BATWING USER GUIDE

, A\

Bayesian Analysis of Trees With Internal Node Generation.
Ian Wilson, David Balding and Mike Weale

Correspondence address:

Tan Wilson,
Department of Mathematical Sciences
University of Aberdeen
King’s College,
Aberdeen, AB24 3UE, UK

Email: I.Wilson@maths.abdn.ac.uk

BATWING Home Page: http://www.maths.abdn.ac.uk/ ijw

This guide gives more details of the program described in Wilson, Weale &
Balding 2003. Inferences from DNA data: population histories, evolutionary
processes and forensic match probabilities. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 166: 155-188.

COPYRIGHT NOTICE
(©2002 by Ian Wilson, David Balding and Mike Weale. Permission is granted to copy this document provided that

no fee is charged for it and that this copyright notice is not removed. Guide v1.03, Last Edited: 26 June 2003

http://www.maths.abdn.ac.uk/~ijw

Contents

(1__Introductionl
[1.1 General description| L.
1.2 Modelling assumptions|
[1.3 The Bayesian paradigm|

2 The BATWING software
2.1 Downloading and Installation|

2.1.1 Unpackingon Unix|.
[2.1.2 Unpacking on Windows, and Macintosh|
2.2 The Distribution| oo

2.4 Datasettings|o
2.5 Population model settings|,
[2.5.1 Populationsize] 0oL
[2.5.2 Population structurel oL
2.6 Mutation model settings|
[2.6.1 STR (microsatellite) loci|.

2.9 MCMC control settings|

[2.10.2 Post-processing|o oL

5D Similation

[4 Example session|

[5 Alphabetical listing of infile options|

16

17

22

BATWING | Bayesian Analysis of Trees With Internal Node Generation

MCMC | Markov chain Monte Carlo

MRCA | Most recent common ancestor
SMM | Stepwise mutation model
SNP | Single nucleotide polymorphism
STR | Short tandem repeat (= microsatellite)

TMRCA | Time since MRCA

UEP | Unique event polymorphism

Table 1: Acronyms used in the text.

1 Introduction

1.1 General description

BATWING is a program written in C for the analysis of population genetic
data, written by Ian Wilson, now at the University of Aberdeen. Its initial
development was in collaboration with David Balding, now at Imperial College,
London, and formed part of a research project funded by the UK EPSRC under
the Stochastic Modelling in Science and Technology programme. BATWING is
described in Wilson, Weale & Balding (JRSS A 166: pp 155-188) Please send
comments on this User Guide to I.Wilson@maths.abdn.ac.uk.

BATWING reads in multi-locus haplotype data, and model and prior distri-
bution specifications, and uses a Markov chain Monte Carlo (MCMC) method
based on coalescent theory to generate approximate random samples from the
posterior distributions of parameters such as mutation rates, effective popula-
tion sizes and growth rates, and times of population splitting events. It also
generates approximate posterior samples of the entire genealogical tree underly-
ing the sample, including the tree height, which corresponds to the Time since
the Most Recent Common Ancestor (TMRCA). BATWING does not model
the effects of either recombination or selection, and hence implicitly assumes
that these effects are negligible. Note also that BATWING is intended for
within-species data, and not between-species data for which many phylogenetic
software packages are available.

BATWING is a direct descendant of MICSAT, described in Wilson & Bald-
ing (Genetics 150, pp 499-510, 1998). The principal differences are: (1) in
addition to the stepwise mutation model (SMM) for microsatellite loci, there
are mutation models for unique event polymorphisms (UEP); and (2) the popu-
lation demography is extended from constant size, random mating, populations
(the standard coalescent model), to include population growth and subdivision.

A manuscript giving detailed illustrations of BATWING-based analyses,
“Inferences from DNA data: population histories, evolutionary processes, and
forensic match probabilities”, by Wilson, Weale, and Balding, is currently under
review for publication; a preprint is available from any of the authors.

1.2 Modelling assumptions

Underlying BATWING are various modelling assumptions, many of which are
also assumptions underpinning coalescent theory (see e.g. Nordborg 2001). In
the case that the data are drawn from a single population, two key assump-
tions are that the data form a random sample from the population, and that
the population is random mating. For structured data, drawn from k£ subpop-
ulations, BATWING assumes a common, random-mating ancestral population
which split into two isolated random-mating subpopulations. If k£ > 2 then one
or both of these subpopulations split again, and so on until £ random-mating
subpopulations existed at the time of sampling.

Three models are available for the population size: (0) constant, (1) pure
exponential growth, and (2) exponential growth from a constant ancestral pop-
ulation size. For structured data, the start-of-growth time in model (2) is the
same across all subpopulations, and there is also a common growth rate under
models (1) and (2).

Natural populations are unlikely to satisfy BATWING’s modelling assump-
tions. In particular, BATWING assumes that population splitting events are
instantaneous, with no subsequent migration, whereas in reality splits may be
gradual and followed by migration. However, more realistic models will almost
certainly have too many parameters for useful inferences to be drawn. We have
tried to find a satisfactory compromise between reality and tractability, so that
the most important features of the data are exploited to quantify the major
underlying demographic events. It must be recognised that some questions
of interest about historic demography cannot be answered from present-day
genetic data alone.

1.3 The Bayesian paradigm

BATWING implements the Bayesian paradigm for statistical inference. Most
scientists have been trained in the classical paradigm, which dominated 20th
century science. The Bayesian approach is older, having been the predominant
mode of inference in the 19th century, but has returned to prominence in recent
years, due in large part to the availability of fast computing, and algorithms
such as MCMC.

