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Introduction

Background

The rationale for the devel opment of this package was a problem in assessing the paternity of squid
hatchings from egg strings (Emery et al.). We could be sure (up to laboratory error or contamination) that
all eggs on a string had the same mother - although the mother’ s genotype was uncertain, further we had
information on the allele frequencies from the breeding population. We were interested in, and did not
know, the number of fathers, and the rel ationship between hatchlings on the egg strings (either half or full-
sibs). Thiswas adifficult inferential problem. This program was devel oped to draw inferences for this
problem: namely shared maternity with an unknown number of fathers and no additional information except
for allele frequencies in the breeding population. To improve statistical properties of the model —and so
that the assumptions about the mother can be checked — we allowed more than one maternal genotype,
which means that the model was more generally applicable than for the string of squid hatchlings. | also
added optionsto allow some maternal or paternal genotypes to be entered, and for some relationshipsto be
known, which expanded the possible problems that could be attacked.

Depending on the problem we may want to know the number of fathers, or the relatedness between
individuals, or possibly information such as the relatedness of fathers or the mutation rate. Asa
consequence this package has been designed to be as general as possible. There are a number of scenarios
where we want to know about parentage for a set of sampled individuals. The program is designed to be
flexible so that it can work from making inferences about the genotype of the father of a set of full-siblings
to making inferences about the number of mothers and fathers for a set of individuals when we have no
information about fathers or mothersat al. The program will work with all situations with intermediate
levels of information also.

Parentage is the program written to analyse the problem of inferring the number of parents and the
relationships within samples. Early inits development | realised that the general modelling framework
could be used to analyse a number of different problems with the same structure, so the program was
developed to alow flexibility in its use, enabling us to include additional information in the form of
breeding population, the genotypes of some or al of the potential parents, and even partial knowledge about
maternity and paternity. The program iswritten in ANSI C, and, depending on the system on which you run
it will either need to be compiled or will be distributed as an executable. This manual iswritten to try to
help other users with the program, which through time constraints and philosophy (there is little point in
writing software to produce graphics or edit genotype data when there are already a host of programs out
there that can do the same thing) is command line driven. Subsequent versions may be in the form of
libraries to add to either the R (free) or the S-plus (commercial) statistics packages that will allow you to
use their extensive graphical capabilities directly.

The structure of this manual is: a brief introduction to the Bayesian Paradigm and Markov chain Monte
Carlo methods; a description of its use; the format of input and output files; examples of its use on selected
problems and areference to al input options. The appendix contains a description of some R code for pre
and post-processing of input and output from the program.

The Bayesian Paradigm

In Bayesian inference probability models are fitted to data and the results summarised as a posterior
probability distribution of model parameters and unobserved random variables (Gelman et al. 1995). With
complex problemsit is generally not viable to calculate the posterior distribution directly, however,
advances in computationally intensive statistical techniques, in particular Markov chain Monte-Carlo
(MCMC), make it possible to sample from the distributions of interest for problems with complex
dependencies. Inference can then be based on summary statistics from these samples. Under the Bayesian
paradigm we treat everything in the model as arandom variable, the number of fathers, the number of



mothers, the fathers for each individual hatching and the genotypes of both parents and the offspring — what
would generally be regarded as data are then observed parameters (so that there is no uncertainty). This
allows usto bring avariety of paternity assignment problems under the same framework.

Under the Bayesian (or direct probability) paradigm, inferences are made on the posterior probability
distribution of variables of interest, conditional on observed data and prior models. This posterior density is
proportional to the prior probability (before any data are observed, based on our knowledge about the
problem) multiplied by the likelihood of observing the data under the model. Our data consist of the
vectors Y and (possibly) B, the genotypes of the hatchlings and our sample from the breeding population.

Vector Y consists of elements, (y,(i D , yl(i 2) ) , the genotype of theith individua at the Ith locus where

i=1,...Nand|=1,...L, where N is the number of offspring sampled and L the number of loci. Vector B is
similarly defined, with i=1,...N,, the sample size from the breeding population.

Also included in our model are the random vectors of mothers, M, and fathers, F. These vectors are
defined similarly to Y and B, so that M consists of elements, (m,("l) ,m*? ) , withi=1,...,ny, the number of

mothers. These may be observed, unobserved, or may be partially observed. If they are unobserved then
they are updated in the Markov chain.

The sibling relationships within the sample are described by the parental vectors of fathers, a; and mothers,
an. Then; fathers arelabelled from 1 to n;, with element af_(') giving the father of individual i. Similarly,
mothers are labelled from 1 to n,, and the mother of j isa,’. Again these may be observed on unobserved.

