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Introduction 

Background 
The rationale for the development of this package was a problem in assessing the paternity of squid 
hatchings from egg strings (Emery et al.).  We could be sure (up to laboratory error or contamination) that 
all eggs on a string had the same mother - although the mother’s genotype was uncertain, further we had 
information on the allele frequencies from the breeding population.  We were interested in, and did not 
know, the number of fathers, and the relationship between hatchlings on the egg strings (either half or full-
sibs).  This was a difficult inferential problem.  This program was developed to draw inferences for this 
problem: namely shared maternity with an unknown number of fathers and no additional information except 
for allele frequencies in the breeding population.  To improve statistical properties of the model – and so 
that the assumptions about the mother can be checked – we allowed more than one maternal genotype, 
which means that the model was more generally applicable than for the string of squid hatchlings.  I also 
added options to allow some maternal or paternal genotypes to be entered, and for some relationships to be 
known, which expanded the possible problems that could be attacked. 
 
Depending on the problem we may want to know the number of fathers, or the relatedness between 
individuals, or possibly information such as the relatedness of fathers or the mutation rate.  As a 
consequence this package has been designed to be as general as possible.  There are a number of scenarios 
where we want to know about parentage for a set of sampled individuals.  The program is designed to be 
flexible so that it can work from making inferences about the genotype of the father of a set of full-siblings 
to making inferences about the number of mothers and fathers for a set of individuals when we have no 
information about fathers or mothers at all.  The program will work with all situations with intermediate 
levels of information also. 
 
Parentage is the program written to analyse the problem of inferring the number of parents and the 
relationships within samples.  Early in its development I realised that the general modelling framework 
could be used to analyse a number of different problems with the same structure, so the program was 
developed to allow flexibility in its use, enabling us to include additional information in the form of 
breeding population, the genotypes of some or all of the potential parents, and even partial knowledge about 
maternity and paternity.  The program is written in ANSI C, and, depending on the system on which you run 
it will either need to be compiled or will be distributed as an executable.  This manual is written to try to 
help other users with the program, which through time constraints and philosophy (there is little point in 
writing software to produce graphics or edit genotype data when there are already a host of programs out 
there that can do the same thing) is command line driven.  Subsequent versions may be in the form of 
libraries to add to either the R (free) or the S-plus (commercial) statistics packages that will allow you to 
use their extensive graphical capabilities directly. 
 
The structure of this manual is: a brief introduction to the Bayesian Paradigm and Markov chain Monte 
Carlo methods; a description of its use; the format of input and output files; examples of its use on selected 
problems and a reference to all input options.  The appendix contains a description of some R code for pre 
and post-processing of input and output from the program. 
 

The Bayesian Paradigm 
In Bayesian inference probability models are fitted to data and the results summarised as a posterior 
probability distribution of model parameters and unobserved random variables (Gelman et al. 1995).  With 
complex problems it is generally not viable to calculate the posterior distribution directly, however, 
advances in computationally intensive statistical techniques, in particular Markov chain Monte-Carlo 
(MCMC), make it possible to sample from the distributions of interest for problems with complex 
dependencies.  Inference can then be based on summary statistics from these samples.  Under the Bayesian 
paradigm we treat everything in the model as a random variable, the number of fathers, the number of 
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mothers, the fathers for each individual hatching and the genotypes of both parents and the offspring – what 
would generally be regarded as data are then observed parameters (so that there is no uncertainty).  This 
allows us to bring a variety of paternity assignment problems under the same framework.   
Under the Bayesian (or direct probability) paradigm, inferences are made on the posterior probability 
distribution of variables of interest, conditional on observed data and prior models.  This posterior density is 
proportional to the prior probability (before any data are observed, based on our knowledge about the 
problem) multiplied by the likelihood of observing the data under the model.  Our data consist of the 
vectors Y and (possibly) B, the genotypes of the hatchlings and our sample from the breeding population.  

Vector Y consists of elements, ( ))2,()1,( , i
l

i
l yy , the genotype of the ith individual at the lth locus where 

i=1,…,N and l=1,…L, where N is the number of offspring sampled and L the number of loci.  Vector B is 
similarly defined, with i=1,…Nb, the sample size from the breeding population.  
 
Also included in our model are the random vectors of mothers, M , and fathers, F.  These vectors are 

defined similarly to Y and B, so that M  consists of elements, ( ))2,()1,( , i
l

i
l mm , with i=1,…,nm, the number of 

mothers.   These may be observed, unobserved, or may be partially observed.  If they are unobserved then 
they are updated in the Markov chain.  
 
The sibling relationships within the sample are described by the parental vectors of fathers, af and mothers, 
am.  The nf fathers are labelled from 1 to nf, with element af

(i) giving the father of individual i.  Similarly, 
mothers are labelled from 1 to nm and the mother of j is am

(j.   Again these may be observed on unobserved.   
 
Inference from the model consists of drawing samples from the unobserved random variables and other 
parameters of the model.  The framework for inference described here means that any combination of 
unobserved random variables may be put into the model.   
 
