
Measurement, Measurement Errors, and Measuring Measurement Errors in
Clinical Medicine

1. Background

In many circumstances clinical decisions will be guided by measurements of
some kind.  Common examples include blood chemistry, such as serum sodium or
serum potassium, haematological variables such as haematocrit or haemoglobin
concentration, measures of physiological function such as glomerular filtration rate, or
peak expiratory flow.  Anthropological variables such as height, height velocity and
skinfold thickness are of importance in paediatrics and sometimes in nutritional
assessments.

All of the above are examples of quantitative, or continuous variables.  That is
they can take any value within their range.  Binary variables, such as whether or not a
patient is infected are also of importance but will not be considered here.

In all these cases, the process of obtaining the measurement will not be entirely
satisfactory, that is, the observed measurement will be subject to measurement error.
This can arise for many reasons, such as the degree of skill of the measurer (e.g. for
height measurement), due to slight differences in the way the patient hold the peak
flow meter when assessing expiratory flow, or even because of intrinsic randomness, as
when measurements are based on counts of radioactive markers, as with some methods
of assessing glomerular filtration rate or fat-free mass.  However they arise, it is
important that the clinician knows how precisely the observed value reflects the
underlying true value, as this can influence the uses of and trust in the measurement.

2. Model for Measurement Errors

The idea is to postulate the existence of a "true" underlying quantity, such as
the "true" height, peak flow, serum sodium, etc. and that the observed value is the true
value perturbed by the error of measurement i.e.:

observed value = true value + error

The distribution of this combination can be illustrated by the distributions in figure 1,
based on the heights of seven-year-old boys: the spread of the true value is measured
by a standard deviation σB and the spread of the error distribution is σ, shown here as a

perturbation around the mean of the true
distribution.  It follows from this that an
observed value is likely (with 95%
confidence to be strict) to be within
±2σ  of the true value.

Effect of measurement error on the
mean.

If the error is symmetrically distributed
about 0, then the measurement is said to
be unbiassed or accurate.  In this case

the mean of a large number of observations on the same individual will be close to the
true value.
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Effect of measurement error on the spread.

Clearly measurement error adds an extra source of variability and means that the
standard deviation of the observed values will inevitably be larger than that of the true
values.  In fact, it can be shown that the standard deviation of the observed values is

σ σB
2 2+ , which is clearly larger than σB.

So, if a collection of measurements is made and the standard deviation is

calculated then it is σ σB
2 2+  which is estimated.  In many circumstances it would not

be appropriate to try to estimate the 'true' standard deviation σB because it is the spread
of the observed values that is important and allowance must be made for the
contribution of measurement error.  This would be done simply by calculating the
standard deviation of the observed values.  However, in some circumstances it may be
of importance to know how much of the spread in the observed values is due to
measurement error.  If most of the variability in a measurement is due to measurement
error, then this may limit the uses to which the variable can be put or the reliance that a
clinician would place on the observation.  As such it is useful to be able to estimate σ.

{ It must be admitted that the existence of a "true" value needs deeper consideration than it has
received here, insofar as it is necessarily unobservable.  The approach here is heuristic and is a
model adopted to allow the problem of measurement errors to be analysed.}

3. Measuring Measurement Errors

If the model "observed value = true value + error" is adopted then it is clear
that from a single value it is impossible to disentangle how much is error and how
much is "true value".  If two independent measurements on the same individual are
available then progress can be made* because both measurements contain the same
"true value" but different measurement errors, i.e.

observed value1 = true value + error1 observed value2 = true value + error2

so that the difference d in the pair of measurements depends only on error.
Consequently the standard deviation of a set of these differences d cannot depend on
the spread of the true values σB and must depend only on σ.  It turns out that the
standard deviation of the difference between two independent errors, each with

standard deviation σ, is σ σ σ2 2 2+ = , so σ can be estimated by computing the

standard deviation of a series of differences of replicate measurements and then
dividing this by 2 1 42≈ . .

What are "independent measurements" and why are they needed?

The pairs of replicates needed above were stated to be independent.  This is because it
is essential that each member of the pair be affected by error in exactly the same way as
if each were just a single measurement being made de novo.  Problems can arise if the
way the replicate measurements were obtained means that the result of the first
measurement influences the value of second.  In this way the two measurement become
artificially close and the value of σ is underestimated.