Inference from the model consists of drawing samples from the unobserved random variables and other
parameters of the model. The framework for inference described here means that any combination of
unobserved random variables may be put into the model.

Note that for unobserved mothers and fathers the labels in the random vectors of mothers and fathers are
arbitrary (for example, we can swap the labels of males 1 and 2 with no change to the sibling relationships)

and thusthere are ng! X n,,,! different labellings that give the same set of sibling relationships.

In order to make inferences about the parentage of the offspring we require probability models for the
observed offspring and breeding population genotypes, the parental genotypes and sibling rel ationships.
These involve modelling the mutation process, the distribution of parental genotypes and patterns of sibling
relationships in the sample. We model our problem more generally than is needed for the application here,
aswe allow for the possibility of more than one maternal genotype.

Modelling paternity and maternity share

The most basic assumption is that each male is equally likely to be the father of an individual in the sample,
so that the joint probability of paternity vector and number of fathersis:
Pr(n,)n,!
a0

f
where P(ry) isthe prior probability of n; males and we have the factor ny!, as each labelling of malesis
equally likely. This model may be over-simplistic, and we allow differential male success using two
models. based on a multinomial-Dirichlet number of offspring, and on the Ewens sampling formula (Ewens
1972), adistribution used to describe the distribution of alleles in population genetics for the infinite allele
model.

Pr@,,n;) = (1)

We allow two models for the allele frequencies in the breeding population. The first is that we know the
breeding population frequencies without error, so that the probability of sampling genotypes are simply the
product of multinomial distributions. The second model uses the Dirichlet distribution to model the prior
density of alele frequenciesin the breeding population at each locus (Balding & Nichols 1995), so that the
genotypes at alocus are multinomial-Dirichlet distributed.



Thelikelihood of the data, Y, conditional on M, F, &, ayand M is calculated assuming simple Mendelian
inheritance; ignoring mutation, the probabilities can be 0, ¥, Y2 or 1. Furthermore, we assume that
conditional on parent genotypes, offspring are independent, so that this likelihood may be multiplied over
marker loci and individuals. We include the possibility of mutation or mis-scoring of marker alleles (for
our models these are not discriminated, and we use mutation for both). We assume that mutations occur

independently and at a constant rate of |L per gamete across all loci and at an equal rate for maternal and
paternal gametes. Following amutation from an alele i, the mutated allele is equally likely to be any other
allele present with equal probability, including the original alele, i. Thissimplifies calculations so the
probability that a gamete mutates from allelei to allelej is (/K where K| is the number of alleles at locus|.
More realistic models are possible, however our focus of interest is not on the mutation process.

Statistical inference

We collectively denote M, F and other unobserved variables (such as the mutation rate 1) by 6. Our
problem isto draw meaningful and correct inferences about a; and a,, conditional on our observed data Y
and B. From Bayes' rule we have

Pr@,a,.0|Y,B)O0Pr(Y |a ,a,,8,B)Pr(a;,a,,,0|B) . (5)

The RHS of (5) can be expanded using the distributions described above to give

PrY |a; ,a,,,4,M,F)Pr(M,F | B)Pr(@,, |a)Pr(a; | B) Pr(u) Pr(@) Pr(B) .

This gives a complete specification of the model, given prior distributions for the mutation rate |, and the
Ewens sampling formula parameters o and [3.

We use areversible jump MCMC approach to inference. A Markov chain with an equilibrium distribution
proportional to the RHS of equation (5) is constructed in the space of all the unobserved variables (M, F, a;,

am, M, O, and [3). After asuitable burn-in period, samples are collected from the chain.

Markov-Chain Monte Carlo

There are so many possible combinations of parental genotypes and ancestriesthat it isimpossible to
exhaugtively search them all. Instead we use a Monte-Carlo method to generate samples from the
distribution of possible parents and ancestries proportional to their probability under the model. However,
again the problem is too complicated with a complex dependency structure, so that we cannot simulate
directly from the model. The solution isto define aMarkov chain with a stationary distribution equal to the
distribution of interest — the distribution of parents and ancestry conditional on observing the sample
genotypes and perhaps some other background information.

We use a combination of Gibbs sampling, Metropolis-Hastings updates and Reversible Jump Markov chain
Monte Carlo (Green 1995) to move around the space of possible combinations of parents.