Note that for unobserved mothers and fathers the labels in the random vectors of mothers and fathers are 
arbitrary (for example, we can swap the labels of males 1 and 2 with no change to the sibling relationships) 

and thus there are nf!× nm! different labellings that give the same set of sibling relationships. 
 
In order to make inferences about the parentage of the offspring we require probability models for the 
observed offspring and breeding population genotypes, the parental genotypes and sibling relationships.  
These involve modelling the mutation process, the distribution of parental genotypes and patterns of sibling 
relationships in the sample. We model our problem more generally than is needed for the application here, 
as we allow for the possibility of more than one maternal genotype. 
 

Modelling paternity and maternity share 

The most basic assumption is that each male is equally likely to be the father of an individual in the sample, 
so that the joint probability of paternity vector and number of fathers is: 

,
!)Pr(

),Pr(
n

f

ff
ff

n

nn
n =a                                                                   (1) 

where P(nf) is the prior probability of nf males and we have the factor nf!, as each labelling of males is 
equally likely.  This model may be over-simplistic, and we allow differential male success using two 
models: based on a multinomial-Dirichlet number of offspring, and on the Ewens’  sampling formula (Ewens 
1972), a distribution used to describe the distribution of alleles in population genetics for the infinite allele 
model. 
 
We allow two models for the allele frequencies in the breeding population.  The first is that we know the 
breeding population frequencies without error, so that the probability of sampling genotypes are simply the 
product of multinomial distributions.  The second model uses the Dirichlet distribution to model the prior 
density of allele frequencies in the breeding population at each locus (Balding & Nichols 1995), so that the 
genotypes at a locus are multinomial-Dirichlet distributed.  
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The likelihood of the data, Y, conditional on M, F, af, am and µ is calculated assuming simple Mendelian 
inheritance; ignoring mutation, the probabilities can be 0, ¼, ½ or 1.  Furthermore, we assume that 
conditional on parent genotypes, offspring are independent, so that this likelihood may be multiplied over 
marker loci and individuals.  We include the possibility of mutation or mis-scoring of marker alleles (for 
our models these are not discriminated, and we use mutation for both).  We assume that mutations occur 

independently and at a constant rate of µ per gamete across all loci and at an equal rate for maternal and 
paternal gametes.  Following a mutation from an allele i, the mutated allele is equally likely to be any other 
allele present with equal probability, including the original allele, i.  This simplifies calculations so the 

probability that a gamete mutates from allele i to allele j is µ/Kl where Kl is the number of alleles at locus l.  
More realistic models are possible, however our focus of interest is not on the mutation process. 
 

Statistical inference 

We collectively denote M, F and other unobserved variables (such as the mutation rate µ) by θ.  Our 
problem is to draw meaningful and correct inferences about af and am conditional on our observed data Y 
and B.  From Bayes’  rule we have 

)|,,Pr(),,,|Pr(),|,,Pr( BaaBaaYBYaa mfmfmf θθθ ∝  .                                     (5) 

The RHS of (5) can be expanded using the distributions described above to give 

)Pr()Pr()Pr()|Pr()|Pr()|,Pr(),,,,|Pr( βαµβαµ fmmf aaBFMFMaaY .      

This gives a complete specification of the model, given prior distributions for the mutation rate µ, and the 

Ewens’  sampling formula parameters α and β. 
 
We use a reversible jump MCMC approach to inference.  A Markov chain with an equilibrium distribution 
proportional to the RHS of equation (5) is constructed in the space of all the unobserved variables (M, F, af, 

am, µ, α, and β).  After a suitable burn-in period, samples are collected from the chain.   
 

Markov-Chain Monte Carlo 
There are so many possible combinations of parental genotypes and ancestries that it is impossible to 
exhaustively search them all.  Instead we use a Monte-Carlo method to generate samples from the 
distribution of possible parents and ancestries proportional to their probability under the model.  However, 
again the problem is too complicated with a complex dependency structure, so that we cannot simulate 
directly from the model.  The solution is to define a Markov chain with a stationary distribution equal to the 
distribution of interest – the distribution of parents and ancestry conditional on observing the sample 
genotypes and perhaps some other background information. 
 
We use a combination of Gibbs sampling, Metropolis-Hastings updates and Reversible Jump Markov chain 
Monte Carlo (Green 1995) to move around the space of possible combinations of parents.  

Multiple Chains  
The strong structure within the data may cause difficulties with mixing for the chains, particularly with large 
datasets (from experience more than 100 offspring and at least five loci).   To deal with these difficulties the 
program can use multiple chains, of which only one has the correct target distribution, the others are 
hopefully faster mixing, and we have an extra step of swapping between chains.   This technique is called 
metropolis-coupled MCMC (Brooks 1998).  In our use of this the additional chains are sampled from 

distributions with posterior densities proportional to if α , where f is the correct density, this give a flatter 

distribution and hence flatten the constraints.    
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Input 
This program works from a prompt, under both Windows and unix, with the syntax 
 
par ent age ( i nf i l e)  ( out f i l e)  ( seed)  
 
where brackets indicate optional arguments.   Parentage will also work  by double clicking on the icon in 
Windows (if double clicking then the program will assume the default command line values – or a shortcut 
may be used, and then the command input may be altered by right clicking on the short-cut icon).   
 