A key feature of the Bayesian paradigm is that a probability distribution is
associated with all the unknowns. The investigator specifies both a prior dis-
tribution, representing knowledge about the unknowns before the present data
are taken into account, and a likelihood function which assigns probabilities to
the data given values for the unknowns. Bayes Theorem can then be employed
to convert the prior distribution and likelihood into a posterior distribution.

Information used in formulating the prior may come from previous studies of
related systems, theory, and informal judgement. Sometimes scientists choose to
downweight or ignore available prior information, and formulate a diffuse prior,
giving support to a wide range of values for the unknowns. Although there
is not usually a unique prior distribution, and hence not a unique posterior,
computational power is now available to explore a range of priors: often the

posterior is dominated by the likelihood, so that the posterior distribution is
essentially invariant over a wide range of priors. If not, the investigator learns
the crucial information that his/her data are only weakly informative about
some parameters of interest, and hence background information must be chosen
with care and accurately reported in any publication.

BATWING offers a range of probability distributions from which investiga-
tors can choose priors for mutation rates, effective population sizes and growth
rates, and population splitting times (see Section . For unknowns which
are properties of the genealogical tree, such as the TMRCA, BATWING of-
fers several models from coalescent theory, outlined above in Section and in
more detail below in Section[2.5] Note that we speak of coalescent models, even
though they specify priors for the unknown genealogical tree. Although model
and prior are usually thought of as distinct, the distinction is not fundamental
and is a matter of custom and convenience.

2 The BATWING software

2.1 Downloading and Installation

The main distribution, and the only available for unix systems, is in the file
batwing.tar.gz, a zipped tar file. The first step is to download this file which
is available at http://www.maths.abdn.ac.uk/ ijw. If you work under Windows
or Macintosh (MacOS 8.0 or above) systems, executable files batwing.exe and
MacBatwing.hqx are also available at the same site (but batwing.tar.gz is
still needed for documentation and other files).

2.1.1 Unpacking on Unix
The downloaded file, batwing.tar.gz, is unpacked using these command

gunzip -c batwing.tar.gz | tar xf -

on a command line. To produce the executable file type make (or alternatively
on some systems gmake). This should make the batwing, sample and prior
programs and put them in the bin subdirectory.

2.1.2 Unpacking on Windows, and Macintosh

Under these systems any decompression software, such as winzip should unpack
batwing.tar.gz.

2.2 The Distribution

The distribution when unpacked will extract the files into a directory batwing
with subdirectories bin (executable files), data (data files), examples (example
files), doc (documents, including this Guide), sample (files for programs to
sample from the model) and src and R (source files). To run the programs
from a command line you will need to add the bin directory to your path, or
copy the program into the directory with your input files.

http://www.maths.abdn.ac.uk/~ijw

In this document we use this font to indicate BATWING parameters and
filenames, and this font for variable names. File listings use a fixed-width font.
The first line of a file listing gives the path to the file in the distribution, to
enable readers to find the file in the BATWING distribution. The # symbol is
used to denote a comment, which is ignored by BATWING.

2.3 BATWING command line

The unix and windows versions of BATWING are command line driven. (al-
though BATWING can be run by double-clicking under a Windows environ-
ment). Syntax:

batwing infile outfile <seed>

The <> notation indicates that seed is optional; infile and outfile are re-
quired and will be prompted for if not supplied.

infile The input filename; the default infile is assumed if not specified, e.g. if
BATWING is run by double-clicking batwing. exe in a Windows environ-
ment. Can contain settings for: (1) data file path; (2) models and prior
distributions and (3) MCMC control parameters, such as the number of
outputs and the number of update steps between outputs. All settings are
made via the syntax name: value on a separate line. Default values
exist for many settings, see Sections [2.4] to [2.9) and Section

outfile The output filename stem; default out. Various output files are created
with this stem and different extensions: outfile.par contains a copy of
the infile information and information about MCMC acceptance rates;
outfile.iit, outfile.end, and outfile.z (where z is an integer) give
states of the genealogical tree and other parameters visited by the MCMC
algorithm, while outfile (without an extension) gives the parameter val-
ues output by the algorithm. See Section [2.10]

seed Seed for the random number generator, default value 1. Can also be
specified in the infile but a command line seed takes priority.

2.4 Data settings
The location of the observed data is specified by a line of the form
datafile: <<path/>filename>

in the infile. If path/ is omitted the current directory is assumed, otherwise
the path should be specified relative to the current directory; default setting is
datafile.

Data files have one line per haplotype, with one or more spaces separating
the alleles at distinct loci. Following #, the remainder of the line is ignored
(the whole line is ignored if # is the first non-space character).

First come the UEP alleles which may be coded by any two single alphanu-
meric characters (e.g. “0” and “1”7, or “A” and “T”). Next come the microsatel-
lite, or STR, (= short tandem repeat), alleles, coded by an integer value giving

the number of tandem repeats at that locus (a constant added to each allele
length at a locus has no effect on inferences; also, arbitrary numeric allele labels
are allowed under the k-alleles model, Section . Missing STR. data can be
specified using —1.

If the data are drawn from several distinct populations (i.e. migmodel=1,
see Section the positive integer label specifying the source subpopulation
is stored in a file locationfile, in the same way as for datafile. Rows of
the locationfile should correspond to the rows of the datafile. Subpopu-
lation codes may be any positive integers. Missing location information can be
specified using —1; if this is used the total number of subpopulations must be
assigned to Npopulations in the infile.

2.5 Population model settings
2.5.1 Population size

The population growth model is specified via sizemodel which can be assigned
one of three values (default 0):

0 Constant (effective) population size N (chromosomes); in this case BATWING
implements the standard coalescent model.

1 Pure exponential growth at rate alpha to a current population size N.

2 Exponential growth at rate alpha from a constant-size ancestral popula-
tion of size N, with growth starting at (scaled) time beta before present.