Multiple Chains

The strong structure within the data may cause difficulties with mixing for the chains, particularly with large
datasets (from experience more than 100 offspring and at least five loci). To deal with these difficulties the
program can use multiple chains, of which only one has the correct target distribution, the others are
hopefully faster mixing, and we have an extra step of swapping between chains. Thistechniqueiscalled
metropolis-coupled MCMC (Brooks 1998). In our use of this the additional chains are sampled from
distributions with posterior densities proportional to f %, where f isthe correct density, this give aflatter
distribution and hence flatten the constraints.



Input

This program works from a prompt, under both Windows and unix, with the syntax
parentage (infile) (outfile) (seed)

where brackets indicate optional arguments. Parentage will also work by double clicking on theiconin
Windows (if double clicking then the program will assume the default command line values — or a shortcut
may be used, and then the command input may be altered by right clicking on the short-cut icon).

Theinfile (default infile) contains information abouit:
1. Data, intheform of file names and paths;
2. The probability model: avariety of options that can change the model that isrun, and the priors
that are needed for the model;
3. Program options such as the length of the MC run and how often we sample fromiit.

The outfile (default outfile) gives the name of the main output file for the program. It also acts as the root
stem for the rest of the output files. More details are given in the Output section.

Inputting Data

The general input style for al genotype datais the same. Each genotype isinput on asingle line as pairs of
alleles representing the genotype at each locus. The data can be input as positive integers, or letters, or a
mixture of both. Missing data are input using—1 or ?. Comments can be put into the file by using the hash
sign (#). Anything on aline after a hash sign will be ignored.

The main datafile is given by

datafile: inputdata

An example of adatafile isin the distribution in Data/Neff.data, from Neff et a. (2000). Thefirst few lines
are:

# data from Neff, ...
88 98 217 227 118 128
88 98 217 227 118 128
88 98 217 227 118 128
88 98 217 227 118 152
88 98 217 247 118 128
88 98 217 247 118 152

These data are for 3 loci.

If you want the output as letters then setting f or mat : L, will enable this. Thisisonly safe for a datefile
only comprising of letters.

Breeding Population Samples

If we have additional information on the alleles present in the breeding population from sampled genotypes
then thisinformation can be incorporated by using the line

fregfile: freqgfil enane

wheref r eqf i | enane isthe name (with or without path) of afile with containing the genotypes asin the
datefile.

The further command



freqmodel : <0 or 1>

can also be used to set up the way that this additional information isused. Using

freqnodel : 0

then adirichlet prior for the allele frequencies is used, whereas with

fregmodel: 1

the observed frequencies are taken to be the population frequencies. The program will exit with an error if
fregmodel: 1 isused when there are alleles in the sample that are not present in the background frequencies.
If no breeding population frequencies are available then a Dirichlet prior is used, with equal frequenciesfor
all the aleles present in the sample.

Genotypes of Parents Known
When we know the genotypes of some or all of the potential parents then using

fathersfile: fathersfilenane

or
mot hersfile: notherfil enane

enter them into the program. If these are the only potentia fathers or mothersthen fathersprior or
mothersprior must be set to a constant value — otherwise the program may infer additional parents. If there
are some data missing from these genotypes then the program will include these in the model as unobserved
random variables, and perform Gibbs sampling on the missing components. Using this method it is
possible to put some ancestral relationships into the model without knowing the genotypes of the ancestor,
by inputting the parentages that are known as described in the next section.

Parentage of Some Offspring Known

If we know either the father or mother of some offspring (and additionally we have already set the
genotypes) then using either
knownf at hers: knownfatherfile

or
knownnot hers: knownnot herfil e

We may input some, or all of the ancestral relationships.
These files must consist of a vector of the sample length as the number of samples, and consists of alist of
integers which are either positive integers (less than or equal to the number of known fathers) or O when the

parent is not known.

For example if we have a sample of size 10 and we have 3 known fathers then file knowfathersfile could
consist of

OCOOFRFPWWENEPE



This would indicate that the fathers of the first seven are known but that the mother of the last three at not
known.

Input of Program Settings

t hi nni ng:
burn-in:
sanpl es:

Thinning gives the number of MCMC updates (or attempted updates) are tried between sampling the chain.
Thisis called the thinning interval in Brooks (1998). Burn-in gives how many samples to throw away (note
that the actual number of MCMC stepsisburn-i n x t hi nni ng) . Thetotal number of samplesto take
isgiven by samples.

chai ns:

If chainsis set then metropolis coupled chains are used. The number of extra chains are determined by the
number of values givenin chains. For example to use two additional chains with posterior densities

proportiona to f¥?, and fY3use

chains: 2 3

Input of Probability Model

Modelling Relative Parent Frequencies
Three models for how different parents share offspring are possible.