The infile (default infile) contains information about: 

1. Data, in the form of file names and paths; 
2. The probability model: a variety of options that can change the model that is run, and the priors 

that are needed for the model; 
3. Program options such as the length of the MC run and how often we sample from it. 

 
The outfile (default outfile) gives the name of the main output file for the program.  It also acts as the root 
stem for the rest of the output files.  More details are given in the Output section. 
 

Inputting Data 
The general input style for all genotype data is the same.  Each genotype is input on a single line as pairs of 
alleles representing the genotype at each locus.  The data can be input as positive integers, or letters, or a 
mixture of both.  Missing data are input using –1 or ?.  Comments can be put into the file by using the hash 
sign (#).  Anything on a line after a hash sign will be ignored.    
 
The main datafile is given by  
 
dat af i l e:   i nput dat a 
 
An example of a datafile is in the distribution in Data/Neff.data, from Neff et al. (2000).  The first few lines 
are: 
 
#  dat a f r om Nef f ,  … 
88 98 217 227 118 128 
88 98 217 227 118 128 
88 98 217 227 118 128 
88 98 217 227 118 152 
88 98 217 247 118 128 
88 98 217 247 118 152 
 
These data are for 3 loci. 
 
If you want the output as letters then setting f or mat :  L, will enable this.  This is only safe for a datafile 
only comprising of letters. 

Breeding Population Samples 
If we have additional information on the alleles present in the breeding population from sampled genotypes 
then this information can be incorporated by using the line 
 
f r eqf i l e:  f r eqf i l ename  
 
where f r eqf i l ename is the name (with or without path) of a file with containing the genotypes as in the 
datafile.  
 
The further command  
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f r eqmodel :  <0 or  1> 
can also be used to set up the way that this additional information is used.  Using  
f r eqmodel : 0 
then a dirichlet prior for the allele frequencies is used, whereas with 
freqmodel: 1 
the observed frequencies are taken to be the population frequencies.  The program will exit with an error if 
freqmodel: 1 is used when there are alleles in the sample that are not present in the background frequencies.  
If no breeding population frequencies are available then a Dirichlet prior is used, with equal frequencies for 
all the alleles present in the sample. 
    

Genotypes of Parents Known 
When we know the genotypes of some or all of the potential parents then using 
 
f at her sf i l e:   f at her sf i l ename 
or 
mot her sf i l e:  mot her f i l ename 
 
enter them into the program.  If these are the only potential fathers or mothers then  fathersprior or 
mothersprior must be set to a constant value – otherwise the program may infer additional parents.  If there 
are some data missing from these genotypes then the program will include these in the model as unobserved 
random variables, and perform Gibbs’  sampling on the missing components.  Using this method it is 
possible to put some ancestral relationships into the model without knowing the genotypes of the ancestor, 
by inputting the parentages that are known as described in the next section. 

Parentage of Some Offspring Known 

If we know either the father or mother of some offspring (and additionally we have already set the 
genotypes) then using either 
knownf at her s:  knownf at her f i l e 
or  
knownmot her s:  knownmot her f i l e 
 
We may input some, or all of the ancestral relationships. 
 
These files must consist of a vector of the sample length as the number of samples, and consists of a list of 
integers which are either positive integers (less than or equal to the number of known fathers) or 0 when the 
parent is not known. 
 
For example if we have a sample of size 10 and we have 3 known fathers then file knowfathersfile could 
consist of 
 
1  
2 
1 
3 
3 
1 
1 
0 
0 
0 
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This would indicate that the fathers of the first seven are known but that the mother of the last three at not 
known. 
 

Input of Program Settings 
t hi nni ng:  
bur n- i n:  
sampl es:  
 
Thinning gives the number of MCMC updates (or attempted updates) are tried between sampling the chain.  
This is called the thinning interval in Brooks (1998).  Burn-in gives how many samples to throw away (note 
that the actual number of MCMC steps is burn-in × thinning) .  The total number of samples to take 
is given by samples. 
 
chai ns:   
 
If chains is set then metropolis coupled chains are used.  The number of extra chains are determined by the 
number of values given in chains.   For example to use two additional chains with posterior densities 

proportional to 2/1f , and 3/1f use: 

 
chai ns:  2 3 
 
 

Input of Probability Model 

Modelling Relative Parent Frequencies 
Three models for how different parents share offspring are possible.   

Incorporating Prior Information 
Prior information for alpha is input into the program using a line in the input file, which looks like: 
 
l ambdapr i or :  pr i or  
 
where prior can be a number, (or where more than one number is appropriate, a series of numbers in 
brackets), or a distribution.  Hence valid prior declarations are: 
 
l ambdapr i or :  nor mal ( 10, 1)  
l ambdapr i or :  10 
l ambdapr i or :  const ant ( 10)  
l ambdapr i or :  uni f or m 
 
Note that lambdaprior is not used in the model, it is purely an example.  The range of priors available is 
given in the table below.  The only prior that is always set is mupr i or , the prior for the mutation rate, the 
other priors that are set determine the offspring model. 
 