2.5.2 Population structure

Two options are available for population structure. Setting migmodel=0 speci-

fies that the data are drawn from a single population (the default). If migmodel=1
then the subpopulation from which a haplotype in datafile is drawn must be

specified by a positive integer on the corresponding row of locationfile, with

—1 indicating missing data. If there are missing data then Npopulations must

be assigned the number of subpopulations. If no data are missing, Npopulations
is set automatically to the number of distinct codes used in locationfile.

2.6 Mutation model settings
2.6.1 STR (microsatellite) loci

The default mutation model is the SMM, under which the repeat number
changes by one at each mutation event, with decreases and increases being
equally likely. The default prior distribution on the ancestral allele size is uni-
form on the positive integers. This is an improper prior, but always leads to a
proper posterior distribution. Although negative allele lengths are not excluded
under our model, positive observed states and a positive ancestral state means
that intermediate negative states are extremely unlikely.

An alternative is the k-allele mutation model, under which a mutant allele is
equally likely to take any one of the k possible states, irrespective of the previous

state. To specify this model, kalleles should be assigned a list (separated by
spaces) of the numbers of alleles possible at each locus, the loci having the same
order as in datafile.

Under either SMM or k-alleles model, by default all loci have the same
mutation rate; this default can be explicitly set by assigning locustypes the
integer 1. If locustypes is assigned an integer equal to the number of STR
loci, there is a distinct mutation rate for each locus. The only other setting
permitted for locustypes is a list of positive integers whose sum is the number
of STR loci. If for example there are 11 STR loci and the list is “3 6 2”7, then
there are three distinct mutation rates, one common to the first three loci, one
shared by the next six loci, and one shared by the final two loci. Clearly, the loci
have to be ordered so that loci with the same mutation rate are neighbouring.

2.6.2 UEP sites

Unique Event Polymorphism (UEP) sites are polymorphic sites at which only
two alleles are observed and the investigator assumes that a single historical
mutation event was responsible for the observed polymorphism. These may
include insertion/deletion polymorphisms, such as an Alu insertion, or single-
nucleotide polymorphisms (SNP). The number of UEP sites should be assigned
to infsites (default: 0).

There is an ascertainment problem common to many genetic data types
but which is often particularly acute for UEP data. Such sites may have been
included in a genetic survey because they were known in advance to be poly-
morphic; possibly they were known to be highly polymorphic in several popu-
lations. Inferences which may validly be drawn from a site ascertained in this
way may differ substantially from valid inferences had exactly the same data
been observed at a site which was chosen “at random”.

To allow some investigation of ascertainment effects BATWING allows three
ways to incorporate UEP sites into the analysis, selected by setting inftype
(default is 0):

0 Conditions on there being a single mutation at each UEP site. Hence UEP
positions on the tree contribute to the tree likelihood, and the posterior
density, but no inference is drawn about the mutation rate.

1 Assumes the same UEP mutation rate for all UEP loci, with a uniform
prior. UEP positions within the tree contribute to the tree likelihood and
posterior density.

2 Only trees consistent with the UEP data are permitted, but UEP data
are not used in any other way.

For insertion/deletion polymorphisms, it may be reasonable to assume that
the ancestral state is known. For SNP sites modelled as a UEP, the ancestral
state is typically unknown. If the parameter ancestralinf is assigned a UEP
haplotype, this is taken to be the haplotype at the root node (i.e. the haplotype

of the MRCA at the UEP loci). To use this feature, UEP alleles must be spec-
ified in the same way both in the datafile and for ancestralinf. Currently,
an ancestral state can be assigned either to all or none of the UEP loci.

2.7 Time scaling and parameterisation options

BATWING follows the coalescent theory convention of working with times (such
as the TMRCA, or a population split time) expressed in units of N generations.
Time 0 corresponds to the present, and large positive times correspond to far
back in the past. The value of N used by BATWING for the time scaling is the
current effective population size (IV.) under model 1, but the ancestral effective
population size (N,) under model 2. The reason for this choice is that N, is
not defined under model 1, whereas under model 2 it is IV, that has the most
important effect on the data; NN, is realised only instantaneously.

BATWING users can choose to work either with the unscaled growth rate
alpha and mutation rate mu, or the scaled growth rate omega = N X alpha
and scaled mutation rate theta = 2N x mu (the “2” appears in the definition
of theta for historical reasons). A feature of working with scaled rates and
times is that the likelihood under BATWING’s modelling assumptions does
not depend on N, which may thus be eliminated from any analyses. This
reduction in the number of unknowns may lead to more precise inferences about
the remaining unknowns. However, if N is unknown then interpretation of the
results is severely limited because times and rates cannot be expressed in terms
of generations or years.

For this reason it is often preferable to work with unscaled rates, together
with explicit assignment of prior and posterior distributions to N. A scaled
time output by BATWING can then be converted into an unscaled time (in
generations) via multiplication by the prevailing value of N (a further multi-
plication by generation time leads to a time in years). Note, however, that
inferences about unscaled parameters usually depend more sensitively on the
prior specification than do inferences for the scaled parameters. For example,
when the sample size is very large the data may convey substantial information
about N x mu so that the posterior for theta may be effectively independent of
the prior, but how this information is allocated to N and mu separately may
depend sensitively on their joint prior distribution.

