Durham/Newcastle Statistics Graduate Course Design of Experiments
 March 2012

Outline solutions

Example Sheet 1

Q1 Prove the results concerning projections quoted in the lecture, namely
(i) For any vectors z and y we have that $P_{T} z$ and $\left(I-P_{T}\right) y$ are orthogonal, as are $\left(I-P_{T}\right) z$ and $P_{T} y$, so $z^{T} P_{T}^{T}\left(I-P_{T}\right) y=0$ and also $z^{T}\left(I-P_{T}^{T}\right) P_{T} y=0$. Subtracting these we get $z^{T}\left(P_{T}^{T}-P_{T}\right) y=0$ for all y and z, so $P_{T}^{T}=P_{T}$.
(ii) For any $y, P_{T} y \in V_{T}$, so $P_{T}^{2} y=P_{T}\left(P_{T} y\right)=P_{T} y$, i.e. $P_{T}^{2}=P_{T}$.
(iii) From above any eigenvalue must be real and as λ must satisfy $\lambda^{2}=\lambda, \lambda \in\{0,1\}$.
(iv) $\operatorname{tr}\left(P_{T}\right)=\sum \lambda$. This is just the number of eigenvalues equal to 1 . Now the space spanned by the eigenvectors with eigenvalue 1 is V_{T}, hence the result.

Q2 This is elementary: $\operatorname{var}\left(c^{T} \hat{\tau}_{E}\right)=\sigma^{2} c^{T} R^{-1} c$.
Q3 An experiment to compare T treatments is designed in one of two ways.
(i) Take the average of all pairwise comparisons, i.e. the average over all $i \neq j$ of $\sigma^{2}\left(r_{i}^{-1}+r_{j}^{-1}\right)$. This is just $(T-1)^{-1} \sigma^{2} \sum r_{i}^{-1}$. Minimising this subject to $\sum r_{j}=N$ gives $r_{j}=$ constant $=N / T$.
(ii) Here the average to be minimised is $\sigma^{2}(T-1)^{-1} \sum\left(r_{1}^{-1}+r_{j}^{-1}\right)$, subject to $\sum r_{j}=N$. Ignoring σ^{2} this is $r_{1}^{-1}+(T-1)^{-1} \sum_{j>1} r_{j}^{-1}$. Differentiating the Lagrangian $r_{1}^{-1}+(T-1)^{-1} \sum_{j>1} r_{j}^{-1}+\lambda \sum r_{j}$ gives

$$
\begin{aligned}
r_{1}^{-2} & =\lambda \\
r_{j}^{-2} & =(T-1) \lambda
\end{aligned}
$$

Hence the replications are such that $r_{1}=r_{j} \sqrt{T-1}$, and $r_{1}(1+\sqrt{T-1})=N$
Q4 From lecture $\hat{\tau}_{j}=r_{j}^{-1} u_{j}^{T} P_{T} y$ where u_{j} is the element of V_{T} which is 1 when treatment j is applied and 0 otherwise. The space V_{T} is spanned by the vectors $\left\langle u_{1}, \ldots, u_{T}\right\rangle$. Writing $U=\left(u_{1}, \ldots, u_{T}\right)$, so $U^{T} U=R$ where $R=\operatorname{diag}\left(r_{j}\right)$. Now $u_{j}^{T} U=(0, \ldots, 1, \ldots, 0)$ where the 1 is in position j. Hence, using this and the fact that $P_{T}=U\left(U^{T} U\right)^{-1} U^{T}$, $\hat{\tau}_{j}=(0, \ldots, 1, \ldots, 0) R^{-1} U^{T} y$. Now $U^{T} y$ is a $T \times 1$ vector with $i^{\text {th }}$ element equal to $y(i)$, the sum of the y values given the $i^{\text {th }}$ treatment. So $\hat{\tau}_{j}=r_{j}^{-1} y(j)$.
If the vector subspace W is the range of a matrix X the orthogonal projection onto the range of X is well know to be $X\left(X^{T} X\right)^{-1} X^{T}$. Now assuming this formula, show that the $\hat{\tau}_{j}$ derived in lectures are of a familiar and sensible form.