Other priors that may be set are for the number of fathers (f at her pr i or ) and mothers (mot her pr i or ), 
and/or for the distribution of offspring between males (al phapr i or )  and females (bet apr i or ).   
 
The set of priors that are entered for f at her pr i or  and al phapr i or  (the same is also true for 
mot her pr i or  and bet apr i or ) determine the model used for the offspring numbers.   The default 
values for both of these priors are null and you get one of: 
 
Model 1:  Each male is equally likely to be the father of any offspring, 
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YES 
 

NO 
 

NO 
 

YES 
 

al phapr i or  set 

f at her pr i or  set 

Model 3 Model 2 

Model 1 

Model 2:  The male share is given by a Dirichlet distribution, with a prior on the number of fathers 
Model 3:  The number of fathers and male share are given by the Ewens’  sampling formula. 
 
The way this is decided is given in the following schematic: 
 
 

 
 
If no prior is given for 
the number of fathers 
for model 1, then the 
prior on the number of 
fathers is set to be 
uniform between the 
upper and lower end of 
the range (default 1-
10). 

 
 

 
 
Possible Pr iors  
 

Distribution Use Mean Variance 
X ~ gamma gamma( a, b)  

not e t hat  i f  b=1 
t hi s i s t he 

exponent i al  wi t h 
mean a 

a/b a/b2 

X ~ uniform uni f or m( a, b)  (a+b)/2 (b-a)2 /12 
X ~ normal nor mal ( µ, σ2)  µ σ2 

X ~ lognormal l ognor mal ( µ, σ2)  exp(µ+σ2/2) exp(2µ+σ2)(exp(σ2)-1) 
X ~ poisson poi sson( λ)  λ λ 

X ~ geometric geomet r i c( θ)  1/θ (1-θ)/θ2 

    
uniform uni f or m undefined undefined 
constant const ant ( 10)  or 10   

 
 
For example if we think that a mutation rate of 0.0001 should be used we use 
 
mupr i or :   0. 0001,  
whereas if we believe that a gamma with parameters 1 and 10000 is appropriate we use  
mupr i or :  gamma( 1, 10000) ,  
 
 
The use of constant pr iors is discouraged for  the number  of fathers or  mothers as this may not allow 
good mixing of the chain.  A better  approach is to use something like: 
 
mot her pr i or :  nor mal ( const val ,  0. 1)  
 
This strongly penalises incorrect values on the “ cold”  chain, but allows values away from this on the 
“ hotter ”  chains and hence may improve mixing. 
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Output 
The name out f i l e from the command line gives the filename of the main output file, described below.  It 
also forms the basis of other output files, constructed by postfixing to the stem out f i l e to get 
out f i l e. somet hi ng, where there are a number of postfixes that give different aspects of the posterior 
distribution. 

The Output File 
The main output file gives simple summary measures of the data at each sampling point, such as the number 
of fathers, the number of mothers, the mutation rate, the number of mutations and the posterior density of 
the chain.  The line below gives the maximum number of lines that may be out put, some of these may be 
missing.  The top line of the output file gives the names of columns present out of those below. 
 

nf at her s nmot her s nmut s al pha bet a mu 
l og_ 

post er i or  
l og_ 
l i ke 

l og_ 
sampl e 

l og_ 
pr i or  

 
 
where 
 
Log_post er i or  is the log of the posterior probability. 
 
l og_l i ke is the log of the product of the probability of the data conditional on the parental genotypes for 
each individual 
 
l og_sampl e is the probability of sampling the maternal and paternal genotypes from the background 
allele frequencies 
 
l og_pr i or  is the log of the prior probabilities. 

Fathers File 
The fathers file: out . f at her s  gives the paternal genotypes and the number of offspring for each of the 
fathers.  each line has the format: 
 
sample father_number #offspring  g11 g12 g21 g22 g31 g32  … gl1 gl2 
 
where the number of loci is l.  An example output file is given below. 
 
1 3 5 106 102 212 214 144 144 
1 1 9 100 104 210 212 146 142 
1 2 7 100 102 212 214 152 150 
2 3 3 106 106 212 214 144 144 
2 1 9 100 104 210 212 146 142 
2 2 9 100 102 212 214 152 150 
… 
 
For this output the first two samples both have 3 fathers, the first with 5, 9 and 7 offspring, the second with 
3 9 and 9 offspring.   The genotypes of the fathers are given on the rest of the line.  S-plus/R code for the 
analysis of fathers’  files are described in the appendix.   
 
If all the potential paternal genotypes are known then none are output, only columns 1-3.  If there is only a 
single offspring, as in example 1, then only two columns, the first with the sample number and the second 
with the father’s label will be output. 
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Mothers File 
The mothers file is has name out f i l e. mot her s , and has the same format as the fathers file. 

Shared Paternity and Maternity 
The output file:  
<out f i l e>. pat er ni t y   consist of  n× n matrices with the number of times that individuals share the 
same father in the upper-trangle of the matrix and the number of times they share the same mother in the 
lower-triangle of the matrix.  The diagonal of the matrix is just the number of runs as an individual always 
share paternity and maternity with itself.  The appendix contains R functions that can postprocess and 
produce informative plots from this information. 