A further parameterisation option is offered by BATWING under growth
model 2, where users can choose to work either with a (scaled or unscaled)
growth rate or with kappa (the natural logarithm of current to ancestral pop-
ulation sizes). Since

N. =N 6Na><alpha><be1fa
c — a Y
it follows that
kappa = N, X alpha X beta = omega X beta.

The parameterisation options available within BATWING under the three
population size models are summarised in Table 2. An option is selected by
assigning a prior distribution to the corresponding parameters (see Section

Population Parameter
size model | code | N mu theta alpha omega kappa beta
0 U * *
S *
1 U * * *
q * *
2 U * * *
U’ % k *
g * *
S7 * k

Table 2: Parameterisations available within BATWING under the different
models for population size (see Table 3 for brief definitions of the parameters).
Users must choose one of the parameterisation options and assign a prior dis-
tribution to each of the parameters indicated by a * in the corresponding row.
The code U denotes that N is included as a parameter and hence inferences
may be obtained for unscaled rates and times; S denotes that only inferences
about scaled rates and times are possible. Under model 2, the ’ denotes that
kappa is included instead of a growth rate parameter.

below). A brief summary of all BATWING parameters that may need to be
assigned a prior distribution is given in Table 3.

2.8 Prior distributions

The distributions supported by BATWING for univariate parameters are:

uniform< (v1,v2) >; uniform on the interval (v1,v2); default interval is
(0, 00), which specifies an improper prior.

constant(v1), or just vl.
normal(v1,02); mean = vl; SD = v2.

lognormal(v1,v2); if X has this distribution then log(X) has the normal(v1,v2)
distribution.

gamma(v1,v2); mode = (v1—1)/v2, mean = vl/v2.

All the parameters within one of the parameterisation options shown in
Table 2 must be assigned a prior distribution from the above list. In addition,
in models with population structure, split and prop must also be assigned a
prior. The latter is a multivariate parameter, and the only prior distribution
available is the dirichlet(v1,v2,...,vn). The case vl =v2 =... =vn =1 gives
the (multivariate) uniform distribution. The case v1 = v2 = ... = vn = 2 is the
default prior. When n = 2 the dirichlet is also known as the beta distribution.

Prior distributions for scaled genealogical times are assigned implicitly via
choice of the demographic model; for example, under model 0 (the standard
coalescent) the prior TMRCA when the sample size is two has the exponential

10

Parameter | Description and comments

N Effective population size (haploid); current (N,.) under
model 1, ancestral (N,) under model 2
mu Mutation rate; a list of prior distributions is required

if locustypes # 1

theta theta = 2N X mu

alpha Unscaled growth rate (per generation); only positive
values allowed; if migmodel=1, all subpopulations
have the same growth rate

omega omega = N X alpha

kappa kappa = log,(N./N,) = N, X alpha X beta

beta beta, the time at which population growth starts
split Time of the first population split

prop Proportion of the total population size taken up

by each subpopulation; dirichlet is only permitted
prior family and dirichlet(2,2,...,2) is the default

Table 3: Summary of the BATWING parameters that may need assignment of a
prior distribution, according to the parameterisation option selected from those
given in Table 2. The final two parameters are used whenever migmodel=1.

distribution with expectation and SD both equal to 1 coalescent unit; as the
sample size gets large, the prior expectation and SD of the TMRCA approach
2 and 1.08 units, respectively.

The prior for unscaled genealogical times is assigned implicitly by choice of
demographic model and the choice of prior for N; the prior expectation of the
unscaled TMRCA (in generations) of a large sample is approximately twice the
prior expectation of V.

To assign a prior distribution, append “prior” to the parameter name
shown in Table 3, followed by a colon, space, and the distribution, all on one
line of the infile. For example,

thetaprior: gamma(20,2)

assigns a gamma prior to theta. The prior mean is 10 and the prior mode is
9.5.

If the ancestral states at the UEP loci are known, then these values can be
fixed in the BATWING analyses via ancestralinf. For example,

ancestralinf: 00000

assigns 0 to the ancestral state of the five UEP loci. If ancestralinf is not set,
the two states at each locus are a priori equally likely.

2.9 MCMC control settings

The starting state of the genealogical tree and other parameters may be chosen
automatically by BATWING, or a starting tree may be specified in Newick for-
mat (see Section [2.10.1]) using an initialfile assignment in the infile. The

11

latter option is useful for resuming a BATWING run which has been interrupted
either by the user or by a computer failure.

initialfile contains complete information on an instance of a tree from a
previous MCMC run — such as those output as outfile.iit, outfile.end, or
as outfile.x (where x is an integer) — these files consist of information about
the tree in Newick format and information about the other parameters and the
population tree (if appropriate). New MCMC settings can be specified via the
infile as usual. If seed is specified in the infile, it takes precedence over
the initialfile settings (and a command line seed takes precedence over an
infile setting). All other settings in the infile (e.g. priors) are over-ruled
by the settings specified in the initialfile.

If the initial tree is not specified, it is generated by BATWING, with the
badness parameter controlling the suitability of this tree for the data: 1 spec-
ifies a random tree, chosen independently of the data, while 0 specifies a tree
obtained via a parsimony heuristic, with each coalescence occurring between
between the two nodes with the most similar haplotypes. A value between 0
and 1 allows a mixture between these two extremes. See Wilson & Balding
(1998) for more details.

BATWING allows warmup to be set in the infile. However, this merely
specifies an additional number of outputs to be generated. No portion of a
BATWING run is automatically discarded: the user must explicitly choose
how many of the initial outputs to discard as burn-in. Therefore, use of warmup
is optional, and if used a warning message is generated.

