as the result of
a biologically plausible mechanism.

Different Normal Distributions

Although it is difficult to tell from samples of the size analysed in figure 1, it is actually
reasonable to assume that the distribution of male haematocrit values in a population of young
adult males in the UK follows a Normal distribution.  A possible version is show in figure 7.  It is

also reasonable to assume that haemoglobin
concentration in this population follows a Normal
distribution and this appears in figure 8.  However, it is
clear that they are different distributions, the former
describes a variable whose values are located around the
40s, whereas the latter is around the mid teens.  Because
these are both Normal the two distributions share the
same general features and are, in a fairly obvious sense,
the same 'shape'.  So what is it that makes the two
distributions different?  There are essentially two things:
i) the position of the central peak and ii) how dispersed
the data are about this central value.  That is, the
location and spread of the population.

The value at the central peak is called the
population mean and is often denoted by the Greek
letter µ (mu).  The value of this quantity is unknown as
it refers to the entire population.  It is an example of a
population parameter; it is conventional to use Greek
letters to refer to unknown population parameters.  If a
sample of data from the population is available then we
can estimate µ - how this is done is dealt with in the last
section of this note.  Figure 9 shows several Normal
distributions that all have the same dispersion but
different means.

While members of the population will have values that vary either side of µ, how far they
stray from the central value is determined by the other population parameter of the Normal

Figure 6a
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Distribution of Height: Six genes

Figure 6b
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Figure 8
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distribution, which is usually written as σ, the population standard deviation (SD).  How an
estimate of σ can be found from a sample is given in the final section, but for the present it should
simply be thought of as a measure of spread.  This is obviously some measure of the width of the
bell-shape of the distribution.  It does not really matter exactly where or how the width is
measured, provided it is defined in a way that is consistent and can be reproduced.  In figure 10,
the definition of σ is demonstrated: it is half the horizontal width of the 'bell-shape' at a point that
is at 60.6%* of the height of the peak.  The reason for this rather strange definition is that it
simplifies the formula that is used for the estimation of σ from a sample.

In figure 11 the effect of changing σ on the appearance of the distribution is illustrated.
Note that because σ measures a width it cannot be negative, unlike µ which can take any value.

Thus the shape of the distribution is defined by the fact it is Normal, its location by µ and
its spread by σ.  Once these three things are known, the distribution is completely specified.  In
particular all the centiles of the distribution are known.  For example, a feature of the Normal
distribution is that 16% of the population falls below the point that is one SD below the mean, i.e.
µ σ− .  If a point even further away from the mean is chosen, namely two SDs below the mean,

                                               
* the value 60.6% is an approximation to exp(-½)

Figure 10
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µ σ− 2 , then 2.3% of the population lies below this point.  Complementary statements can be
made about points above the mean from the symmetry of the Normal distribution, see figure 12a.
This figure shows that about 2.3% of the population is more that two SDs below the mean and
that about 16% are less than one SD below the mean.  What point cuts off the bottom 10% of the
population?  Clearly, it will be between one and two SDs below the mean, that is it can be written
as µ σ− z  where z is a value between 1 and 2.  In fact the required value is 1.28.  The values of z
needed to cut off various percentages, such as 3%, 10%, 25% are shown in figure 12b.

Figure 12a

µ−2σ µ−σ µ µ+σ µ+2σ
0

20

40

60

80

100

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e

97.7%

84%

50%

16%

2.3%

Figure 12b
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The important point to note about the above is that it is quite general, the results are true
for any µ and σ, and hence for any Normal distribution.  The proportion of the population that is
less than µ σ+ z  depends only on the value of z: if z is 0, the proportion is obviously 50% (the
Normal curve is symmetric about its peak), a negative value of z corresponds to percentages less
than 50 and a positive value to a percentage exceeding 50.  Some values are given in figure 12,

some others are shown in the table below.  Unfortunately, there is no simple formula that relates
the value of z the proportion of the population that is cut off by µ σ+ z ; it is necessary to use

Figure 11
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σ = 0.5
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z 0 -1.96 -2.32 -2.58 1.96 2.32 2.58
Percentage below µ σ+ z 50% 2.5% 1% 0.5% 97.5% 99% 99.5%
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either a computer or a set of tables.  In fact, most of the commonly used values appear in figure
12 or the above table, or can be deduced from values found there.

How can we use these results?