Table 1:  The file out.paternity, a matr ix  
with shared paternity and maternity 

Here we have the output from an analysis of four 
individuals.  We have 1000 samples and 521 times out of 
1000 individuals one and two share a father, these two 
individuals share a mother 990 times out of 1000.  

Similarly individuals one and three shared fathers 429 times and mothers 921 times out of 1000.     
 

Shared Parentage  
Similar information is given in the output file 
<out f i l e>. par ent age,  
which consists of the number of times that individuals are full siblings, and half siblings.  This output file 
consists of an n× n matrix.  The upper-triangle of the matrix is the number of times the individuals are full 
siblings, the lower triangle the number of times individuals are half-siblings. 
 

Mutations File 
The file 
<out f i l e>. mut s 
 gives information about mutations.  This file consists of an n × l matrix.  Each column of the matrix is for a 

locus and each row for an individual.  The file gives the number of times (out of 
the total sample size) that at least one mutation is inferred for an individual at a 
locus, given the genotypes of the parents.  A typical file will look like the table 
to the left, for a dataset with 3 loci. 
 

  

1000 521 429 112 
990 1000 312 59 
921 950 1000 873 
980 993 810 1000 

0 0 0 
0 324 0 
0 0 1 
0 0 1 
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Case Studies 
In this section a selection of analyses will be performed on some case studies, which vary from being very 
simple tests of the method, as in the first two cases, to rather more involved.  The input files, and data files 
are included in the directory exampl es . 

Case Study 1 
 
The files for this are in directory exampl es\ case1.  We have the genotype of a child.  We know the 
mother’s genotype.  What is the relative probability that each of three males is the father of the child – 
including the possibility of mutation? 
 
If we have potential fathers’  genotypes: 
 
1/ 1 2/ 2 1/ 2 1/ 1 
1/ 2 2/ 3 1/ 1 1/ 3 
1/ 3 2/ 1 1/ 3 1/ 2 
 
And a mot her  
 
1/ 2 1/ 2 1/ 1 1/ 2 
 
And t he chi l d has genot ype  
 
1/ 2 1/ 3 1/ 2 2/ 3 
 
None of the potential fathers can be the father without at least a single mutation.  In this case, as we only 
have three potential fathers the background allele frequencies can have no effect on which parents we 
choose. Assuming a k-allele mutation model with 3 alleles and ignoring all but the smallest powers of µ, the 
probabilities of the offspring for the three fathers given in the table below 
 

 Locus 1 Locus 2 Locus 3 Locus 4 Overall 
Father 1 ½  µ/6 ½  µ/6 µ2 /144 
Father 2 ½ ¼ 2µ/3 ¼ µ/48 
Father 3 ¼ µ/3 µ/2 µ/3 µ3/72  

 
 
We can get a Monte-Carlo estimate of the relative probabilities (and check the program for µ=0.005) using 
the input file in the test box: 
 

The data files are in the directory exampl es\ case1. 
The expected relative probabilities from the table above are:  
0.0016639, 0.99832, and 1.6639×10-5. 
The output file out f i l e. mal es  gives the index of the males 
(in this situation as all males are specified and there is only a 
single offspring).  The observed proportions are:  0.00188, 
0.99810, and 0.00002, which are not significantly different from 
the expected proportions.  Note that the program uses higher 
powers of µ for its calculations. 

dat af i l e:  chi l d 
f at her f i l e:  f at her s 
mot her f i l e:  mot her  
mot her pr i or :  1 
f at her pr i or :  3 
sampl es:  50000 
bur n- i n:  10 
t hi nni ng:  10 
f r eqmodel :  1 
mupr i or :  0. 005 
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Case Study 2 – Data with no variation 
A very simple test of the program can be performed on data with no variability, setting the mutation rate to 
be very low.  In this situation we should return the prior distributions for the number of fathers and mothers.  
We must set f r eqmodel =1,  so that we do not allow for the possibility of more alleles in a breeding 
population.  
 
The sub-directory Case2 in the examples directory contains 3 input files: infile1, infile2 and infile3. 

 
 
infile1 is for model 1.  A prior is set on the number of males, 
and the number of females.  Each male is equally likely to be the 
father of any offspring, and each female equally likely to be the 
mother.  The paternity and maternity for any individual are 
independent.  Hence the number of offspring that the fathers have 
will be multinomially distributed with expected number n × 1/k if 
there are k fathers. 
 
 
 
 
 
 
infile2: For model 2 – a prior for the number of fathers, and 
mothers, and a Dirichlet prior for the offspring share for both. 
 
 
 
 
 
 
 
 
 
 
infile3:  For model 3 – a prior for the Ewens’  sampling formula 
parameter for the density of the number of parents and the offspring 
share.  
 