One important diagnostic tool for an MCMC run are the plots of the au-
tocorrelation function (ACF) of the output values, both for the parameters of
interest and for the log-likelihood. Ideally, the ACFs should be as small as
possible. However, it is usually not worthwhile investing in reducing the ACF
provided that the values decrease approximately monotonically to zero, and be-
come negligible at lag much less than the square root of the number of outputs.
The two BATWING parameters controlling the “thinning” of the BATWING
output, and hence the ACF, are Nbetsamp, which gives the number of changes
that are made to model parameters between sampling occasions, and treebetN,
the number of changes to the tree attempted between changes in the model pa-
rameters. We make more changes to the tree than to the model parameters
because tree changes are computationally cheap.

The appropriate balance between Nbetsamp and treebetN requires experi-
mentation, and depends on the number of loci and the sample size. The effects
of varying them are illustrated by the three infile shown at the top of Fig-
ure 1. Resulting autocorrelation plots for theta and L, up to lag 30, are shown
at the bottom of the figure. Increasing treebetN at the cost of a proportional
reduction in Nbetsamp has a slightly deleterious effect on the autocorrelations,
while decreasing computation times by about 25%. All the ACF shown in the
figure would usually be regarded as acceptable (the number of outputs is the
default 1000).

12

#../examples/thinning/thinl.in
datafile: ../../data/examples/exl.data
treebetN: 2

Nbetsamp: 50

#../examples/thinning/thin2.in
datafile: ../../data/examples/exl.data
treebetN: 5

Nbetsamp: 20

#../examples/thinning/thin3.in
datafile: ../../data/examples/exl.data
treebetN: 10

Nbetsamp: 10

Series ol$theta Series 02$theta

o | o |
— —
oo} 0
S] S]
©0 o
o 7 o 7
'8 [T
Q O
< < | < < |
o o
N o
o 7 \; o 7
o fililnz--zaz------ o HithHhoo- - b -
o | _________™‘TmorT o | _____-Tmm T m___T
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Lag Lag
Series 01$L Series 02$L
o o
— —
0 o
S] S]
[} ©
c 7 c 7
[T [T
g < 2 < |
o o
~ | ~
o o
o ft-fo-os---no--- H s T i
i o g 444 e b

15 20 25 30

Lag Lag

13

ACF

ACF

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

02 04

0.0

Series 03$theta

: U“hr ---------
I AL LA 1 1} LA
T T T T T T T
0 5 10 15 20 25 30
Lag
Series 03%$L
-|>|I--I ------------
Lo __T1IrT
T T T T T T T
0 5 10 15 20 25 30

2.10 Output

BATWING generates a text file outfile, of which each line after the first
contains a space-separated list of floating point or integer numbers giving the
values of the unknowns at one instant of the BATWING run. The first line of
outfile gives names of the output variables, which we now briefly describe:

1.

10.

11.

12.

13.

14.

11 _times, the log-likelihood of the coalescent times of all interior nodes
in the genealogical tree.

(if there are STR loci) ll_mut, the log-likelihood of all the STR mutation
events that occur between all nodes in the genealogical tree.

(if infsites > 0) 11_inf, the log-likelihood of all the UEP mutation
events that occur between all nodes in the genealogical tree. If inftype
is set to 2 in infile, the value 0 is always output (see [2.6.2))

. 11 _allpriors, the log-prior probability of the current values of all the

model hyperparameters. This column is also a catch-all for all things not
covered in the first 3 columns. For example, if population splitting is
specified in the infile, then the log-likelihood of all population splitting
times is also included here. The sum of the first 4 columns gives the
log-posterior probability (up to a constant).

. the STR mutation rate, either unscaled (mu) or scaled (theta). If separate

rates have been specified for different STR loci using locustypes, then
they all appear here in separate columns.

(if a prior has been assigned) N, the effective population size (N if
sizemodel=1, N, if sizemodel=2).

(if inftype=1) the UEP mutation rate.

. T, the TMRCA, or time since the most recent common ancestor of the

sample, in coalescent units (multiply by N to obtain TMRCA in genera-
tions).

. L, the total branch length of the tree, in coalescent units.

(if sizemodel # 0) the population growth rate, either unscaled alpha or
scaled omega.

(if sizemodel=2) beta, the time at which growth starts.
(if sizemodel=2) kappa = N, X alpha X beta = omega X beta.

(if infsites > 0) the next infsites columns give the binary states of
the UEP loci at the root node of the tree (will always equal ancestralinf
if set).

(if migmodel=1) the next k columns, k= # subpopulations, give the rel-
ative subpopulation sizes.

14

15. (if migmodel=1) the next 2(k—2) columns are pairs of numbers for each
population merging event, starting with the most recent one and ending
with the penultimate one. The first number indicates which clades merge
at this point. To interpret this, first convert the number into binary form
with & digits in the order corresponding to the locationfile codes (with
Pop 1 as the least significant digit and Pop k as the most significant digit);
1s indicate which populations are beneath this node. The second number
of the pair gives the time of the merging event. After these k—2 pairs of
columns, a final column gives the time of the final coalescence event.

16. (if infsites > 0 and UEPtimes=1) the next infsitesx2 columns are
pairs of numbers for each UEP locus, giving the descendent and ancestral
node times of the branch on which the UEP mutation occurred.

17. (if countcoals=1) the number of coalescences occurring more recently
than the start of growth.

When BATWING has finished running, it creates an outfile.par text file
with details of model settings used in the analysis and acceptance rates for the
following Metropolis-Hastings proposals:

cutjoin : moving a node to somewhere else in the tree.
times : changing the time of a node.

haplotype : changing the STR haplotype of a node.

splitprop (if migmodel = 1): changing the subpopulation size proportions.

splittime (if migmodel = 1): changing one of the subpopulation split times.

mu : changing the value of the STR mutation rate.

