Durham/Newcastle Statistics Graduate Course Design of Experiments March 2012

Outline solutions

Example Sheet 1

- Q1 Prove the results concerning projections quoted in the lecture, namely
 - (i) For any vectors z and y we have that $P_T z$ and $(I P_T)y$ are orthogonal, as are $(I-P_T)z$ and $P_T y$, so $z^T P_T^T (I-P_T)y = 0$ and also $z^T (I-P_T^T)P_T y = 0$. Subtracting these we get $z^T (P_T^T P_T)y = 0$ for all y and z, so $P_T^T = P_T$.
 - (ii) For any $y, P_T y \in V_T$, so $P_T^2 y = P_T(P_T y) = P_T y$, i.e. $P_T^2 = P_T$.
 - (iii) From above any eigenvalue must be real and as λ must satisfy $\lambda^2 = \lambda$, $\lambda \in \{0, 1\}$.
 - (iv) $\operatorname{tr}(P_T) = \sum \lambda$. This is just the number of eigenvalues equal to 1. Now the space spanned by the eigenvectors with eigenvalue 1 is V_T , hence the result.
- **Q2** This is elementary: $\operatorname{var}(c^T \hat{\tau}_E) = \sigma^2 c^T R^{-1} c.$
- Q3 An experiment to compare T treatments is designed in one of two ways.
 - (i) Take the average of all pairwise comparisons, i.e. the average over all $i \neq j$ of $\sigma^2(r_i^{-1}+r_j^{-1})$. This is just $(T-1)^{-1}\sigma^2\sum r_i^{-1}$. Minimising this subject to $\sum r_j = N$ gives $r_j = \text{constant} = N/T$.
 - (ii) Here the average to be minimised is $\sigma^2 (T-1)^{-1} \sum (r_1^{-1} + r_j^{-1})$, subject to $\sum r_j = N$. Ignoring σ^2 this is $r_1^{-1} + (T-1)^{-1} \sum_{j>1} r_j^{-1}$. Differentiating the Lagrangian $r_1^{-1} + (T-1)^{-1} \sum_{j>1} r_j^{-1} + \lambda \sum r_j$ gives

$$\begin{array}{rcl} r_1^{-2} &=& \lambda \\ r_j^{-2} &=& (T-1)\lambda \end{array}$$

Hence the replications are such that $r_1 = r_j \sqrt{T-1}$, and $r_1(1+\sqrt{T-1}) = N$

Q4 From lecture $\hat{\tau}_j = r_j^{-1} u_j^T P_T y$ where u_j is the element of V_T which is 1 when treatment j is applied and 0 otherwise. The space V_T is spanned by the vectors $\langle u_1, \ldots, u_T \rangle$. Writing $U = (u_1, \ldots, u_T)$, so $U^T U = R$ where $R = \text{diag}(r_j)$. Now $u_j^T U = (0, \ldots, 1, \ldots, 0)$ where the 1 is in position j. Hence, using this and the fact that $P_T = U(U^T U)^{-1} U^T$, $\hat{\tau}_j = (0, \ldots, 1, \ldots, 0) R^{-1} U^T y$. Now $U^T y$ is a $T \times 1$ vector with i^{th} element equal to y(i), the sum of the y values given the i^{th} treatment. So $\hat{\tau}_j = r_j^{-1} y(j)$.

If the vector subspace W is the range of a matrix X the orthogonal projection onto the range of X is well know to be $X(X^TX)^{-1}X^T$. Now assuming this formula, show that the $\hat{\tau}_j$ derived in lectures are of a familiar and sensible form.