The posterior numbers of fathers and mothers agreed with the 
priors for all three models. 

dat af i l e:  t est dat a 
bur n- i n:  100 
t hi nni ng:  400 
sampl es:  2000 
mupr i or :  0. 000001 
f r eqmodel :  1 
usel oc i :  1 
f at her pr i or :  
uni f or m( 1, 10)  
mot her r ange:  1 20 
mot her pr i or :  
poi sson( 2)  

dat af i l e:  t est dat a 
bur n- i n:  100 
t hi nni ng:  400 
sampl es:  2000 
mupr i or :  0. 000001 
al phapr i or :  
gamma( 1, 2) ;  
bet apr i or :  gamma( 1, 2)  
f r eqmodel :  1 
usel oci :  1 
f at her pr i or :  
uni f or m( 1, 10)  
mot her r ange:  1 20 

dat af i l e t est dat a  
bur n- i n:  100 
t hi nni ng:  400 
sampl es:  2000 
mupr i or :  0. 000001 
al phapr i or :  
gamma( 1, 2) ;  
bet apr i or :  gamma( 1, 2)  
f r eqmodel :  1 
usel oc i :  1 
f at her r ange:  1 20 
mot her r ange:  1 20 
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Case Study 3 – Data from Neff (2000) 
 

Table 2:  Neff data from Neff et al (2000) table 5. 

Neff et al. (2000) present a method for determining the share of 
paternity for a number of models, and apply their techniques to a 
nest of Bluegill Sunfish (Lemomis macrohirus).  Here, as a case 
study, we apply our method to their data (for our method we need the 
population genotype frequencies, which were supplied by Dr B. 
Neff).   The background frequencies were converted into genotypes.   
 
The data consist of the genotype of the nest guarding male:  88/88, 
227/247 118/118, and population frequencies, and the genotypes of 
46 offspring from the nest.  These data files are in the Data folder in 
the distribution.  The input file for this analysis is: 
 

 
 
and the file is in Exampl es/ Dat a.  We choose again to analyse 
this problem using the Ewens’  sampling formula for the number of 
fathers and the relative share.  Another possibility is to perform the 
analysis with a Poisson number of fathers and a Dirichlet prior for 
the share of offspring (use poisson(1), and alphaprior(1,1)).   The 
results are similar for the proportion of offspring from the guarding 
male (shown in table).  The main aim of inference here was the share 
of paternity for the guarding male, but we can also estimate the 
number of females in the nest, and the sibling relations for the 
offspring.   
 
share of paternity – number that father 1 is the father to 
 
number  <30 30-34 35-39 40 >=41 
proportion 0.018 0.0415 0.117 0.804 0.0195 
 0.005

5 
0.0145 0.081 0.884 0.015 

mean 0.85, median 0.87 
mean 0.86, median 0.87  
 
 

Number of Fathers Number of 
Mothers 2 3 4 >=5 total 

1 0.0125 0.0060 0.0005 0.000 0.019 
2 0.2000 0.2525 0.1210 0.0415 0.615 
3 0.0935 0.1105 0.0465 0.0125 0.263 
4 0.0330 0.0305 0.0095 0.0050 0.078 

Lma102 Lma120 Lma87 
88/98 217/227 118/128 
88/98 217/227 118/128 
88/98 217/227 118/128 
88/98 217/227 118/152 
88/98 217/247 118/128 
88/98 217/247 118/152 
88/98 217/247 118/152 
88/98 217/247 118/152 
88/98 217/247 118/152 
88/98 217/247 118/152 
88/98 227/227 118/128 
88/98 227/227 118/152 
88/98 227/227 118/152 
88/98 227/227 118/152 
88/98 227/231 128/152 
88/98 227/247 118/128 
88/98 227/247 118/128 
88/98 227/247 118/128 
88/98 227/247 118/128 
88/98 227/247 118/152 
88/98 227/247 118/152 
88/102 217/227 118/128 
88/102 217/227 118/128 
88/102 217/227 118/128 
88/102 217/227 118/152 
88/102 217/227 118/152 
88/102 217/247 118/128 
88/102 217/247 118/128 
88/102 217/247 118/128 
88/102 217/247 118/128 
88/102 217/247 118/128 
88/102 217/247 118/152 
88/102 227/227 118/128 
88/102 227/227 118/128 
88/102 227/227 118/152 
88/102 227/227 118/152 
88/102 227/227 118/152 
88/102 227/247 118/128 
88/102 227/247 118/152 
88/102 227/247 118/152 
88/102 227/247 118/152 
98/98 211/231 118/128 
98/98 227/231 128/128 
98/98 231/245 118/128 
98/102 211/231 128/128 
98/102 211/231 128/152 

dat af i l e:  . . / . . / Dat a/ nef f . dat a 
f at her f i l e:  . . / . . / Dat a/ nef f . f at her  
f r eqf i l e:   . . / . . / Dat a/ nef f . br eedi ng 
al phapr i or :  gamma( 1, 4)  
bet apr i or :  gamma( 1, 4)  
bur n- i n:  200 
sampl es:  2000 
t hi nni ng:  400 
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>=5 0.0125 0.0085 0.0040 0.0000 0.025 
total 0.3515 0.4080 0.1815 0.059 1 