N : changing the value of N (if used).

alpha (if sizemodel # 0): changing the value of alpha or omega.
growth (if sizemodel = 2): changing the time of start of growth.
infroot (if infsites > 0): changing the MRCA UEP haplotype.

In addition to the outfile.par file, BATWING also generates a number of
text files providing a detailed description the current state of the genealogical
tree: outfile.1 ... outfile.x describe the tree at regular intervals, where z =
samples/picgap; outfile.iit and outfile.end describe the tree at the start
and at the end of the process. Each of these files starts with a description of the
current instance of the tree in newick format, suitable for viewing by “Treeview”
and other packages. The information for each node includes its ID number, the
UEP and STR haplotypes, and the time in coalescence units. Following the
newick tree description, there is information on the current state of the random
number generator and values of the model parameters. This information allows

15

a further BATWING run to continue from exactly the same place using the
initialfile option in the infile. Following the hyperparameter information,
a final line provides details of the current tree in exactly the same format as it
would appear in a line of the outfile.

If outroot is set in the infile, by including a line

outroot:

in the infile, then the MRCA haplotype will be output. If UEPtimes is set
then the minimum and maximum time at which each UEP mutation could
have occurred are output. If countcoals is set the number of coalescences
more recent than the start of growth is output.

2.10.1 The newick file format

The newick file format is a way of describing trees in computer files. A number

of documents about it are available at:
http://evolution.genetics.washington.edu/phylip /newick_doc.html
http://evolution.genetics.washington.edu/phylip /newicktree.html

2.10.2 Post-processing

The use of Splus (commercial) or R (freely available at http: //cran.r-project.org)
is recommended for post processing of the output, however most simple analyses
can be performed using spreadsheet software such as excel.

A set of S/R functions is available for reading and writing output from
BATWING, and is included in the distribution as R/batwing.R. Appendix 1 of
this document describes their use and appendix 2 gives shows their use for our
example analysis.

It is recommended that analysis of output from BATWING is done using
S-plus (commercial) or R (freely available from

http://cran.r-project.org

The file batwing.r in the distribution has functions for input and analysis of
output from batwing — and organises the output into a more usable format — as
well as producing tables for input into latex documents and word processors.

BATWING allows the output of trees from the posterior distribution, and in
order to look at these a tree drawing package is needed. A number of programs
are available for tree drawing, some are listed at:

http://evolution.genetics.washington.edu/phylip /software.html

These programs were designed for phylogenetic (species) trees, but can also
be used for genealogical trees.

3 Data Simulation

The two programs SAMPLE and PRIOR, distributed with BATWING in the
directory sample, can be used to simulate data for testing. They use an infile
similar to that for BATWING, but without a datafile assignment. Instead

16

http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://cran.r-project.org
http://cran.r-project.org
http://evolution.genetics.washington.edu/phylip/software.html

they require samplesize to be assigned a list of sample sizes for the simulated
data (if the list is of length one, an unstructured sample is simulated).

For SAMPLE we also need to assign a value to nSTR, the number of STR
loci.

An optional parameter is height, which if assigned a positive real number
hwval results in a tree with approximate height hval, obtained by sampling trees
until one is within 0.1% of hval.

The output files for SAMPLE are:

outfile a text file with data in a format for input into batwing.

<out>.data a text file includes the tree in newick format and includes more informa-
tion on other parameters.

PRIOR gives output in the same form as BATWING, but is samples from the
prior distribution only, ignoring any observed data.

4 Example session

This session is an example of a test session using BATWING, SAMPLE, and
R and Treeview for postprocessing.
SAMPLE was used to simulate data using syntax:

sample samplein sampout

The input file samplein specifies 10 STR. loci, no UEP loci, a sample size
of 10 haplotypes (Figure 2, top).

Two output files are produced: sampout, which lists the simulated data
(Figure 2, middle), and sampout.data which is a newick format file containing
information about the total length of the tree and the height in the last line
(Figure 2, bottom). The tree can be displayed using the program treetool
(solaris) or treeview (windows) or other programs (Figure 3).

We analyse the data in sampout using BATWING with syntax:

batwing infile out

The infile (Figure 3, bottom) calls for 11000 BATWING parameter outputs,
and 220 (= 11000/500) tree outputs. The file out.par repeats information
from infile, together with MCMC acceptance rates (Figure 4). The file out
consists of 11000 rows each giving values for the six parameters: 1lltimes,
1llmut, llprior, theta, T, and L (Figure 4, bottom). The 220 tree outputs are
given in files out.x, for x = 1,2,...,220.

We post-process the parameter values in out using either R or Splus using
the commands

> o0 <- read.table("out",header=T) # read in the data

> 0 <= 0[-c(1:1000),] # remove the first 1000 rows as a burn in
> median(o[,"T"]) # calculate the median of T

> mean(o[,"theta"]) # calculate the mean of theta

17

examples\sessionl\samplein
input file for example 1
samplesize: 10

theta: 10

nSTR: 10

seed: 16

examples\session\sampout
output file generated from above input
332178231011
5547912343
2513156244
331578231113
5547912343
1762332321
1423366213
2683424331
442179111112
1522366242

examples\session\sampout.data

output file generated from above input

(C((’1: 2-6-8-3-4-2-4-3-3-1’: 0.0820825,’2: 1-7-6-2-3-3-2-3-2-1’: 0.0820825)’3:
2-6-7-3-4-2-3-3-3-1": 0.91005, (’3: 1-5-2-2-3-6-6-2-4-2’: 0.0751013,(’4: 1-4-2-
3-3-6-6-2-1-3’: 0.0587582,’5: 2-5-1-3-1-5-6-2-4-4’: 0.0587582)°6: 2-5-2-3-3-6-6-
2-4-4’: 0.0163431)’6: 2-5-2-3-3-6-6-2-4-4’: 0.917031)’6: 4-5-3-2-5-3-3-2-6-5":
0.0627099, (’6: 5-5-4-7-9-1-2-3-4-3’: 0.0216645,’7: 5-5-4-7-9-1-2-3-4-3’: 0.02166