Incorporating Prior Information
Prior information for alphaisinput into the program using aline in the input file, which looks like:

| anmbdaprior: prior

where prior can be a number, (or where more than one number is appropriate, a series of numbersin
brackets), or adistribution. Hence valid prior declarations are:

| anbdaprior: normal (10, 1)
| anbdaprior: 10

| anmbdapri or: constant(10)
| anbdaprior: uniform

Note that lambdaprior is not used in the model, it is purely an example. The range of priorsavailableis
given in the table below. The only prior that is always setismupr i or , the prior for the mutation rate, the
other priorsthat are set determine the offspring model.

Other priors that may be set are for the number of fathers (f at her pr i or ) and mothers (not her pri or),
and/or for the distribution of offspring between males (al phapri or) and females(bet apri or).

The set of priorsthat are entered for f at her pri or and al phapri or (thesameisalso true for
not her pri or and bet apri or) determine the model used for the offspring numbers. The default
values for both of these priors are null and you get one of:

Model 1: Each maeisequaly likely to be the father of any offspring,



Modd 2: The male share is given by a Dirichlet distribution, with a prior on the number of fathers
Modd 3: The number of fathers and male share are given by the Ewens' sampling formula.

The way thisis decided is given in the following schematic:

al phapri or set

If no prior isgiven for

the number of fathers
YES NO fqr model 1, then the
prior on the number of
fathersis set to be

fatherprior st Model 1 uniform between the
upper and lower end of

the range (default 1-
YES MA 10).

Model 2 Model 3

Possible Priors

Distribution Use Mean Variance
X ~ gamma gamma( a, b) alb alb?
note that if b=1
this is the
exponential with
mean a
X ~ uniform uni forn(a, b) (a+b)/2 (b-a)?/12
X ~ normal nor mal (y, ¢°) u Jod
X ~ lognormal | ognor mal (y, ¢°) exp(u+d’l 2)  exp(2u+ o) (exp(d)-1)
X ~ poisson poi sson(A) A A
X ~ geometric geonetric(0) 18 (1-91/6
uniform uni form undefined undefined
constant constant (10) or10

For example if we think that a mutation rate of 0.0001 should be used we use
muprior: 0.0001,

whereas if we believe that a gamma with parameters 1 and 10000 is appropriate we use
nmuprior: ganmma(1, 10000),

Theuse of constant priorsisdiscouraged for the number of fathersor mothersasthis may not allow
good mixing of thechain. A better approach isto use something like:

not herprior: normal (constval, 0.1)

Thisstrongly penalisesincorrect values on the“ cold” chain, but allows values away from thison the
“hotter” chains and hence may improve mixing.



Output

Thenameout fi | e from the command line gives the filename of the main output file, described below. It
also forms the basis of other output files, constructed by postfixing to thestemout fi | e to get

outfil e.sonet hi ng, wherethere are a number of postfixes that give different aspects of the posterior
distribution.

The Output File

The main output file gives simple summary measures of the data at each sampling point, such as the number
of fathers, the number of mothers, the mutation rate, the number of mutations and the posterior density of
the chain. The line below gives the maximum number of lines that may be out put, some of these may be
missing. The top line of the output file gives the names of columns present out of those below.

| og_ | og_ | og_ l og_
nfathers nnothers nmuts alpha beta nu post eri or like sanple prior

where
Log_posteri or isthelog of the posterior probability.

| og_| i ke isthelog of the product of the probability of the data conditional on the parental genotypes for
each individual

| og_sanpl e isthe probability of sampling the maternal and paternal genotypes from the background
alele frequencies

| og_pri or isthelog of the prior probabilities.

Fathers File

Thefathersfile: out . f at her s givesthe paternal genotypes and the number of offspring for each of the
fathers. each line has the format:

sample father_number #offspring i1 912 921 922 931 92 --- G Uiz
where the number of loci isl. Anexample output file is given below.

135106102 212 214 144 144
119100 104 210 212 146 142
127100102 212 214 152 150
233106 106 212 214 144 144
219100 104 210 212 146 142
229100 102 212 214 152 150

For this output the first two samples both have 3 fathers, the first with 5, 9 and 7 offspring, the second with
39and 9 offspring.  The genotypes of the fathers are given on the rest of the line. S-plus/R code for the
analysis of fathers' files are described in the appendix.

If al the potential paternal genotypes are known then none are output, only columns 1-3. If thereisonly a
single offspring, as in example 1, then only two columns, the first with the sample number and the second
with the father’ s label will be outpuit.



Mothers File
The mothersfileishasnameout fi | e. not her s, and has the same format as the fathersfile.