Example Sheet 2

Q1 We can start by defining the outputs in y, the treatment design matrix, X, and the function proj which maps a matrix to its associated projection matrix.

```
> y
    [1] 7.8 15.3 18.5 6.2 11.3 24.2 11.2 17.4 29.8 1.8 3.3 7.1
> X
    [1,] t0 trere
    [2,] 0 1 0
    [3,] 0}0
    [4,] 1 0 0
    [5,] 0
    [6,] 0}0
    [7,] 1}0
    [8,] 0 1 0
    [9,] 0}0
[10,] 1 0 0
[11,] 0 1 0
[12,] 0 0 1
> proj
function(X){
proj<-X%*%ginv(t(X)%*%X)%*%t(X)
proj
}
>
```

We can form the projection onto V_{T}, P_{T}

$4 * \operatorname{proj}(\mathrm{X})$												
$\left[\begin{array}{c}c, 1]\end{array}\right.$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$	$[, 11]$	$[, 12]$	
$[1]$,	1	0	0	1	0	0	1	0	0	1	0	0
$[2]$,	0	1	0	0	1	0	0	1	0	0	1	0
$[3]$,	0	0	1	0	0	1	0	0	1	0	0	1
$[4]$,	1	0	0	1	0	0	1	0	0	1	0	0
$[5]$,	0	1	0	0	1	0	0	1	0	0	1	0
$[6]$,	0	0	1	0	0	1	0	0	1	0	0	1
$[7]$,	1	0	0	1	0	0	1	0	0	1	0	0
$[8]$,	0	1	0	0	1	0	0	1	0	0	1	0
$[9]$,	0	0	1	0	0	1	0	0	1	0	0	1
$[10]$,	1	0	0	1	0	0	1	0	0	1	0	0
$[11]$,	0	1	0	0	1	0	0	1	0	0	1	0
$[12]$,	0	0	1	0	0	1	0	0	1	0	0	1

(This is multiplied by 4 simply to make the printout more compact).
We can check the symmetry and idempotence as follows

PT-t (PT)												
	[,1]	[,2]	[,3]	$[, 4]$	[,5]	[,6]	[,7]	$[, 8]$	[,9]	[, 10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
$[6$,	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0
> $\mathrm{PT} \% * \% \mathrm{PT}-\mathrm{PT}$												
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[, 10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
$[6$,	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0

The sums of squares can be found as

```
P0<-proj(rep(1,12))
> PE<-diag(12)-PT
> PW<-PT-P0
> c(t (y) %*%PO%*%y,t (y) %*%PW%*%y,t (y) %*%%PE%*%y)
[1] 1973.7675 351.8450 444.1175
> sum(y^2)
[1] 2769.73
> sum(c(t(y)%*%PO%*%y,t(y)%*%PW%*%y,t(y)%*%PE%*%y))
```

[1] 2769.73

The treatment estimates can be found as follows,

```
        t0
    [1] 1 0 0 1 0 0 1 0 0 1 0 0
> t(t0)%*%PT%*%%y/sum(t0)
    [,1]
[1,] 6.75
> mean(y[Rx==0])
[1] 6.75,
```

and similarly for the other treatments. Note also that the length of $P_{T} y$ is $\sqrt{y^{T} P_{T} y}$:
$>\mathrm{t}(\mathrm{y}) \% * \% \mathrm{PT} \% * \% \mathrm{y}$
[,1]
[1,] 2325.612
$>\operatorname{sum}\left((\mathrm{PT} \% * \% \mathrm{y})^{\wedge} 2\right)$
[1] 2325.612

Q2 Things such as the rank and eigenvalues of the following can be found as follows (this is just for P_{E}, the values for the other matrices are obtained in the same way.

```
eigen(PE)$values
    [1] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
    [6] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 2.288202e-15
[11] 2.071571e-15 8.881784e-16
> qr(PE)$rank
[1] 9
```

Q3 Analysis using ' 1 m ' is:

```
analysis<-lm(y~
> anova(analysis)
Analysis of Variance Table
Response: y
    Df Sum Sq Mean Sq F value Pr(>F)
factor(Rx) 2 351.84 175.92 3.5651 0.0724 .
Residuals 9 444.12 49.35
```

The sums of squares are the same as those found in Q1. The following shows the estimate of τ_{1}, (given as the ' (Intercept)' because of the default identifiability constraint used by R).

Call:

```
lm(formula = y ~ factor(Rx))
```

Coefficients:

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	6.750	3.512	1.922	0.0868
factor $(\mathrm{Rx}) 1$	5.075	4.967	1.022	0.3336
factor $(\mathrm{Rx}) 2$	13.150	4.967	2.647	$0.0266 *$

Q4 As an example compute $P_{T} P_{W}$ and $P_{T} P_{E}$.