45)°8: 5-5-4-7-9-1-2-3-4-3": 1.03318)’8: 5-5-3-3-4-3-3-1-6-5’: 0.972001, ((’8:
3-3-2-1-7-8-2-3-10-11’: 0.143024,’9: 3-3-1-5-7-8-2-3-11-13": 0.143024)°10: 3-
3-2-2-7-8-2-2-11-12’: 0.0448991,°10: 4-4-2-1-7-9-1-1-11-12°: 0.187923)’11: 3-3-

2-2-7-9-3-2-11-12": 1.83892)°11: 8-1-6-1-5-6-2-2-8-87;
summary

10 samples with 10 STR loci and O infinite sites.

theta 10

height 2.02684 length 6.66922

Figure 2: Listing of the samplein file used in the example (top), and the
resulting sampout and sampout.data files (middle and bottom).

18

1: 2-6-8-3-4-2-4-3-3-1

2:1-7-6-2-3-3-2-3-2-1

— 3:1-5-2-2-3-6-6-2-4-2

— 4:1-4-2-3-3-6-6-2-1-3

— 5:2-5-1-3-1-5-6-2-4-4

[6: 5-5-4-7-9-1-2-3-4-3

l 7:5-5-4-7-9-1-2-3-4-3

’7 10: 4-4-2-1-7-9-1-1-11-12

8: 3-3-2-1-7-8-2-3-10-11

9: 3-3-1-5-7-8-2-3-11-13
0.1

\examples\sessionl\infile

input file for analysis of sample output
datafile: sampout

tree_concensus: 1 #switch on concensus output
picgap: 500

samples: 10000

warmup: 1000

treebetN: 10

Nbetsamp: 20

thetaprior: uniform(0,100)

seed: 11

Figure 3: Tree output from treeview, using sampout.data file (top) and listing
of infile for example (bottom).

19

\examples\sessionl\out.par
output file from example
datafile: sampout

outfile: out

infsites: O

Analysis Details

sizemodel: O
migmodel: O

Priors

thetaprior: uniform(0,100)

Program Control Details
badness: 0.01

seed: 11

samples: 11000
Nbetsamp: 20

treebetN: 10
pop_consensus: 0O
tree_consensus: 1

proportion accepted:
cutjoin 0.00898727
times 0.256097
haplotype 0.34313
theta: 0.0701045

\examples\sessionl\out

output file from example

lltimes 1llmut llprior theta T L

-5.85066 -258.997 -4.60517 27.7094 0.632908 2.82459
-4.40921 -266.008 -4.60517 60.3782 0.537683 2.36435
-5.01031 -255.684 -4.60517 47.6446 0.536507 2.51192
-3.6966 -242.024 -4.60517 38.9361 0.536507 2.157

Figure 4: Listing of output files out.par and out (first five lines) for example.
See Figure 3 for infile.

20

gres <- function(x)

c(mean(x) ,median(x),quantile(x,probs=c(0.025,0.975)))

sets up a functions that calculates mean median and interval
apply(o,2,qres)

applys function over all columns (see splus/r documentation).

V V V VvV V

note that the # symbol again indicates a comment.

obtain the means, medians and equal-tailed 95% posterior intervals shown
in Table @4l

mean median 95% Interval

lltimes | -8.16 -7.86 (-14.45,3.702)
lmut | -246.0 -245.6 (-268.4,-225.6)
theta | 16.83 1531 (7.685,35.14)
T 1.172 1.566 (0.6643,3.65)
L 533 5.041 (2.34,10.11)

Table 4: Posterior 95% equal-tailed intervals obtained by post-processing the
results in out.

21

5 Alphabetical listing of infile options

alphaprior used: see above default: none
The prior for alpha, the population growth rate, per generation. Currently,
only positive values of alpha are allowed. If migmodel = 1, all subpopulations
continue to grow at the same rate.

example— alphaprior: gamma(1,100)

ancestralinf wused: when infsites # 0 default: NULL
If set, constrains the root node to have the UEP haplotype specified; value
should be a list of space-separated 0/1 characters, with length = infsites.
example— ancestralinf: 0 1 0 0 0 #5 UEP loci

badness used: if initialfile not set default: 0.01
A real number used to obtain the initial genealogical tree of the MCMC
chain. A value >= 1 means the initial tree joins the data sample nodes
at random, without regard to their haplotype. A 0 value means that the
first coalescence (going back in time) happens between the two most similar
nodes, and so on. A value between 0 and 1 gives a compromise between
these two extremes. See Wilson & Balding (1998) for more details.
example— badness: 0.1

betaprior used: see above default:
The prior for beta, the time at which population growth starts.
example— betaprior: gamma(2,1)

countcoals used: if sizemodel=2 default: 0
This is a tool for investigating the convergence behaviour of the chain. If set

to “1”7, the number of coalescences more recent than the start of growth is
included in each output.

example— countcoals: 1

infsites wused: always default: 0
The number of UEP loci.
example— infsites:

inftype wused: whenever we have UEP loci default: 0
Code for treatment of UEP loci. 0 = Use UEP data to condition permissible
genealogical trees, but not to affect the tree likelihood or posterior density
in any other way. 1 = assume the same UEP mutation rate for all UEP loci,
with a uniform prior. UEP positions within the tree contribute to the tree
likelihood and posterior density.