Example Sheet 2

Q1 We can start by defining the outputs in y, the treatment design matrix, X, and the function proj which maps a matrix to its associated projection matrix.

```
> y
 [1]
     7.8 15.3 18.5 6.2 11.3 24.2 11.2 17.4 29.8 1.8 3.3 7.1
> X
     t0 t1 t2
 [1,]
      1 0
            0
 [2,]
      0
         1
            0
 [3,]
      0
        0
            1
 [4,]
      1
         0 0
 [5,]
        1
            0
      0
 [6,]
      0 0
            1
 [7,]
      1 0 0
 [8,]
      0 1 0
 [9,]
      0 0 1
[10,]
      1 0 0
[11,]
      0
         1 0
[12,]
            1
      0
         0
> proj
function(X){
proj<-X%*%ginv(t(X)%*%X)%*%t(X)
proj
}
>
```

We can form the projection onto V_T , P_T

4*pro	oj(X)											
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	1	0	0	1	0	0	1	0	0	1	0	0
[2,]	0	1	0	0	1	0	0	1	0	0	1	0
[3,]	0	0	1	0	0	1	0	0	1	0	0	1
[4,]	1	0	0	1	0	0	1	0	0	1	0	0
[5,]	0	1	0	0	1	0	0	1	0	0	1	0
[6,]	0	0	1	0	0	1	0	0	1	0	0	1
[7,]	1	0	0	1	0	0	1	0	0	1	0	0
[8,]	0	1	0	0	1	0	0	1	0	0	1	0
[9,]	0	0	1	0	0	1	0	0	1	0	0	1
[10,]	1	0	0	1	0	0	1	0	0	1	0	0
[11,]	0	1	0	0	1	0	0	1	0	0	1	0
[12,]	0	0	1	0	0	1	0	0	1	0	0	1

(This is multiplied by 4 simply to make the printout more compact). We can check the symmetry and idempotence as follows

PT-t((PT)											
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0
> PT%*	×%PT−F	РТ										
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0

The sums of squares can be found as

```
P0<-proj(rep(1,12))
> PE<-diag(12)-PT
> PW<-PT-P0
> c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PE%*%y)
[1] 1973.7675 351.8450 444.1175
> sum(y^2)
[1] 2769.73
> sum(c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PE%*%y))
[1] 2769.73
```

The treatment estimates can be found as follows,

```
t0
[1] 1 0 0 1 0 0 1 0 0 1 0 0
> t(t0)%*%PT%*%y/sum(t0)
    [,1]
[1,] 6.75
> mean(y[Rx==0])
[1] 6.75,
```

and similarly for the other treatments. Note also that the length of $P_T y$ is $\sqrt{y^T P_T y}$:

> t(y)%*%PT%*%y
 [,1]
[1,] 2325.612
> sum((PT%*%y)^2)
[1] 2325.612

Q2 Things such as the rank and eigenvalues of the following can be found as follows (this is just for P_E , the values for the other matrices are obtained in the same way.

```
eigen(PE)$values
[1] 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00
[6] 1.000000e+00 1.00000e+00 1.000000e+00 2.288202e-15
[11] 2.071571e-15 8.881784e-16
> qr(PE)$rank
[1] 9
```

Q3 Analysis using 'lm' is:

The sums of squares are the same as those found in Q1. The following shows the estimate of τ_1 , (given as the '(Intercept)' because of the default identifiability constraint used by R).

Call: lm(formula = y ~ factor(Rx)) Coefficients:

	Estimate Std.	Error t	value	Pr(> t)		
(Intercept)	6.750	3.512	1.922	0.0868	•	
<pre>factor(Rx)1</pre>	5.075	4.967	1.022	0.3336		
factor(Rx)2	13.150	4.967	2.647	0.0266	*	

Q4 As an example compute $P_T P_W$ and $P_T P_E$.

