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Preface

Monte Carlo methods are powerful tools for evaluating the properties of com-
plex, many-body systems, as well as nondeterministic processes. J. Dongarra
and F. Sullivan[1][2] published a list of “The top ten algorithms of the cen-
tury” in “Computing in Science & Engineering”. The Monte Carlo method
is listed in the 10 algorithms with the greatest influence on the development
and practice of science and engineering in the 20th century.

The Monte Carlo method or Metropolis algorithm is devised by J. von
Neumann, S. Ulam, and N. Metropolis at the end of the Second World
War to study the diffusion of neutrons in fissionable material. The name
“Monte Carlo”, chosen because of the extensive use of random numbers in
the calculation, was coined by Metropolis in 1947 and used in the title of
a paper[3] by N. Metropolis and S. Ulam in 1949. The method began as a
technique for attacking specific problems in numerical simulations of physical
systems, and interest in it grew slowly at first. But later, the subject ex-
ploded as the scope of applications broadened in many surprising directions,
including function minimization, computational geometry, and combinato-
rial counting. Today, topics related to the Metropolis algorithm constitute
an entire field of computational science supported by a deep theory and
having applications ranging from physical simulations to the foundations of
computational complexity. By introducing the quasi-Monte Carlo sequence,
the Monte Carlo method has already been developed to quasi-Monte Carlo
method.

We are often confronted with problems that have an enormous number
of dimensions or a process that involves a path with many possible branch
points, each of which is governed by some fundamental probability occur-
rence. The solutions are not exact in a rigorous way, because we randomly
sample the problem. However, it is possible to achieve nearly exact results
using a relatively small number of samples compared to the problem’s di-
mensions. Indeed, Monte Carlo and quasi-Monte Carlo methods are the
only practical choice for evaluating problems of high dimensions though it
may be time consuming. Luckily, with the development of modern computer
technology at very fast speed, we can calculate more complex systems. So
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the Monte Carlo and quasi-Monte Carlo methods will be more promising in
the 21th century. So I choose Monte Carlo and quasi-Monte Carlo as my
study field.

If you have any advice, please let me know.

Guiyuan Lei <guiyuanlei@hotmail.com>

Lund, March, 2003



Abstract

I have studied a couple of topics on Monte Carlo and quasi-Monte Carlo
methods. This dissertation covers its applications in integration, optimiza-
tion and simulation.

Chapter 1 and 2 are the basic knowledge to use Monte Carlo and quasi-
Monte Carlo methods. Chapter 1 presents the error bounds of Monte Carlo
and quasi-Monte Carlo integration methods. By comparing these two meth-
ods, we show the advantages of quasi-Monte Carlo method. We also intro-
duce the standard quasi-Monte Carlo random search for optimization. The
last but not least application is Metropolis algorithms which is the origin
of Monte Carlo method. Because the random numbers generators are the
key of Monte Carlo methods and quasi-Monte Carlo methods. Chapter 2
describes the pseudo-random number generators and quasi-random number
generators. How to generate non-uniform random number from its dis-
tributed function is also introduced.

Chapter 3 introduces B-spline smoothed rejection sampling method. The
standard rejection sampling method which is introduced in chapter 2 is
closely related to the problem of quasi-Monte Carlo integration of charac-
teristic functions, whose accuracy may be lost due to the discontinuity of
the characteristic functions. We use B-spline smoothing technique to smooth
the characteristic function without changing the integral quantity and get a
differentiable weight function. The method considerably improves the qual-
ity of sampling points. We apply the B-spline smoothed rejection sampling
method to importance sampling. Numerical experiments show that the error
size O(N−1) is regained by using the B-spline smoothed rejection method
for quasi-Monte Carlo estimate. The error bound of Monte Carlo method
using B-spline smoothed importance sampling is also better than that of the
standard Monte Carlo method. So the B-spline smoothed rejection sampling
method is indirectly proved to be superior to the standard rejection sam-
pling method.

