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1 HdBCS: Bayesian Covariance Selection in

High-Dimensions

The model of Bayesian Covariance Selection in High-Dimensions [1] is de-
signed to perform covariance selection for datasets with tens or possibly
hundreds of thousands of variables.

1.1 The algorithm

The main idea of HdBCS is to identify good regression models for each vari-
able and to combine these models in a joint multivariate normal distribution
using the chain rule (which is essentially equivalent to constructiong a DAG
or Bayesian network). The algorithm starts with dependency network which
is built from sets of regressions seperately, then generates an appropriate
ordering of the variables to underlie a compositional network. With this
ordering, variable selection for each linear model for the ordered variables
produces a DAG. Finally, by removing arrows and marrying all parents of
any node in this DAG, an undirected graph is delivered.

For analysis and selection of regressions, the model utilizes the inverse
Wishart prior, applies for forward/backward varialbe selection with respect
to the defined set of candidate predictors, and score each regression by the
posterior model probabilities. See section 3 in the paper [1] for detail.
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Once the predictors of each variable are obtained, the order of all variables
should be generated to construct compositional network. The strategy is
to: the ordering aims to maximize the resulting posterior probability on the
resulting model in an iterative process that ,at each step, decreases the overall
score (equation 5 in the paper) the least. See section 4.1 for fully described
construction.

1.2 The software

There is one software implemented for this model. Codes can be downloaded
from http://www.stat.duke.edu/∼adobra/hdbcs.html

The search procedure has three separate steps: filtering, generating good
starting models and improving the starting models until convergence.

The fisrt step is to select a relatively rich set of possible predictors for each
variable. The search strategy is forward/backward procedure. This proce-
dure is for each variable seperately. Starting with random selected predictors
for each variable xi, consider the edges between all other variables xj, j = [−i]
with this variable, if xj is already predictor of variable xi, propose to delete
xj as predictor of xi, otherwise, propose to add xj as its predictor. Calculate
the ratio of posterior probability between proposed model and current model
(one predictor difference between these two models), and accept/reject the
proposed model according to the accept propobility. Repeat the above pro-
cess for many iterations to get set of possible predictors for each variable.
The pseudo code for the search procedure can be describled as following:

For each variable xi,

1. Initial model, randomly select predictors of xi from all other variables
xj, j ={1, · · · , p}\{i}

2. Iteration step: repeat the following process for a fixed times:

For all other variables xj, j ={1, · · · , p}\{i}, randomly select xj

(each variable can be selected once)

i. Propose new model from current model

If (xj is not currently predictor of xi), calculate the log
posterior probability with xj is predictor of xi
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else, calculate the log posterior probability calculate the
log posterior probability with xj is not predictor of xi

ii. Calculate accept propobility and accept/reject proposed model,
if xj is a predictor in new model, update the frequency of xj

as predictor of xi

3. For all other variable xj, j ={1, · · · , p}\{i}, if the frequency xj as pre-
dictor of xi is greater than threshold, set xj as predictor of xi in filtered
model (one dependency network)

In second step, first generate dependency network which is based the fil-
tered model in step1, the possible predictors for initial model are selected
from the final model in step1 (in step1, all other variables [−i]={1, · · · , p}\{i
} are possible predictors of xi), in addition, the best model is recorded (in
step1, final model is average model); then DAG is generated from the best
model. In this step, generate several DAGs by running several times of above
procedure. For generating compositional network (DAG) from dependency
network, see section 4.1.2 in the paper [1].

In third step, the starting points/models (which are generated in step2)
are improved in a procedure (simulated annealing) that converges to local
models of the posterior distribution over the space of DAGs.

Given possible set of predictors Si for each variable xi and DAG gener-
ated in step2. With order of variables for given DAG, switch variable xi in
position equation with variable xj in position equation+1, reconsider the re-
gression equations of these two varialbes. The search for regression equation
of variable xi is similar as that of in step1, but the predictors are restricted
to the intersection of set Si and successor of xi. Calculate the posterior prob-
abilies for variable xi and xj, also calculate the difference δ between these
posterior probabilies and that of former regression equations for variable xi

and xj. Calculate δ for each varialbe xi, i = 0, 1, · · · , NumberOfGenes − 1
anb sort these δ in a list eq.

Next, select which equation (and its adjacent equation+1) to be switched
order. The weights w[i] of each pair of order switching are normalized as
following:

1. w[i] = w[i] − w[nmax − 1], where nmax is number of pair switching,
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the weights are in increasing order

2. w[i] = pow(exp(w[i]), anneal), where anneal is annealing parameter,
the minimal value is 1, maximum valuse is set to be 3

3. cumw[i] =
∑i−1

j=0 x[j], i = 1, 2, · · · , nmax

4. cumw[i] = cumw[i]/cumw[nmax]

The pseudo code for selecting equation by weights cumw[i] is as following:

1. Initialize: q1 = 0; q2 = nmax; and generate a random number s

2. While(q1 + 1! = q2)

q = (q1 + q2)/2;

If(cumw[q] < s), q1 = q;

else, q2 = q

The returned q1 is the selected equation, denote it as chosenEquation (this
is the position of selected equation/variable in the order) and update or-
der and regression equations for xi and xj in position chosenEquation and
chosenEquation + 1 in the order.

Then, for generate next DAG, only need to calculate δ for three pairs
of ordering switch, that is chosenEquation − 1 (and its adjacent position
chosenEquation), chosenEquation (and its adjacent position chosenEquation+
1) and chosenEquation + 1 (and its adjacent position chosenEquation + 2).
After updating the δ for new order, select equation to switched with variable
in its adjacent position, update order and regression equation for next new
DAG.

Repeat the above procedure for nGraphsToGenerate times and record
these DAGs/models every whenToSave iterations.

After all these three steps, an average network is generated from all sta-
tistically significant models during the simulated annealing procedure. Find
the model with best posterior probability w, all other recorded (for example,
recorde every 1000 iterations) models with porstiror probability wi

exp (wi − w) > ε (1)
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will be considered in averaging network. When add one graph to averaged
graph, the weight of each edge wi(if this edge exists in current graph) is
added as b + log (1 + exp (a − b)) (assuming a < b, otherwise just exchange
the value of a and b) if the weight of average edge is a (initialized as 0) and
the weight of added graph is b. Note that a and b are log posterior probability
and b+log (1 + exp (a − b)) = log (exp (a) + exp (b)). Meanwhile, the weight
of average graph GrandTotal is added as same formula b+log(1+exp(a−b))
but the value of a is set to be very small number, like −99999999999999999.0.
At last, when all statistically significant graphs are considered, the weight of
each edge is exp (wi − GrandTotal).
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