In first two practicals the replicate height measurements were made close in
time and knowledge of the first value may well influence the value of the reported
second measurement (e.g. if the first attempt at a second measurement is 'very
different' from the first measurement then the second measurement may be repeated).
In the second two practicals, the minimetre was moved between the replicates, so that

                                               
* more than two measurements helps but this is ignored to avoid technicalities



a) the time interval between making the measurements was increased and b) the second
measurement would differ by the (unknown) offset in the two attachment points, so it
was no longer known what value on the second reading would reproduce the first
reading.

An example: errors in height measurement.

Errors in Height Measurement.

In the appendix are data on replicate height measurements from the two
practicals.  While it is clear that male and females have different mean heights (males
180.57 cm, females 167.10 cm), the difference between replicate measurements should
not differ between males and females.  This is because the difference between heights
measures the measurement error on height, and this is more likely to be an attribute of
the measurer not the measured.  Even if there is a difference between males and
females in their ability to measure height (and there is no reason to suppose that there
is) we would of course had to have recorded the sex of the measurer not the measured.

Consequently, the differences between replicate height measurements from
practicals 1 and 2 for males and females can be pooled.  The standard deviation (SD)
of these differences is 0.258 cm, and dividing by 2  gives an SD for the errors of
0.18cm.  We can also pool male and female data from practicals 3 and 4 and these
differences have an SD of 0.566, giving an SD for the errors of 0.40cm.  Thus the
error in the second two practicals, where the second measurement could not be
adjusted in the light of the first measurement, is over twice as large as the value
obtained when such adjustments were possible.

The method of data collection in practicals 1 and 2 suggests that the replicates
obtained will not be independent, and hence that the estimate of error obtained would
be an underestimate.  This is certainly compatible with the results obtained, suggesting
that it is the estimate from the last two practicals that gives a fairer representation of
the error SD.

Effect of Error on Measurement of Height

Growth charts tell us that in the UK seven-year-old boys have a mean height of
121 cm, with 94% of children between 110 cm and 131 cm.  If we assume that the
above error would also apply when measuring children (and this is a conservative
assumption, it is likely to be larger for children), then a seven-year-old boy of mean
height could have height between 121±2×0.40 ≅ 120.2, 121.8, which means the child
would be between the 44th and 56th centile, rather than on the 50th centile.  This kind
of discrepancy hardly matters, so it seems that even inexperienced observers do not
add an important component of error to measurements of height.

Effect of Error on Height Velocity

The monitoring of children referred to specialist clinics because of short stature
(height) depends to some extent on evaluating and interpreting their height velocity.
The height velocity is simply a measure of the rate at which the child is growing and is
calculated from two height measurements H1 and H2 made at different times, t1 and t2

respectively.  The velocity v is then defined as
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and as with height, centile charts exist to permit the interpretation of this quantity.
This quantity is usually expressed in cm/yr.  For a boy measured at ages 6.5 and 7.5
years, the mean growth in this time (the one year growth velocity) is 5.8cm, with 94%
of the population falling between 4.2 cm and 7.4 cm.

This velocity can be written as :

(true height2 + error2) - (true height1 + error1)
=

(true height2 - true height1) + error2 -error1
=

true velocity + error in velocity

so the error in velocity is simply the difference in the errors of the constituent heights.
It can be shown that if each error in height has standard deviation σ, then the
difference of two such errors has standard deviation σ√2.  If the errors are as in the
above then this is 0.57cm, so a calculated velocity of 5.8 cm/yr may be in error by ±2×
0.57, that is between 4.7 and 7.0 cm (approximately), that is between the 10th and
90th centile!  So, when the errors are applied to a velocity, they are very substantial,
and imply that the result cannot reliably place a child on the velocity chart.  Even in
experienced hands the error in the velocity rarely gets below 0.15 cm.  Although this
reduces the uncertainty in the above centile range to between the 30th and 70th, it is
clear that errors of measurement have a much more substantial impact on the
assessment of height velocity than they do on the assessment of height itself.

However, if the velocity is assessed over only 3 months then 94% of the
resulting growth increments will be between 1.0cm and 1.8cm.  However the standard
deviation of the error in these increments will remain at 0.25cm (at best), so over this
short period error of measurement has a dominant role.  In fact, it is inadvisable to
attempt to assess a growth velocity based on measurements taken less than six months
apart.
{further details on the assessment of growth can be found in Brook, CGD (1982), Growth Assessment
in Childhood and Adolescence, Blackwell: more on the assessment of error can be found in Voss LD,
et al., Archives of Disease in Childhood, 1990, volume 65, pages 1340-1344.}

What can be done about large measurement errors?

