Durham/Newcastle Statistics Graduate Course Design of Experiments
 March 2012

Exercise Sheet 1

Q1 Prove the results concerning projections quoted in the lecture, namely
(i) $P_{T}=P_{T}^{T}$
(ii) $P_{T}^{2}=P_{T}$
(iii) The eigenvalues of P_{T} are all 0 or 1 .
(iv) $\operatorname{tr}\left(P_{T}\right)=\operatorname{dim} V_{T}$

Note: try to do these without assuming an explicit matrix form for P_{T}
Q2 Using the result for $\operatorname{var}\left(\hat{\tau}_{E}\right)$ in lectures, namely $\sigma^{2} R^{-1}$, find the variance of $c^{T} \hat{\tau}_{E}$ for any given T-dimensional vector c.

Q3 An experiment to compare T treatments is designed in one of two ways.
(i) All comparisons between the treatments are of interest;
(ii) One treatment, say treatment 1 , is a control treatment and interest focusses on comparisons with this treatment.

The replication of treatment j is r_{j} and the number of treatment applications, $N=$ $\sum r_{j}$ is fixed. Using the result in Q2, how should you choose the r_{j} in the two cases?

Q4 If the vector subspace W is the range of a matrix X the orthogonal projection onto the range of X is well know to be $X\left(X^{T} X\right)^{-1} X^{T}$. Now assuming this formula, show that the $\hat{\tau}_{j}$ derived in lectures are of a familiar and sensible form.