Suppose it is required to find the 3rd centile of the distribution of haematocrit levels of
young adult males in UK.  If haematocrits follow a Normal distribution then it will be µ σ−1 88. .
The problem is that because µ and σ refer to the population, neither is known.  If a sample of
values from the population is available then the way round this problem is to use the sample to
find an estimate of the 3rd centile.  One possibility is to use the sample cumulative frequency
curve, as in figure 1, but to estimate such an extreme centile this way clearly needs a very large
sample.  An alternative is that if we assume that haematocrit values are Normally distributed, then
there is an alternative, namely that the sample is used to produce estimates m and s of µ and σ
respectively, and the 3rd centile is then estimated as m-1.88s.  The case z=1.96 is important as
µ σ±1 96.  demarcates the central 95% of the population and is often used by clinical chemists,
and others to define reference ranges

Estimating µ and σ from a sample

As µ is the population mean, it is natural to estimate it by the mean of the sample, i.e. if
the sample comprises values x x xn1 2, , ,� , then the sample mean m is simply

m
x x x

n
n= + + +1 2 � .

How σ is estimated from the sample is a little less obvious.  Clearly we want to measure
how far the individual haematocrit values depart from the centre of the distribution, that is from µ,
so ideally the method should be based on getting a 'typical' or average value for the distances from
the central value, i.e. the average of x x xn1 2− − −µ µ µ, , ,� .  Such distances cannot be computed

because µ is unknown, but we now have an estimate of it, namely m.  So why not find the average
of x m x m x mn1 2− − −, , ,� ?  The snag is that the sample average of these values is always 0 (try it
on a sample of any three numbers); the problem being that values above m have a positive
departure, whereas those below m have a negative departure and these cancel out exactly.

The way σ is estimated is to average x m x m x mn1 2− − −, , ,�  in some way but without
taking account of the sign of the departure.  It would be possible simply to average the values
after knocking the sign off the negative values.  This leads to technical problems, so what is done
is to square each of the departures (which is another way to make them all positive), and to
average these quantities.  There are two further complications.  First, the average of the squared
values is in squared units (e.g. if the sample were weights, ( )x mi − 2 is in kg2) and this is not what
we want for a measure of spread, so the square root of this average must be taken.  Second, for a
sample of size n, we form the average by dividing not by n but n-1.  The reason for this is rather
obscure and its full explanation is beyond the scope of this note; it is to do with the need to use m
rather than µ in the calculations.

To summarise this, we estimate σ by s where

s
x m x m x m

n
n2 1

2
2

2 2

1
= − + − + −

−
( ) ( ) ( )�



10

An example

The following is a sample of 15 haematocrit values from young adult males.  The sample mean
and the sample standard deviation are found as:

Mean

m = 
46 51 49 48

15
46 9

+ + + + =�

.

Standard Deviation

s2
2 2 2

2 2 2

46 46 9 51 46 9 48 46 9

15 1

0 9 4 1 11

14
5 41

= − + − + + −
−

= + +

=

( . ) ( . ) ( . )

. . .

.

�

�

∴ = =s 5 41 2 3. .

While it can be useful to perform these calculations by hand when trying to understand the
definitions, it is not necessary to do this routinely: programs such as Minitab and Excel can
compute them more easily and more reliably.

A consequence is that the 3rd centile of the distribution can now be estimated as:

m s− = − × =1 88 46 9 1 88 2 3. . . . 42.6.

Any other centile can be calculated in an analogous way, once the appropriate z value (known as
the Standard Normal Deviate) has been found from tables similar to, but possibly more extensive
than, the one above.

Summary

The Normal distribution is a particular form of distribution that is found in many branches
of biology and medicine.  The particular Normal distribution is specified once its two parameters,
the mean and standard deviation, are known.  Estimates of these may be computed easily from a
sample of values from the population.  If a variable comes from a Normal distribution then it is
possible to estimate any of its centiles using appropriate combination of the sample mean and
standard deviation.

The advantage of assuming a Normal distribution is that more of the information in the
sample is used when making inferences about all aspects of the distribution, including e.g. extreme
centiles.  Using a cumulative frequency graph to estimate such quantities will often rely heavily on
the values of the few smallest values in the sample, whereas the estimate m-1.88s depends on all
the sample, through m and s.  The precision of such estimates is much greater than those obtained
from a percentage cumulative frequency curve.

The disadvantage is that all the benefits stem from making the assumption of Normality,
and it can be very difficult to check if this is reasonable.  Plotting histograms is one way; more

46 51 49 48 50 46 45 45
49 43 44 45 46 48 48
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sensitive methods exist but are beyond the scope of this note.  The reason that the Normal
distribution is so important is that the assumption is often justified.

Further Reading

Armitage, P. and Berry, G. (1994) Statistical Methods in Medical Research, Blackwell, p.67-.
Bland, Martin (1987) An Introduction to Medical Statistics, Oxford, chap. 7.