Shared Paternity and Maternity

The output file:

<outfile> paternity consstof nxnmatriceswith the number of timesthat individuals share the
same father in the upper-trangle of the matrix and the number of times they share the same mother in the
lower-triangle of the matrix. The diagonal of the matrix isjust the number of runs as an individual aways
share paternity and maternity with itself. The appendix contains R functions that can postprocess and
produce informative plots from thisinformation.

Table1: Thefileout.paternity, a matrix
with shared paternity and mater nity

1000 521 429 112 Here we have the output from an analysis of four

990 1000 312 59 individuals. We have 1000 samples and 521 times out of
921 950 1000 873 1000 individuals one and two share a father, these two
980 993 810 1000 individuals share amother 990 times out of 1000.

Similarly individuals one and three shared fathers 429 times and mothers 921 times out of 1000.

Shared Parentage

Similar information is given in the output file

<outfil e>. parentage,

which consists of the number of timesthat individuals are full siblings, and half siblings. This output file
consists of an nxn matrix. The upper-triangle of the matrix is the number of timesthe individuals are full
siblings, the lower triangle the number of times individuals are half-siblings.

Mutations File

Thefile

<outfile> muts

gives information about mutations. Thisfile consists of ann x| matrix. Each column of the matrix isfor a

locus and each row for an individual. The file gives the number of times (out of

8 0 8 the total sample size) that at least one mutation isinferred for an individual at a

0 0 1 locus, given the genotypes of the parents. A typical filewill look like the table

0 1 to the left, for a dataset with 3 loci.



Case Studies

In this section a selection of analyses will be performed on some case studies, which vary from being very
simple tests of the method, asin thefirst two cases, to rather moreinvolved. The input files, and datafiles
areincluded in the directory exanpl es.

Case Study 1

Thefilesfor thisarein directory exanpl es\ casel. We have the genotype of achild. We know the
mother’s genotype. What is the relative probability that each of three malesis the father of the child —
including the possibility of mutation?

If we have potential fathers' genotypes:
1/1 2/2 1/2 1/1

1/2 2/3 1/1 1/3

1/3 2/11/3 1/2

And a not her

1/2 1/2 1/1 1/2

And the child has genotype

1/2 1/3 1/2 2/3

None of the potential fathers can be the father without at least a single mutation. In this case, as we only
have three potential fathers the background allele frequencies can have no effect on which parents we
choose. Assuming a k-allele mutation model with 3 alleles and ignoring al but the smallest powers of , the
probabilities of the offspring for the three fathers given in the table below

Locus 1 Locus 2 Locus 3 Locus4 Overal
Father 1 Yo We Yo W6 u? /144
Father 2 Ys Yy 2u/3 Yy 48
Father 3 Yy w3 w2 w3 u72

We can get a Monte-Carlo estimate of the relative probabilities (and check the program for u=0.005) using
the input file in the test box:

datafile: child The datafiles are in the directory exanpl es\ casel.
fatherfile: fathers The expected relative probabilities from the table above are:
mot herfile: nother 0.0016639, 0.99832, and 1.6639x107.

?g% Eg: p;: 8;5 % The output fileout f i | e. mal es givesthe index of the males
sanpl egz 50000 (inthis situation as all males are specified and thereisonly a
burn-in: 10 single offspring). The observed proportions are: 0.00188,

t hi nni ng: 10 0.99810, and 0.00002, which are not significantly different from
fregnodel : 1 the expected proportions. Note that the program uses higher
muprior: 0.005 powers of u for its calculations.

10



Case Study 2 — Data with no variation

A very simple test of the program can be performed on data with no variability, setting the mutation rate to
be very low. In this situation we should return the prior distributions for the number of fathers and mothers.
Wemust set f r eqnodel =1, so that we do not allow for the possibility of more allelesin a breeding

population.

The sub-directory Case2 in the examples directory contains 3 input files: infilel, infile2 and infile3.

datafile: testdata
burn-in: 100

t hi nni ng: 400
sanpl es: 2000
mupri or: 0.000001
fregnodel : 1
useloci: 1
fatherprior:

uni form(1, 10)

nmot herrange: 1 20
not her pri or:

poi sson( 2)

datafile: testdata
burn-in: 100

t hi nni ng: 400
sanmpl es: 2000
muprior: 0.000001
al phapri or:
gama(1, 2);

bet apri or: gamma(1, 2)
freqnodel : 1
useloci: 1
fatherprior:

uni form( 1, 10)

not herrange: 1 20

datafile testdata
burn-in: 100

t hi nni ng: 400
sanpl es: 2000
muprior: 0.000001
al phapri or:
gama(1, 2);

bet apri or: gamm(1, 2)
fregmodel . 1
useloci: 1
fatherrange: 1 20
nmot herrange: 1 20

i nfilelisformodel 1. A prior is set on the number of males,
and the number of females. Each maleis equally likely to be the
father of any offspring, and each female equally likely to be the
mother. The paternity and maternity for any individual are
independent. Hence the number of offspring that the fathers have
will be multinomially distributed with expected number n x 1/k if
there are k fathers.