example— inftype: 0

22

initialfile wused: optional default:

The name of a .iit file containing complete information on an instance of
a tree from a previous MCMC run. Used to set up all information on the
data, model settings and prior setting as specified in the file, and it sets the
random number seed to the same value that it was when the .iit file was
saved. MCMC settings still can be specified in the infile (e.g. samples,
Nbetsamp, treebetN, warmup, seed). If seed is specified in the infile, it
takes precedence over the initialfile settings. If seed is specified in the
command line, it takes precedence over the infile settings. All other set-

tings in the infile (e.g. priors etc.) are over-ruled by the settings specified
in the initialfile.
example— initialfile:

kalleles used: whenever we have STR loci default: NULL
Determines whether a k-alleles model is used for mutations of the STR loci.
Value is a list of the numbers of alleles permissible at each locus. Under the
k-alleles model, a mutation causes a change to any of the k alleles (including
the original allele) with equal probability. If not set, the SMM is used, in
which a mutation causes the allele repeat number to increase or decrease by
one unit with equal probability.

example— kalleles: 4 4 4 4 # for 4 STR loci

kappaprior wused: see above default: none
The prior for kappa=NOxalphaxbeta). kappa is the natural log of the ratio
of current population size to initial population size.

example— kappaprior: gamma(5,1)

locustypes used: always default: 1
If =1, all STR loci have the same mutation rate. If = # STR loci, each
STR locus has a distinct mutation rate. If = a list of integers whose sum =
STR loci, e.g. “3 6 2”7, then the first 3 STR loci have the same mutation
rate, then the next 6 have their own mutation rate, and then the final 2 have
theirs.

example— locustypes: 3 6 2

meantime wused: always default: 0
If set to 1 the mean pairwise coalescence times between individuals in the
sample is output.

example— meantime: 1

migmodel wused: always default: 0

0 = No population substructure; 1 = samples drawn from subpopulations
specified in locationfile
ezample— migmodel: .

23

muprior used: see above default: none
The prior distribution(s) for the STR mutation rate. Value is a list of dis-
tributions, of length according to value of locustypes.

example— muprior: gamma(1,1000)

Nbetsamp wused: always default: 10
The number of times that changes to hyperparameters are attempted be-
tween outputs.

example— Nbetsamp: 10

npopulations wused: if missing data in locationfile default: 0
Specifies the number of sub-populations. Normally, this is assigned auto-
matically to the number of distinct calues in locationfile.

example— npopulations: 3

Nprior used: see above default: none
The prior for N, the effective population size (N, if sizemodel=1, N, if
sizemodel=2).

example— Nprior: lognormal(9,1)

omegaprior used: see above default: none
The prior for N x alpha.
erample— omegaprior: uniform

outroot wused: when infsites > 0 default: none
if this is set then the root haplotype is output.
example— outroot: 0

picgap used: always default: 100
The number of BATWING parameter outputs between each output of the
tree to a outfile.z file.
example— picgap: 1000

pop_consensus used: if there is a population tree default: 0
If this is set then an additional output file outfile.pcsn is output, giving a list
of the population tree shapes in newick format. This can be used as input
to a program like CONSENSE from Phylip to produce a consensus tree.
example— pop_consensus: 1

propprior used: if migmodel =1 default: Dirichlet(2,2,...,2)
The prior for proportion of the total population size taken up by each geo-
graphic group. Must be Dirichlet.

example— propprior: dirichlet(4,4,4)

24

samples wused: always default: 1000
The number of outputs from a BATWING run (beyond any specified by
warmup). Each output is written on a separate line in the outfile. N.B.
samples has nothing to do with data sample size.

example— samples: 2000

seed used: always default: 1
A long unsigned integer specifying the random number generator seed. The
order of precedence for seed assignment is: Command Line > infile >
initialfile > default.

example— seed: 123

sizemodel wused: always default: 0
Code for the population growth model: 0, constant population size; 1, ex-
ponential growth at rate alpha at all times; 2, exponential growth at rate
alpha from a constant-size population, with growth starting at time beta.
example— sizemodel: 2

splitprior used: if migmodel=1 default: none
The prior for the time of the first population split.
example— splitprior: gamma(1,1)

thetaprior used: see above default: none
The prior for 2N X mu.
erample— thetaprior: uniform

treebetN wused: always default: 10
The number of times that changes to the genealogical tree are attempted
before any changes to the hyperparameters are attempted. Thus BATWING
outputs are separated by treebetNxNbetsamp attempted tree updates.
example— treebetN: 10

tree_consensus wused: if there is a population tree default: 0
If this is set then an additional output file outfile.tcsn is generated, listing
the shapes of the subpopulation tree in newick format. This can be used
as input to a program like CONSENSE from Phylip to produce a consensus
tree.

example— tree_consensus: 1

warmup used: always default: 0
The number of additional outputs to be generated to allow for burn-in of
the MCMC algorithm. However, the additional outputs are not automati-
cally discarded: this must be done explicitly by the user (and the number
eventually discarded need bear no relation to the value of warmup).
example— warmup: 200

25

26

	Introduction
	General description
	Modelling assumptions
	The Bayesian paradigm

	The BATWING software
	Downloading and Installation
	Unpacking on Unix
	Unpacking on Windows, and Macintosh

	The Distribution
	BATWING command line
	Data settings
	Population model settings
	Population size
	Population structure

	Mutation model settings
	STR (microsatellite) loci
	UEP sites

	Time scaling and parameterisation options
	Prior distributions
	MCMC control settings
	Output
	The newick file format
	Post-processing

	Data Simulation
	Example session
	Alphabetical listing of infile options