In the case of height and height velocity measurements the remedy to large
measurements errors is to try to reduce σ.  This can be done by training those who
measure height so that their technique improves.  Another approach is to change the
measurement made to one with a lower σ but which carries a similar clinical message:
in the case of height velocity, the technique of measuring very small changes in certain
bones in the leg, knemometry, is under development.

In measurements of some variables it may be impossible to resort to such
remedies.  In these cases making several replicate measurements and using their mean
is one alternative.  It was pointed out above that the standard deviation of a single

measurement is σ σB
2 2+ , and if σ is a substantial proportion of σB then measurement

error is making a substantial contribution to the total variability.  If the mean of two
independent measurements is used instead, then this has standard deviation

σ σB
2 1

2
2+ ; so the device of taking replicate measurements has reduced the

contribution of measurement error to the total standard deviation.  If n replicates were



taken then the standard deviation would have been σ σB n
2 1 2+ .  The number of

replicates that is it sensible to use depends on the relative sizes of σ and σB: after a
point taking more and more replicates becomes wasteful, as replication will never
reduce the true variability of the measurement.



Appendix: raw data

Duplicate height readings from first two practicals (cm)
Male Female

1st reading 2nd reading difference 1st reading 2nd reading difference

170.9 171.1 0.2 170.6 170.8 0.2
168.8 168.5 -0.3 175.3 174.8 -0.5
180.5 180.5 0.0 162.9 162.9 0.0
180.5 180.6 0.1 162.2 162.2 0.0
177.2 177.7 0.5 168.2 167.5 -0.7
180.1 179.9 -0.2 169.1 169.0 -0.1
191.8 191.7 -0.1 168.2 168.0 -0.2
175.7 175.7 0.0 165.0 164.7 -0.3
174.9 174.8 -0.1 159.8 159.6 -0.2
187.5 187.7 0.2 162.9 163.0 0.1
180.0 180.0 0.0 168.2 167.9 -0.3
179.4 179.0 -0.4 167.0 167.0 0.0
185.9 186.0 0.1 169.9 170.0 0.1
177.5 177.6 0.1 177.1 177.1 0.0
178.9 178.7 -0.2 169.4 168.4 -1.0
175.5 175.9 0.4 166.1 166.0 -0.1
178.5 178.4 -0.1 175.2 175.1 -0.1
182.6 182.4 -0.2 168.0 168.2 0.2
170.2 170.3 0.1 172.6 172.8 0.2
174.9 174.8 -0.1 171.7 171.4 -0.3
182.0 182.0 0.0 170.4 170.2 -0.2

166.9 166.5 -0.4
162.6 162.6 0.0
154.4 154.4 0.0
168.2 168.4 0.2
165.6 165.6 0.0
157.2 157.1 -0.1
164.0 164.0 0.0

Duplicate height readings from second two practicals (cm)
Male Female

1st reading 2nd reading difference 1st reading 2nd reading difference

183.3 183.2 -0.1 170.0 169.8 -0.2
179.2 178.6 -0.6 161.1 161.2 0.1
185.8 185.7 -0.1 173.2 173.4 0.2
200.0 200.0 0.0 167.6 168.7 1.1
186.1 186.3 0.2 166.0 166.3 0.3
172.2 172.4 0.2 170.4 170.2 -0.2
193.9 193.8 -0.1 159.0 159.2 0.2
180.4 180.6 0.2 167.5 166.4 -1.1
178.5 178.0 -0.5 171.2 171.6 0.4
184.5 184.5 0.0 163.2 163.8 0.6
185.5 186.4 0.9 179.2 179.9 0.7
173.9 174.3 0.4 174.2 174.0 -0.2
172.1 172.3 0.2 167.0 167.4 0.4
194.5 194.7 0.2 161.3 161.4 0.1
177.4 178.0 0.6 168.8 169.7 0.9

168.4 168.3 -0.1
172.0 172.2 0.2
167.7 168.0 0.3
167.5 167.4 -0.1
158.7 159.0 0.3
155.1 153.0 -2.1