 
        2      3      4      5 
  1 0.0185 0.0060 0.0010 0.0005 
  2 0.4235 0.2110 0.0415 0.0100 
  3 0.1395 0.0705 0.0140 0.0025 
  4 0.0330 0.0150 0.0025 0.0005 
  5 0.0065 0.0025 0.0015 0.0000 
 
    2      3      4      5  
0.6210 0.3050 0.0605 0.0135  
attr(,"class") 
[1] "table" 
> table(no[,2])/2000 
 
     1      2      3      4      5  
0.0260 0.6860 0.2265 0.0510 0.0105  
attr(,"class") 
[1] "table" 



 14

Case Study 4:  Data from Kichler et al. 1999.
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Input File Options 
 

burn-in 
 

Used To give the number of warm-up steps to be taken before starting to sample from 
the chain.  This is to allow the chain to reach an equilibrium, and to remove 
dependence on the initial state.  Note that the actual number of iterations of the 
chain is burn-in × thinning 

Input  integer 
default 100 
restrictions integer > 0 
Example burn-in:  1000 

 
Discards 1000 steps before taking a sample 

See Also samples,  thinning 
 

chains 
 

Used Do you want metropolis-coupled chains?  See the introduction for a discussion 
of when this may be useful 

Input  list of real numbers; the tempering values for the additional chains 
default empty 
Example file /examples/subsetting/infile 
 
 

datafile 
 

Used To give the filename for the data file with the offspring in.  This file is ASCII 
with the genotypes given as integers, or characters with 2 columns for each 
locus 

Input  name 
default datafile 
restrictions The file must be present in the directory – or in the path given 
Example dat af i l e:   . . / . . / dat a/ of f . dat a 

reads a datafile off.data from the directory ../../data 
Example file /examples/subsetting/infile 
See Also freqfile, fatherfile, motherfile 
 

fatherfile 
 

Used To give the filename for the data file with genotypes of potential known fathers 
– if you also make the number of fathers constant using fatherprior, then this 
gives the total pool of fathers for the sample.  If this is not set then the set of 
potential fathers are sampled proportional to their probability. 

Input  name 
default  
restrictions If set, the file must be present in the directory – or in the path given 
Example freqfile:  ../../data/fathers.data 

 
reads a datafile off.data from the directory ../../data 

Example file /examples/subsetting/infile 
See Also datafile, fatherfile, motherfile 
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fatherprior 
 

Used To set the prior for the number of fathers.  The list of available priors is set out in the 
input section. 

Input  Distribution type with parameters 
default uniform  -  improper uniform prior 
Example file /examples/subsetting/infile 
See Also motherprior, muprior 
 
 

fatherrange 
 

Used To set the range of possible fathers. 
Input  pair of integers  
default 1 10 

 – a range of 1 to 10 inclusive 
Example file /examples/subsetting/infile 
See Also fatherprior,  motherrange 
 

femalesfile 
 

Used Do you want to output a file of females (mothers) genotypes and maternity share 
Input  0 (no) or 1 (yes) 
default 1 
See Also malesfile 
 
 

format 
 

Used To set the output type 
Input  a letter, N for numbers, or L for letters 
default N  

  
Example file /examples/subsetting/infile 
See Also datafile 
 
 

freqfile 
 

Used To give the filename for the data file with the genotypes of the sampled breeding 
population genotype frequencies.  This file is ASCII with the genotypes given as 
integers with 2 columns for each locus 

Input  name 
default  
restrictions If set, the file must be present in the directory – or in the path given 
Example freqfile:  ../../data/back.data 

 
reads a datafile off.data from the directory ../../data 

Example file /examples/subsetting/infile 
See Also datafile, fatherfile, motherfile 
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freqmodel 
 

Used To determine the modelling used for sampling parents from background 
frequencies.  The models can be simple multinomial sampling if the background 
frequencies contain all the alleles that are seen in the data, or multinomial-
Dirichlet, if there are alleles in the data that are not in the background 
frequencies.  If background frequencies are not provided then a multinomial-
Dirichlet model should be used.   

Input  either 0 (Dirichlet) or 1 (multinomial) 
default 0 
restrictions 0 or 1 
Example Useloc:  1 2 3 

 
Uses the first 3 loci in a paternity analysis 

Example file /examples/subsetting/infile 
See Also usesamp 
 

initialfile 
 

Used Do you want to start the chain from a state that is given in initialfile 
Input  0 (no) or 1 (yes) 
default 0 
Example file /examples/subsetting/infile 
See Also chains 
 
 

knownfathers 
 

Used Do you know which father is associated with offspring ? 
Input  0 (no) or 1 (yes) 
default 0 
Example file /examples/subsetting/infile 
See Also knownmothers 
 

knownmothers 
 

Used Do you know which mother is associated with offspring ? 
Input  0 (no) or 1 (yes) 
default 0 
Example file /examples/subsetting/infile 
See Also knownfathers 
 

malesfile 
 

Used Do you want to output a file of males genotypes and paternity share 
Input  0 (no) or 1 (yes) 
default 1 
See Also femalesfile 
 



 18

 

motherfile 
 

Used To give the filename for the data file with genotypes of potential known mothers 
– if you also make the number of mothers constant using motherprior, then this 
gives the total pool of mothers for the sample.  If this is not set then the set of 
potential mothers are sampled proportional to their probabilitity. 

