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Example Sheet 1

Q1 Prove the results concerning projections quoted in the lecture, namely

(i) For any vectors z and y we have that PT z and (I − PT )y are orthogonal, as are
(I−PT )z and PTy, so z

TP T
T (I−PT )y = 0 and also zT (I−P T

T )PTy = 0. Subtracting
these we get zT (P T

T − PT )y = 0 for all y and z, so P T
T = PT .

(ii) For any y, PTy ∈ VT , so P 2

Ty = PT (PTy) = PTy, i.e. P
2

T = PT .

(iii) From above any eigenvalue must be real and as λ must satisfy λ2 = λ, λ ∈ {0, 1}.
(iv) tr(PT ) =

∑

λ. This is just the number of eigenvalues equal to 1. Now the space
spanned by the eigenvectors with eigenvalue 1 is VT , hence the result.

Q2 This is elementary: var(cT τ̂E) = σ2cTR−1c.

Q3 An experiment to compare T treatments is designed in one of two ways.

(i) Take the average of all pairwise comparisons, i.e. the average over all i 6= j of
σ2(r−1

i +r−1

j ). This is just (T−1)−1σ2
∑

r−1

i . Minimising this subject to
∑

rj = N
gives rj = constant = N/T .

(ii) Here the average to be minimised is σ2(T−1)−1
∑

(r−1

1
+r−1

j ), subject to
∑

rj = N .

Ignoring σ2 this is r−1

1
+ (T − 1)−1

∑

j>1
r−1

j . Differentiating the Lagrangian

r−1

1
+ (T − 1)−1

∑

j>1
r−1

j + λ
∑

rj gives

r−2

1
= λ

r−2

j = (T − 1)λ

Hence the replications are such that r1 = rj
√
T − 1, and r1(1 +

√
T − 1) = N

Q4 From lecture τ̂j = r−1

j uT
j PTy where uj is the element of VT which is 1 when treatment j is

applied and 0 otherwise. The space VT is spanned by the vectors < u1, . . . , uT >. Writ-
ing U = (u1, . . . , uT ), so UTU = R where R = diag(rj). Now uT

j U = (0, . . . , 1, . . . , 0)
where the 1 is in position j. Hence, using this and the fact that PT = U(UTU)−1UT ,
τ̂j = (0, . . . , 1, . . . , 0)R−1UTy. Now UTy is a T × 1 vector with ith element equal to
y(i), the sum of the y values given the ith treatment. So τ̂j = r−1

j y(j).

If the vector subspace W is the range of a matrix X the orthogonal projection onto
the range of X is well know to be X(XTX)−1XT . Now assuming this formula, show
that the τ̂j derived in lectures are of a familiar and sensible form.
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Example Sheet 2

Q1 We can start by defining the outputs in y, the treatment design matrix, X, and the
function proj which maps a matrix to its associated projection matrix.

> y

[1] 7.8 15.3 18.5 6.2 11.3 24.2 11.2 17.4 29.8 1.8 3.3 7.1

> X

t0 t1 t2

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

[4,] 1 0 0

[5,] 0 1 0

[6,] 0 0 1

[7,] 1 0 0

[8,] 0 1 0

[9,] 0 0 1

[10,] 1 0 0

[11,] 0 1 0

[12,] 0 0 1

> proj

function(X){

proj<-X%*%ginv(t(X)%*%X)%*%t(X)

proj

}

>

We can form the projection onto VT , PT

4*proj(X)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 1 0 0 1 0 0 1 0 0 1 0 0

[2,] 0 1 0 0 1 0 0 1 0 0 1 0

[3,] 0 0 1 0 0 1 0 0 1 0 0 1

[4,] 1 0 0 1 0 0 1 0 0 1 0 0

[5,] 0 1 0 0 1 0 0 1 0 0 1 0

[6,] 0 0 1 0 0 1 0 0 1 0 0 1

[7,] 1 0 0 1 0 0 1 0 0 1 0 0

[8,] 0 1 0 0 1 0 0 1 0 0 1 0

[9,] 0 0 1 0 0 1 0 0 1 0 0 1

[10,] 1 0 0 1 0 0 1 0 0 1 0 0

[11,] 0 1 0 0 1 0 0 1 0 0 1 0

[12,] 0 0 1 0 0 1 0 0 1 0 0 1

2



(This is multiplied by 4 simply to make the printout more compact).
We can check the symmetry and idempotence as follows

PT-t(PT)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0 0 0 0 0

[9,] 0 0 0 0 0 0 0 0 0 0 0 0

[10,] 0 0 0 0 0 0 0 0 0 0 0 0

[11,] 0 0 0 0 0 0 0 0 0 0 0 0

[12,] 0 0 0 0 0 0 0 0 0 0 0 0

> PT%*%PT-PT

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0 0 0 0 0

[9,] 0 0 0 0 0 0 0 0 0 0 0 0

[10,] 0 0 0 0 0 0 0 0 0 0 0 0

[11,] 0 0 0 0 0 0 0 0 0 0 0 0

[12,] 0 0 0 0 0 0 0 0 0 0 0 0

The sums of squares can be found as

P0<-proj(rep(1,12))