$12 * \mathrm{PT} \% * \% \mathrm{PW}$												
	[,1]	[,2]	[,3]	[, 4]	[,5]	[,6]	[,7]	[,8]	[,9]	[, 10]	[,11]	[,12]
[1,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1
[2,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1
[3,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2
[4,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1
[5,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1
[6,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2
[7,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1
[8,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1
[9,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2
[10,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1
[11,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1
[12,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2

Notice that this coincides with $12 P_{W}$. Also

$\mathrm{PT} \% * \% \mathrm{PE}$												
[,1]		[,2]	$[, 3]$	[,4]	[,5]	[,6]	[,7]	[,8]] [,9]	[,10]] [,11] [, 12]	
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0

Example Sheet 3

Q1 The inclusion of the block effects can be done as follows.

```
> Blocks
    [1] 1 1 1 1 2 2 2 3 3 3 4 4 4
> XB
            B1 B2 B3 B4
    [1,] 1 0 0 0
    [2,] 1 0 0 0
    [3,] 1 0 0 0
    [4,] 0}1
    [5,] 0
    [6,] 0
    [7,] 0
    [8,] 0}00 1 0,
    [9,] 0}0
    [10,] 0}0
    [11,] 0}0
    [12,] 0 0 0 1
    > PB<-proj(XB)
    > PBp<-PB-P0
> PE<-diag(12)-P0-PW-PBp
> c(t (y)%*%PO%*%y,t (y)%*%PW%*%y,t(y)%*%PBp%*%y,t (y)%*%PE%*%y)
[1] 1973.7675 351.8450 369.1825 74.9350
> sum(c(t(y)%*%PO%*%y,t(y)%*%PW%*%y,t(y)%*%PBp%*%y,t(y)%*%PE%*%y))
[1] 2769.73
> sum(y^2)
[1] 2769.73
```

Q2 The orthogonality of $W_{T}=V_{T} \cap V_{0}^{\perp}$ and $W_{B}=V_{B} \cap V_{0}^{\perp}$ can be seen from $P_{W} P_{\text {Bperp }}$, which is

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	

$[11]$,	0	0	0	0	0	0	0	0	0	0	0	0
$[12]$,	0	0	0	0	0	0	0	0	0	0	0	0

The same result follows for $P_{W} P_{B}$. However V_{T} and V_{B} are not orthogonal, as the following shows:

$\mathrm{PB} \% * \% \mathrm{PT} * 12$												
					$[, 5]$	[,6]	[,7]	[, 8]	[,9]	$[, 10]$	[,11]	[,12]
[1,]	1	1	1	1	1	1	1	1	1	1	1	1
[2,]	1	1	1	1	1	1	1	1	1	1	1	1
[3,]	1	1	1	1	1	1	1	1	1	1	1	1
[4,]	1	1	1	1	1	1	1	1	1	1	1	1
$[5$,	1	1	1	1	1	1	1	1	1	1	1	1
[6,]	1	1	1	1	1	1	1	1	1	1	1	1
[7,]	1	1	1	1	1	1	1	1	1	1	1	1
[8,]	1	1	1	1	1	1	1	1	1	1	1	1
[9,]	1	1	1	1	1	1	1	1	1	1	1	1
[10,]	1	1	1	1	1	1	1	1	1	1	1	1
[11,]	1	1	1	1	1	1	1	1	1	1	1	1
[12,]	1	1	1	1	1	1	1	1	1	1	1	1

This follows because $P_{B} P_{T}=P_{B}\left(P 0+P_{W}\right)=P_{B} P 0+0$. As $1 \in V_{B}$, we have $P_{B} 1=1$ and $P 0=1\left(1^{T} 1\right)^{-1} 1^{T}$ so $P_{B} P 0=P 0$.

Q3 The analysis of the data using ' ' 1 m '' is:

```
> anova(lm(y`factor(Rx)+factor(Blocks)))
Analysis of Variance Table
Response: y
            Df Sum Sq Mean Sq F value Pr (>F)
factor(Rx) 2 351.84 175.92 14.0860 0.005413 **
factor(Blocks) 3 369.18 123.06 9.8534 0.009819 **
Residuals 6 74.93 12.49
```