12*P'	12*PT%*%PW												
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	
[1,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	
[2,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	
[3,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	
[4,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	
[5,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	
[6,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	
[7,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	
[8,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	
[9,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	
[10,]	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	
[11,]	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	-1	
[12,]	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	

Notice that this coincides with $12 P_W. \ {\rm Also}$

PT%*	%PE											
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0
[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0

Example Sheet 3

Q1 The inclusion of the block effects can be done as follows.

```
> Blocks
 [1] 1 1 1 2 2 2 3 3 3 4 4 4
> XB
     B1 B2 B3 B4
 [1,] 1 0 0
              0
 [2,] 1 0 0
              0
 [3,]
      1 0 0
              0
 [4,] 0 1 0 0
 [5,] 0 1 0 0
 [6,] 0 1 0 0
 [7,] 0 0 1 0
 [8,] 0 0 1 0
 [9,] 0 0 1 0
[10,]
      0 0 0 1
[11,] 0 0 0 1
[12,]
      0 0 0
              1
> PB<-proj(XB)
> PBp<-PB-P0
> PE<-diag(12)-PO-PW-PBp
> c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PBp%*%y,t(y)%*%PE%*%y)
[1] 1973.7675 351.8450 369.1825
                                 74.9350
> sum(c(t(y)%*%P0%*%y,t(y)%*%PW%*%y,t(y)%*%PBp%*%y,t(y)%*%PE%*%y))
[1] 2769.73
> sum(y^2)
[1] 2769.73
```

Q2 The orthogonality of $W_T = V_T \cap V_0^{\perp}$ and $W_B = V_B \cap V_0^{\perp}$ can be seen from $P_W P_{Bperp}$, which is

```
round(PW%*%PBp,6)
```

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	0	0	0	0	0	0	0	0	0	0	0	0
[7,]	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	0	0	0	0	0	0	0	0	0	0	0	0
[9,]	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	0	0	0	0	0	0	0	0	0	0	0	0

[11,]	0	0	0	0	0	0	0	0	0	0	0	0
[12,]	0	0	0	0	0	0	0	0	0	0	0	0

The same result follows for $P_W P_B$. However V_T and V_B are not orthogonal, as the following shows:

PB%*%	%PT*12	2										
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
[1,]	1	1	1	1	1	1	1	1	1	1	1	1
[2,]	1	1	1	1	1	1	1	1	1	1	1	1
[3,]	1	1	1	1	1	1	1	1	1	1	1	1
[4,]	1	1	1	1	1	1	1	1	1	1	1	1
[5,]	1	1	1	1	1	1	1	1	1	1	1	1
[6,]	1	1	1	1	1	1	1	1	1	1	1	1
[7,]	1	1	1	1	1	1	1	1	1	1	1	1
[8,]	1	1	1	1	1	1	1	1	1	1	1	1
[9,]	1	1	1	1	1	1	1	1	1	1	1	1
[10,]	1	1	1	1	1	1	1	1	1	1	1	1
[11,]	1	1	1	1	1	1	1	1	1	1	1	1
[12,]	1	1	1	1	1	1	1	1	1	1	1	1

This follows because $P_B P_T = P_B (P0 + P_W) = P_B P0 + 0$. As $1 \in V_B$, we have $P_B 1 = 1$ and $P0 = 1(1^T 1)^{-1} 1^T$ so $P_B P0 = P0$.

Q3 The analysis of the data using ''lm'' is:

```
> anova(lm(y<sup>factor(Rx)+factor(Blocks)))
Analysis of Variance Table</sup>
```

Response: y Df Sum Sq Mean Sq F value Pr(>F) factor(Rx) 2 351.84 175.92 14.0860 0.005413 ** factor(Blocks) 3 369.18 123.06 9.8534 0.009819 ** Residuals 6 74.93 12.49

which agrees with the results in Q1. However, note that $r_j^{-1}u_jP_Ty$ does not agree with the estimates from ''lm'.

```
t(t0)%*%PT%*%y/sum(t0)
   [,1]
[1,] 6.75
> t(t1)%*%PT%*%y/sum(t1)
   [,1]
[1,] 11.825
> t(t2)%*%PT%*%y/sum(t2)
```

```
[,1]
[1,] 19.9
summary(lm(y<sup>factor(Rx)+factor(Blocks)))</sup>
Call:
lm(formula = y ~ factor(Rx) + factor(Blocks))
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             2.49892
                                        3.118
                                               0.02064 *
                 7.79167
factor(Rx)1
                 5.07500
                             2.49892
                                        2.031
                                               0.08856
factor(Rx)2
                 13.15000
                             2.49892
                                        5.262
                                               0.00190 **
factor(Blocks)2 0.03333
                             2.88550
                                        0.012
                                               0.99116
factor(Blocks)3 5.60000
                             2.88550
                                        1.941
                                                0.10034
factor(Blocks)4 -9.80000
                             2.88550
                                      -3.396
                                               0.01456 *
```