> PE<-diag(12)-PT

> PW<-PT-P0

> c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PE%*%y)

[1] 1973.7675 351.8450 444.1175

> sum(y^2)

[1] 2769.73

> sum(c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PE%*%y))

[1] 2769.73

The treatment estimates can be found as follows,
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t0

[1] 1 0 0 1 0 0 1 0 0 1 0 0

> t(t0)%*%PT%*%y/sum(t0)

[,1]

[1,] 6.75

> mean(y[Rx==0])

[1] 6.75,

and similarly for the other treatments. Note also that the length of PTy is
√

yTPTy:

> t(y)%*%PT%*%y

[,1]

[1,] 2325.612

> sum((PT%*%y)^2)

[1] 2325.612

Q2 Things such as the rank and eigenvalues of the following can be found as follows (this
is just for PE, the values for the other matrices are obtained in the same way.

eigen(PE)$values

[1] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

[6] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 2.288202e-15

[11] 2.071571e-15 8.881784e-16

> qr(PE)$rank

[1] 9

Q3 Analysis using ‘lm’ is:

analysis<-lm(y~factor(Rx))

> anova(analysis)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

factor(Rx) 2 351.84 175.92 3.5651 0.0724 .

Residuals 9 444.12 49.35

The sums of squares are the same as those found in Q1. The following shows the esti-
mate of τ1, (given as the ’(Intercept)’ because of the default identifiability constraint
used by R ).

Call:

lm(formula = y ~ factor(Rx))
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.750 3.512 1.922 0.0868 .

factor(Rx)1 5.075 4.967 1.022 0.3336

factor(Rx)2 13.150 4.967 2.647 0.0266 *

Q4 As an example compute PTPW and PTPE.

12*PT%*%PW

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1

[2,] -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1

[3,] -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2

[4,] 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1

[5,] -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1

[6,] -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2

[7,] 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1

[8,] -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1

[9,] -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2

[10,] 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1

[11,] -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1

[12,] -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2

Notice that this coincides with 12PW . Also

PT%*%PE

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0 0 0 0 0

[9,] 0 0 0 0 0 0 0 0 0 0 0 0

[10,] 0 0 0 0 0 0 0 0 0 0 0 0

[11,] 0 0 0 0 0 0 0 0 0 0 0 0

[12,] 0 0 0 0 0 0 0 0 0 0 0 0
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Example Sheet 3

Q1 The inclusion of the block effects can be done as follows.

> Blocks

[1] 1 1 1 2 2 2 3 3 3 4 4 4

> XB

B1 B2 B3 B4

[1,] 1 0 0 0

[2,] 1 0 0 0

[3,] 1 0 0 0

[4,] 0 1 0 0

[5,] 0 1 0 0

[6,] 0 1 0 0

[7,] 0 0 1 0

[8,] 0 0 1 0

[9,] 0 0 1 0

[10,] 0 0 0 1

[11,] 0 0 0 1

[12,] 0 0 0 1

> PB<-proj(XB)

> PBp<-PB-P0

> PE<-diag(12)-P0-PW-PBp

> c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PBp%*%y,t(y)%*%PE%*%y)

[1] 1973.7675 351.8450 369.1825 74.9350

> sum(c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PBp%*%y,t(y)%*%PE%*%y))

[1] 2769.73

> sum(y^2)

[1] 2769.73

Q2 The orthogonality of WT = VT ∩ V ⊥

0
and WB = VB ∩ V ⊥

0
can be seen from PWPBperp,

which is

round(PW%*%PBp,6)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 0 0 0 0 0 0 0 0 0 0 0 0

[4,] 0 0 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0 0 0 0 0

[9,] 0 0 0 0 0 0 0 0 0 0 0 0

[10,] 0 0 0 0 0 0 0 0 0 0 0 0

6



[11,] 0 0 0 0 0 0 0 0 0 0 0 0

[12,] 0 0 0 0 0 0 0 0 0 0 0 0

The same result follows for PWPB. However VT and VB are not orthogonal, as the
following shows:

PB%*%PT*12

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 1 1 1 1 1 1 1 1 1 1 1 1

[2,] 1 1 1 1 1 1 1 1 1 1 1 1

[3,] 1 1 1 1 1 1 1 1 1 1 1 1

[4,] 1 1 1 1 1 1 1 1 1 1 1 1

[5,] 1 1 1 1 1 1 1 1 1 1 1 1

[6,] 1 1 1 1 1 1 1 1 1 1 1 1

[7,] 1 1 1 1 1 1 1 1 1 1 1 1

[8,] 1 1 1 1 1 1 1 1 1 1 1 1

[9,] 1 1 1 1 1 1 1 1 1 1 1 1

[10,] 1 1 1 1 1 1 1 1 1 1 1 1

[11,] 1 1 1 1 1 1 1 1 1 1 1 1

[12,] 1 1 1 1 1 1 1 1 1 1 1 1

This follows because PBPT = PB(P0+PW ) = PBP0+ 0. As 1 ∈ VB, we have PB1 = 1
and P0 = 1(1T1)−11T so PBP0 = P0.