i nfil e2: For model 2—aprior for the number of fathers, and
mothers, and a Dirichlet prior for the offspring share for both.

i nfil e3: For model 3—aprior for the Ewens' sampling formula
parameter for the density of the number of parents and the offspring
share.

The posterior numbers of fathers and mothers agreed with the
priors for all three models.
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Case Study 3 — Data from Neff (2000)

Table2: Neff data from Neff et al (2000) table 5.

Lmal02 Lmal20 Lma87 Neff et al. (2000) present a method for determining the share of
88/98 217/227 1181128 naternity for a number of models, and apply their techniquesto a
88/98 217/227 118/128 ; ) ’ }

88/98 217/227 118/128 nest of Bluegill Sunfish (Lemomls_ macrohirus). Here, asacase
88/98 217/227 118/152 study, we apply our method to their data (for our method we need the
88/98 217/247 118/128 population genotype frequencies, which were supplied by Dr B.
88/98 217/247 118/152 Neff). The background frequencies were converted into genotypes.
88/98 217/247 118/152

88/98 217/247 118/152 ) i

88/98 217/247 118/152 The data consist of the genotype of the nest guarding male: 88/88,
88/98 217/247 118/152 2271247 118/118, and population frequencies, and the genotypes of
gggg gggg ﬁgj igg 46 offspring from the nest. These data files are in the Data folder in
88/98 2271297 118/152 the distribution. The input file for this analysisis:

88/98 227/227 118/152

86/98 227/231 128/152 datafile: ../../Datalneff.data

o ooreer Lo fatherfile: ../../Data/neff.father

88/98 227/247 118/128 ;Ir Sﬂ;'plr iebr o gngQ(Dfilt % EHTF . B el g

88/98 227/247 118/128 S mpl @ amma( 1 ’4)

88/98 227/247 118/152 Sl nPi i '208 ’

88/98 227/247 118/152 | es.

88/102 2171227 118/128 sanpl es: 2000
88/102 217/227 118/128 thinni ng: 400
88/102 217/227 118/128
88/102 217/227 118/152
88/102 217/227 118/152
88/102 217/247 118/128 Haigi ;

88/10 171247 118/18 ar!d thef|Ie|S|r_1ExarrpI es/,Dat a. We choose again to analyse
88/102 217/247 118/128 this problem using t_he Ewens sampling forr_nl_JI _af(_)r the number of
88/102 217/247 118/128 fathers and the relative share. Another possibility isto perform the
88/102 217/247 118/128 analysis with a Poisson number of fathers and a Dirichlet prior for
88/102 217/247 118/152  the share of offspring (use poisson(1), and alphaprior(1,1)). The
88/102 227/227 118/128 It imilar for th tion of offsoring from th di
88/102 9271297 118/128 results are similar for the proportion of offspring from the guarding
88/102 297/227 118/152 male (shown in table). The main aim of inference here was the share
88/102 227/227 118/152 of paternity for the guarding male, but we can also estimate the
88/102 2211227 118/152 number of femalesin the nest, and the sibling relations for the
88/102 227/247 118/128 offsorin
88/102 2271247 118/152 spring.

88/102 227/247 118/152
88/102 227/247 118/152 share of paternity — number that father 1 isthe father to
98/98 211/231 118/128
98/98 227/231 128/128 -

98/98 231/245 118/128 number_ <30 30-34 35-39 | 40 >=41
98/102 211/231 128/128 proportion 0.018 | 0.0415 | 0.117 0.804 | 0.0195
98/102 211/231 128/152 0.005 | 0.0145 | 0.081 | 0.884 | 0.015
5
mean 0.85, median 0.87
mean 0.86, median 0.87
Number of Number of Fathers
Mothers 2 3 4 >=5 | tota
1 0.0125 0.0060 0.0005 0.000 \ 0.019
2 0.2000 0.2525 0.1210 0.0415 | 0.615
3 0.0935 0.1105 0.0465 0.0125 | 0.263
4 0.0330 0.0305 0.0095 0.0050 \ 0.078
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>=5 0.0125 0.0085 0.0040 0.0000