which agrees with the results in Q1. However, note that $r_{j}^{-1} u_{j} P_{T} y$ does not agree with the estimates from ' ' 1 m '.

```
t(t0)%*%PT%*%%y/sum(t0)
    [,1]
[1,] 6.75
> t(t1)%*%PT%*%y/sum(t1)
    [,1]
[1,] 11.825
> t(t2)%*%PT%*%%y/sum(t2)
```

```
    [,1]
    [1,] 19.9
summary(lm(y~factor(Rx)+factor(Blocks)))
Call:
lm(formula = y ~ factor(Rx) + factor(Blocks))
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 7.79167 & 2.49892 & 3.118 & \(0.02064 *\) \\
factor (Rx)1 & 5.07500 & 2.49892 & 2.031 & 0.08856. \\
factor (Rx)2 & 13.15000 & 2.49892 & 5.262 & \(0.00190 * *\) \\
factor(Blocks)2 & 0.03333 & 2.88550 & 0.012 & 0.99116 \\
factor(Blocks)3 & 5.60000 & 2.88550 & 1.941 & 0.10034 \\
factor(Blocks)4 & -9.80000 & 2.88550 & -3.396 & \(0.01456 *\)
\end{tabular}
```

but note that differences $\hat{\tau}_{i}-\hat{\tau}_{j}$ are consistent. Note also that the residual sum of squares is much reduced because of the assignment of the between-patient differences to the Blocks sum of squares.

Q4 The sum of squares is simply $y^{T} P_{\text {cont }} y$ where $P_{\text {cont }}$ is the projection matrix generated by contrast vector c. Of course $c \in \mathbb{R}^{N}$ so we use $c=(-1,0,1,-1,0,1,-1,0,1,-1,0,1)^{T}$. We get the Sum of Squares to be 345.85 .

Q5 This is easy because the default parameterisation of R uses the constraint $\tau_{1}=0$, so 13.15 is the estimate of $\tau_{3}-\tau_{1}$ and the 95% confidence interval is

```
    lm(y~factor(Rx)+factor(Blocks))$coefficients[3]+c(-1,1)*2.49892
[1] 10.65108 15.64892
```

Q6 Treatment by block incidence matrix $A=T^{T} B$, which record how many times each treatment occurs in each block. Also $A A^{T}$ is a $t \times t$ matrix which records how often pairs of treatments occur together in the same block. Here these are

```
    t(T) %*%B
    b1 b2 b3 b4 b5 b6 b7
t1 1 0 0 0
t2 1
t3 0
t4
t5
t6 0
> TB<-t(T) %*% % 
> TB%*%t(TB)
    t1 t2 t3 t4 t5 t6
```

t 1	3	1	1	1	1	1
t 2	1	3	1	1	1	1
t 3	1	1	3	1	1	1
t 4	1	1	1	3	1	1
t 5	1	1	1	1	3	1
t 6	1	1	1	1	1	3

For this design $P_{B} P_{T}$ is not $P 0$ due to the non-orthogonal nature of the design.
Q7 The key elements of the output that you need to work with are in

```
summary(analysis)
Call:
lm(formula = y ~ factor(Rx) + factor(Site) + factor(Subjects))
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-1.2333 & -0.4000 & -0.0500 & 0.4375 & 1.1500
\end{tabular}
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.28333 0.54016 13.484 1.69e-11
factor(Rx)2 0.21667 0.46780 0.463 0.64825
factor(Rx)3 0.33333 0.46780 0.713 0.48435
factor(Rx)4 0.36667 0.46780
factor(Rx)5 0.16667 0.46780
factor(Rx)6 0.11667 0.46780 0.249 0.80560
factor(Site)2 -0.60000 0.46780 -1.283 0.21430
factor(Site)3 -0.83333 0.46780 -1.781 0.09004 .
factor(Site)4 0.03333 0.46780 0.071 0.94390
factor(Site)5 -0.45000 0.46780 -0.962 0.34756
factor(Site)6 -0.65000 0.46780 -1.389 0.17996
factor(Subjects)2 1.55000 0.46780 3.313 0.00347 **
factor(Subjects)3 0.01667 0.46780 0.036 0.97193
factor(Subjects)4 -0.26667 0.46780 -0.570 0.57499
factor(Subjects)5 0.05000 0.46780 0.107 0.91595
factor(Subjects)6 0.45000 0.46780 0.962 0.34756
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.8102 on 20 degrees of freedom
Multiple R-squared: 0.5675, Adjusted R-squared: 0.2432
F-statistic: 1.75 on 15 and 20 DF, p-value: 0.1205
```

```
> anova(analysis)
Analysis of Variance Table
Response: y
factor(Rx) 5 0.5633 0.11267 0.1716 0.97013
factor(Site) 5 3.8333 0.76667 1.1678 0.35919
factor(Subjects) 5 12.8333 2.56667 3.9096 0.01235 *
Residuals 20 13.1300 0.65650
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