Q3 The analysis of the data using ’‘lm’’ is:

> anova(lm(y~factor(Rx)+factor(Blocks)))

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

factor(Rx) 2 351.84 175.92 14.0860 0.005413 **

factor(Blocks) 3 369.18 123.06 9.8534 0.009819 **

Residuals 6 74.93 12.49

which agrees with the results in Q1. However, note that r−1

j ujPTy does not agree with
the estimates from ’‘lm’.

t(t0)%*%PT%*%y/sum(t0)

[,1]

[1,] 6.75

> t(t1)%*%PT%*%y/sum(t1)

[,1]

[1,] 11.825

> t(t2)%*%PT%*%y/sum(t2)
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[,1]

[1,] 19.9

summary(lm(y~factor(Rx)+factor(Blocks)))

Call:

lm(formula = y ~ factor(Rx) + factor(Blocks))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.79167 2.49892 3.118 0.02064 *

factor(Rx)1 5.07500 2.49892 2.031 0.08856 .

factor(Rx)2 13.15000 2.49892 5.262 0.00190 **

factor(Blocks)2 0.03333 2.88550 0.012 0.99116

factor(Blocks)3 5.60000 2.88550 1.941 0.10034

factor(Blocks)4 -9.80000 2.88550 -3.396 0.01456 *

but note that differences τ̂i − τ̂j are consistent. Note also that the residual sum of
squares is much reduced because of the assignment of the between-patient differences
to the Blocks sum of squares.

Q4 The sum of squares is simply yTPconty where Pcont is the projection matrix generated by
contrast vector c. Of course c ∈ R

N so we use c = (−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0, 1)T .
We get the Sum of Squares to be 345.85.

Q5 This is easy because the default parameterisation of R uses the constraint τ1 = 0, so
13.15 is the estimate of τ3 − τ1 and the 95% confidence interval is

lm(y~factor(Rx)+factor(Blocks))$coefficients[3]+c(-1,1)*2.49892

[1] 10.65108 15.64892

Q6 Treatment by block incidence matrix A = T TB, which record how many times each
treatment occurs in each block. Also AAT is a t × t matrix which records how often
pairs of treatments occur together in the same block. Here these are

t(T)%*%B

b1 b2 b3 b4 b5 b6 b7

t1 1 0 0 0 1 0 1

t2 1 1 0 0 0 1 0

t3 0 1 1 0 0 0 1

t4 1 0 1 1 0 0 0

t5 0 1 0 1 1 0 0

t6 0 0 1 0 1 1 0

> TB<-t(T)%*%B

> TB%*%t(TB)

t1 t2 t3 t4 t5 t6
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t1 3 1 1 1 1 1

t2 1 3 1 1 1 1

t3 1 1 3 1 1 1

t4 1 1 1 3 1 1

t5 1 1 1 1 3 1

t6 1 1 1 1 1 3

For this design PBPT is not P0 due to the non-orthogonal nature of the design.

Q7 The key elements of the output that you need to work with are in

summary(analysis)

Call:

lm(formula = y ~ factor(Rx) + factor(Site) + factor(Subjects))

Residuals:

Min 1Q Median 3Q Max

-1.2333 -0.4000 -0.0500 0.4375 1.1500

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.28333 0.54016 13.484 1.69e-11 ***

factor(Rx)2 0.21667 0.46780 0.463 0.64825

factor(Rx)3 0.33333 0.46780 0.713 0.48435

factor(Rx)4 0.36667 0.46780 0.784 0.44233

factor(Rx)5 0.16667 0.46780 0.356 0.72536

factor(Rx)6 0.11667 0.46780 0.249 0.80560

factor(Site)2 -0.60000 0.46780 -1.283 0.21430

factor(Site)3 -0.83333 0.46780 -1.781 0.09004 .

factor(Site)4 0.03333 0.46780 0.071 0.94390

factor(Site)5 -0.45000 0.46780 -0.962 0.34756

factor(Site)6 -0.65000 0.46780 -1.389 0.17996

factor(Subjects)2 1.55000 0.46780 3.313 0.00347 **

factor(Subjects)3 0.01667 0.46780 0.036 0.97193

factor(Subjects)4 -0.26667 0.46780 -0.570 0.57499

factor(Subjects)5 0.05000 0.46780 0.107 0.91595

factor(Subjects)6 0.45000 0.46780 0.962 0.34756

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.8102 on 20 degrees of freedom

Multiple R-squared: 0.5675, Adjusted R-squared: 0.2432

F-statistic: 1.75 on 15 and 20 DF, p-value: 0.1205
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> anova(analysis)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

factor(Rx) 5 0.5633 0.11267 0.1716 0.97013

factor(Site) 5 3.8333 0.76667 1.1678 0.35919

factor(Subjects) 5 12.8333 2.56667 3.9096 0.01235 *

Residuals 20 13.1300 0.65650

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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