0.025

total 0.3515 0.4080 0.1815  0.059

2 3 4 5
1 0.0185 0.0060 0.0010 0.0005
20.4235 0.2110 0.0415 0.0100
3 0.1395 0.0705 0.0140 0.0025
4 0.0330 0.0150 0.0025 0.0005
50.0065 0.0025 0.0015 0.0000

2 3 4 5
0.6210 0.3050 0.0605 0.0135
attr(,"class")
[1] "table"
> table(no[,2])/2000

1 2 3 4 5
0.0260 0.6860 0.2265 0.0510 0.0105
attr(,"class")
[1] "table"
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Case Study 4: Data from Kichler et al. 1999.
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Input File Options

burn-in
Used

Input
default
restrictions
Example

See Also

chains
Used

Input
default
Example file

datafile
Used

Input
default
restrictions
Example

Examplefile
See Also

fatherfile
Used

Input
default
restrictions
Example

Examplefile
See Also

To give the number of warm-up steps to be taken before starting to sample from
the chain. Thisisto allow the chain to reach an equilibrium, and to remove
dependence on theinitia state. Note that the actual number of iterations of the
chainisburn-in xthinning

integer

100

integer >0

burn-in: 1000

Discards 1000 steps before taking a sample
samples, thinning

Do you want metropolis-coupled chains? See the introduction for adiscussion
of when this may be useful

list of real numbers; the tempering values for the additional chains

empty

/exampl es/subsetting/infile

To give the filename for the data file with the offspring in. Thisfileis ASCII
with the genotypes given as integers, or characters with 2 columns for each
locus

name

datafile

The file must be present in the directory — or in the path given
datafile: ../../data/off.data

reads a datafile off.data from the directory ../../data
/examples/subsetting/infile
fregfile, fatherfile, motherfile

To give the filename for the data file with genotypes of potential known fathers
—if you also make the number of fathers constant using fatherprior, then this
givesthe total pool of fathersfor the sample. If thisisnot set then the set of
potential fathers are sampled proportional to their probability.

name

If set, the file must be present in the directory — or in the path given
fredfile: ../../data/fathers.data

reads a datafile off.data from the directory ../../data

/examples/subsetting/infile
datafile, fatherfile, motherfile
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fatherprior
Used

Input
default
Examplefile
See Also

fatherrange
Used

Input

default

Examplefile
See Also

femalesfile
Used

Input

default

See Also

format
Used
Input
default

Examplefile
See Also

freqgfile
Used

Input
default
restrictions
Example

Examplefile
See Also

To set the prior for the number of fathers. Thelist of available priorsis set out in the

input section.

Distribution type with parameters
uniform - improper uniform prior
/exampl es/subsetting/infile
motherprior, muprior

To set the range of possible fathers.
pair of integers

110

—arange of 1to 10 inclusive
/exampl es/subsetting/infile
fatherprior, motherrange

Do you want to output afile of females (mothers) genotypes and maternity share
0 (no) or 1 (yes)
1

malesfile

To set the output type
aletter, N for numbers, or L for letters
N

/exampl es/subsetting/infile
datafile

To give the filename for the datafile with the genotypes of the sampled breeding
population genotype frequencies. Thisfileis ASCII with the genotypes given as
integers with 2 columns for each locus

name

If set, the file must be present in the directory — or in the path given
fregfile: ../../datalback.data

reads a datafile off.data from the directory ../../data

/examples/subsetting/infile
datafile, fatherfile, motherfile
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fregqmodel

Used To determine the modelling used for sampling parents from background
frequencies. The models can be simple multinomia sampling if the background
frequencies contain al the aleles that are seen in the data, or multinomial-
Dirichlet, if there are allelesin the data that are not in the background
frequencies. If background frequencies are not provided then a multinomial -
Dirichlet model should be used.

Input either O (Dirichlet) or 1 (multinomial)

default 0

restrictions Oorl

Example Useloc: 123
Usesthefirst 3 loci in apaternity analysis

Examplefile /examples/subsetting/infile

See Also usesamp

initialfile

Used Do you want to start the chain from a state that is given in initiafile

Input 0 (no) or 1 (yes)

default 0

Examplefile /exampl es/subsetting/infile

See Also chains

knownfathers

Used Do you know which father is associated with offspring ?

Input 0 (no) or 1 (yes)

default 0

Example file /exampl es/subsetting/infile

See Also knownmothers

knownmothers

Used Do you know which mother is associated with offspring ?