Input  name 
default  
restrictions If set, the file must be present in the directory – or in the path given 
Example freqfile:  ../../data/mothers.data 

 
reads a datafile off.data from the directory ../../data 

Example file /examples/subsetting/infile 
See Also datafile, freqfile, fatherfile 
 

motherprior 
 

Used To set the prior for the number of fathers.  The list of available priors is set out 
in the input section.  

Input  distribution type with parameters 
default  
restrictions prior should be restriced to positive values  - although if this is not set then the 

actual prior used is conditioned on positive values. 
Example uniform  -  improper uniform prior 
Example file /examples/subsetting/infile 
See Also motherprior, muprior 
 

motherrange 
 

Used To set the range of possible mothers   
Input  pair of integers  
default 1 10 

 – a range of 1 to 10 inclusive 
Example file /examples/subsetting/infile 
See Also motherprior, motherrange 
 
 

muprior 
 

Used The prior for the mutation rate 
Input  prior 
default gamma(2,2000) 
restrictions  
Examples muprior: 0.001 

muprior: gamma(4,1000) 
 

See Also alphaprior, betaprior 
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samples 
 

Used To give the number of samples to be taken from the posterior chain 
Input  integer 
default 1000 
restrictions integer > 0 
Example samples:  1000 

 
takes 1000 samples from the posterior chain 

See Also burn-in,  thinning 
 

seed 
 

Used To give the number of samples to be taken from the posterior chain 
Input  integer 
default 1 
restrictions integer > 0 
Example seed:  1000 

 
takes 1000 samples from the posterior chain 

See Also burn-in,  thinning 
 
 

thinning 
 

Used To determine the thinning of the chain.  If this is set to one, a single Metropolis-
Hastings’  update or Gibbs’  sampling step is attempted per sample from the 
chain.  as the updates are a random scan of the possible steps a thinning value of 
at least 10 is recommended. 

Input  integer  
default 100 
restrictions must be greater than or equal to 1 
Example t hi nni ng 

Collects output after every 10th  Metropolis’  or Gibbs’  step. 
See Also samples, burn-in 
 
 

useloc 
 

Used To determine which of the loci are to be used in the analysis 
Input  List of integers 
default Empty (NULL) – use all data 
restrictions The values must lie between 1 and the number of loci, with no repeats 
Example Useloc:  1 2 3 

 
Uses the first 3 loci in a paternity analysis 

Example file /examples/subsetting/infile 
See Also usesamp 
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usesamp 
 

Used To determine which of the samples are to be used in a paternity analysis 
Input  List of integers 
default Empty (NULL) – use all samples 
restrictions The values must lie between 1 and the number of samples, with no repeats 
Example Useloc:  1 2 3 

 
Uses the first 3 loci in a paternity analysis 

Example file /examples/subsetting/infile 
See Also useloc 
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Appendix 1:  R/S-Plus Code for pre- and post-processing 

 

Figure 1:  Graphical output from the post-processing functions from R version 1.1 for  windows.  This 
figure illustrates the shared paternity for  a full dataset (above diagonal) and par tial data (below 
diagonal) for  the data given in Emery et al. (2000). 

 
The descriptions of output files may have convinced you that the volume of output required to draw 
inferences from a Bayesian MCMC analysis can be overwhelming.  The post-processing of output can be a 
time consuming process; and without care can be very difficult.   The functions within the file parentage.R 
included with the distribution make most of these jobs much more simple.  Furthermore, graphical 
examination of the data can help to guide statistical analyses, and pre-processing functions can make sure 
that the data output to Parentage is of the correct format, and graphical representations of the data can be 
produced 
 

Functions for pre-processing 
 
Before describing all the pre-processing functions I have included an example R pre-processing session and 
a post-processing session.   
 
> sour ce( " par ent age. R" )   # r ead t he par ent age f unct i ons”  
> st r i ng1_r eadst r i ng( " . . / dat a/ st r i ng1. dat a" , " . . / dat a/ br eedi ng. dat a" )  
> pl ot ( s t r i ng1,  mai n=” St r i ng 1” )   # pl ot  t he dat a wi t h t i t l e St r i ng 1 
war ni ng  
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 l ocus 2 al l el e 90 i s not  i n backgr ound  
 l ocus 2 al l el e 126 i s  not  i n backgr ound  
 l ocus 3 al l el e 108 i s  not  i n backgr ound  
 l ocus 3 al l el e 131 i s  not  i n backgr ound  
 l ocus 5 al l el e 263 i s  not  i n backgr ound  
 l ocus 5 al l el e 292 i s  not  i n backgr ound  
 
 

 

Figure 2:  Schematic of Str ing 1 and breeding population information.  This figure produced from 
the pre-processing session in this appendix. 

 
Also included are R-files containing functions to simulate data from particular models.  When combined 
with the parentage program these can help to design parentage surveys experiments. 
 
 