but note that differences $\hat{\tau}_i - \hat{\tau}_j$ are consistent. Note also that the residual sum of squares is much reduced because of the assignment of the between-patient differences to the Blocks sum of squares.

- Q4 The sum of squares is simply $y^T P_{\text{cont}} y$ where P_{cont} is the projection matrix generated by contrast vector c. Of course $c \in \mathbb{R}^N$ so we use $c = (-1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1)^T$. We get the Sum of Squares to be 345.85.
- Q5 This is easy because the default parameterisation of R uses the constraint $\tau_1 = 0$, so 13.15 is the estimate of $\tau_3 \tau_1$ and the 95% confidence interval is

```
lm(y<sup>factor(Rx)+factor(Blocks))$coefficients[3]+c(-1,1)*2.49892
[1] 10.65108 15.64892</sup>
```

Q6 Treatment by block incidence matrix $A = T^T B$, which record how many times each treatment occurs in each block. Also AA^T is a $t \times t$ matrix which records how often pairs of treatments occur together in the same block. Here these are

t1	3	1	1	1	1	1
t2	1	3	1	1	1	1
t3	1	1	3	1	1	1
t4	1	1	1	3	1	1
t5	1	1	1	1	3	1
t6	1	1	1	1	1	3

For this design $P_B P_T$ is not P0 due to the non-orthogonal nature of the design.

Q7 The key elements of the output that you need to work with are in

```
summary(analysis)
Call:
lm(formula = y ~ factor(Rx) + factor(Site) + factor(Subjects))
Residuals:
   Min
             10 Median
                             ЗQ
                                    Max
-1.2333 -0.4000 -0.0500
                         0.4375
                                 1.1500
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   7.28333
                              0.54016 13.484 1.69e-11 ***
factor(Rx)2
                   0.21667
                              0.46780
                                        0.463 0.64825
factor(Rx)3
                   0.33333
                              0.46780
                                        0.713 0.48435
factor(Rx)4
                   0.36667
                              0.46780
                                        0.784 0.44233
factor(Rx)5
                   0.16667
                              0.46780
                                        0.356 0.72536
factor(Rx)6
                   0.11667
                              0.46780
                                        0.249
                                               0.80560
factor(Site)2
                                       -1.283 0.21430
                  -0.60000
                              0.46780
factor(Site)3
                  -0.83333
                              0.46780
                                       -1.781 0.09004 .
factor(Site)4
                   0.03333
                              0.46780
                                        0.071 0.94390
factor(Site)5
                  -0.45000
                              0.46780
                                       -0.962 0.34756
factor(Site)6
                  -0.65000
                              0.46780
                                       -1.389 0.17996
factor(Subjects)2 1.55000
                              0.46780
                                        3.313 0.00347 **
factor(Subjects)3
                   0.01667
                              0.46780
                                        0.036
                                               0.97193
factor(Subjects)4 -0.26667
                              0.46780
                                       -0.570
                                               0.57499
factor(Subjects)5
                   0.05000
                              0.46780
                                        0.107
                                               0.91595
factor(Subjects)6
                              0.46780
                                        0.962 0.34756
                   0.45000
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                   1
```

Residual standard error: 0.8102 on 20 degrees of freedom Multiple R-squared: 0.5675, Adjusted R-squared: 0.2432 F-statistic: 1.75 on 15 and 20 DF, p-value: 0.1205