Input 0 (no) or 1 (yes)

default 0

Examplefile /exampl es/subsetting/infile

See Also knownfathers

malesfile

Used Do you want to output a file of males genotypes and paternity share

Input 0 (no) or 1 (yes)

default 1

See Also femalesfile
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motherfile
Used

Input
default
restrictions
Example

Examplefile
See Also

motherprior
Used

Input
default
restrictions

Example
Examplefile
See Also

motherrange
Used

Input

default

Examplefile
See Also

muprior
Used

Input
default
restrictions
Examples

See Also

To give the filename for the data file with genotypes of potential known mothers
—if you al'so make the number of mothers constant using motherprior, then this
gives the total pool of mothersfor the sample. If thisisnot set then the set of
potential mothers are sampled proportional to their probabilitity.

name

If set, the file must be present in the directory — or in the path given
fregfile: ../../data/mothers.data

reads a datafile off.data from the directory ../../data
/examples/subsetting/infile
datefile, fredfile, fatherfile

To set the prior for the number of fathers. Thelist of available priorsis set out
in the input section.
distribution type with parameters

prior should be restriced to positive values - although if thisis not set then the
actual prior used is conditioned on positive values.

uniform - improper uniform prior

/exampl es/subsetting/infile

motherprior, muprior

To set the range of possible mothers
pair of integers

110

—arangeof 1to 10 inclusive
/examples/subsetting/infile
motherprior, motherrange

The prior for the mutation rate
prior
gamma(2,2000)

muprior: 0.001
muprior: gamma(4,1000)

alphaprior, betaprior
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samples
Used

Input
default
restrictions
Example

See Also

seed
Used

Input
default
restrictions
Example

See Also

thinning
Used

Input
default
restrictions
Example

See Also

useloc

Used

Input
default
restrictions
Example

Example file
See Also

To give the number of samples to be taken from the posterior chain
integer

1000

integer > 0

samples. 1000

takes 1000 samples from the posterior chain
burn-in, thinning

To give the number of samples to be taken from the posterior chain
integer

1

integer >0

seed: 1000

takes 1000 samples from the posterior chain
burn-in, thinning

To determine the thinning of the chain. If thisis set to one, asingle Metropolis-
Hastings' update or Gibbs sampling step is attempted per sample from the
chain. asthe updates are a random scan of the possible steps a thinning value of
at least 10 is recommended.

integer

100

must be greater than or equal to 1

t hi nni ng

Collects output after every 10" Metropolis or Gibbs' step.

samples, burn-in

To determine which of the loci are to be used in the analysis

List of integers

Empty (NULL) —use al data

The values must lie between 1 and the number of loci, with no repeats
Useloc: 123

Usesthefirst 3loci in apaternity analysis

/exampl es/subsetting/infile
usesamp
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usesamp

Used To determine which of the samples are to be used in a paternity analysis
Input List of integers
default Empty (NULL) —use al samples
restrictions The values must lie between 1 and the number of samples, with no repeats
Example Useloc: 123
Usesthefirst 3loci in apaternity analysis
Examplefile /exampl es/subsetting/infile
See Also useloc
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Appendix 1: R/S-Plus Code for pre- and post-processing
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Figure 1: Graphical output from the post-processing functionsfrom R version 1.1 for windows. This
figureillustratesthe shared paternity for a full dataset (above diagonal) and partial data (below
diagonal) for the data given in Emery et al. (2000).

The descriptions of output files may have convinced you that the volume of output required to draw
inferences from aBayesian MCMC analysis can be overwhelming. The post-processing of output can be a
time consuming process; and without care can be very difficult. The functions within the file parentage.R
included with the distribution make most of these jobs much more simple. Furthermore, graphical
examination of the data can help to guide statistical analyses, and pre-processing functions can make sure
that the data output to Parentage is of the correct format, and graphical representations of the data can be
produced

Functions for pre-processing

Before describing al the pre-processing functions | have included an example R pre-processing session and
a post-processing session.

> source("parentage.R') # read the parentage functions”

> stringl_readstring("../data/stringl.data","../data/breeding.data")
> plot(stringl, main="String 1”) # plot the data with title String 1
war ni ng
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locus 2 allele 90 is not in background
locus 2 allele 126 is not in background
locus 3 allele 108 is not in background
locus 3 allele 131 is not in background
locus 5 allele 263 is not in background
locus 5 allele 292 is not in background
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Figure 2: Schematic of String 1 and breeding population information. Thisfigure produced from
the pre-processing session in this appendix.

Also included are R-files containing functions to simulate data from particular models. When combined
with the parentage program these can help to design parentage surveys experiments.
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