Chapter 4 is about the Monte Carlo integration. We get a theoreti-
cal error of the fine antithetic variables Monte Carlo(FAMC) method for
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multidimensional integration. The error size of FAMC is O(N−( 1
2
+ 2

s
)) for

functions having second continuous derivative, where s is the dimension of
the integrand. We also give the theoretical error result of antithetic variable
Monte Carlo(AMC) method for multi-variable functions whose degree is no

more than two. The constant before O(N− 1
2 ) is less than that of the MC

method. We realize the parallel algorithm in C for the FAMC and AMC
methods. The results of the numerical experiments coincide with the theo-
retical results very well.

Chapter 5 introduces adaptive monte carlo method(AQMC) for global
optimization. AQMC algorithm progresses in the nondifferentiable opti-
mization. First, we develop the local search such that the search direction,
search radius and number of search points are adjusted according to the
previous search result. Second, we introduce the ideas of population and
generate new individuals according to population evolution degree. Because
the search procedure will be adjusted according to the previous result, the
method not only speeds up the random search but also balances the global
and local demands (adaptive equalization).

Chapter 6 combines the genetic programming with AQMC optimization
method to solve the prediction problems. There are many complex systems
in real life. In order to analyze, design and predict the system, we often
want to model the dynamic systems of ordinary differential equations ac-
cording to the observed data. We use genetic programming to optimize the
the right hand functions of the ordinary differential equations. Adaptive
quasi-Monte Carlo optimization methods are used to optimize the coeffi-
cients of the functions. The program for the prediction of electrical power
consumption of Hangzhou city shows that the hybrid method is powerful.

In Chapter 7, we combine the Monte Carlo simulation and optimiza-
tion. We first introduce the Monte Carlo simulation of light transport in
tissue, explain how to generate the random number according to the prac-
tical problems using the transform method introduced in chapter 2. Then
use the AQMC method to solve the inverse problem of light transport. We
further discuss how to balance the global and local search demands in prac-
tical problems.

The C codes of some programs are given in the appendix.
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Chapter 1

Preliminary on Monte Carlo

and quasi-Monte Carlo

methods

Monte Carlo and quasi-Monte Carlo methods are versatile and widely used nu-
merical methods. They have been studied for many years. The most common
applications are for evaluating integrals. Monte Carlo and quasi-Monte Carlo
can also be used in optimization and simulation. Because they are simple and
direct, Monte Carlo and quasi-Monte Carlo are easy to use . They are also
robust, since their accuracy depend on only the crudest measure of the com-
plexity of the problems. This chapter presents some basic knowledge about
Monte Carlo and quasi-Monte Carlo methods.

1.1 Monte Carlo integration

A review of Monte Carlo methods for integration problems was presented
by Caflisch[4]. The integral of a Lebesgue integrable function f(x) can be
expressed as the average or expectation of the function f evaluated at a
random location. Consider an integral on the unit cube Is = [0, 1]s in s
dimensions. Then

I = E[f(x)] =

∫

Is

f(x)dx = f̄ (1.1)

in which x is a uniformly distributed vector in the unit cube.

The crude Monte Carlo quadrature formula is based on the probabilistic
interpretation of an integral. Consider a sequence ξn sampled from the
uniform distribution. Then an empirical approximation to the expectation
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is

M =
1

N

N
∑

k=1

f(ξk) (1.2)

According to the Strong Law of Large Numbers[5], this approximation is
convergent with probability one: that is,

lim
N→∞

M → I. (1.3)

In addition, it is unbiased, which means that the average of M is exactly I
for any N; that is

E[M ] = I, (1.4)

in which the average is over the choice of the points ξk.

In general, define the Monte Carlo integration error

εN = I − M (1.5)

so that the bias is E[εN ] and the root mean square error(rmse) is

E[ε2
N ]1/2. (1.6)

1.1.1 Error bounds

The Central Limit Theorem(CLT)[5] describes the size and statistical prop-
erties of Monte Carlo integration errors.

Theorem 1.1.1 For N large,

εN ≈ σN−1/2ν (1.7)

in which ν is a standard normal (N(0, 1)) random variable and the constant
σ = σ[f ] is the square root of the variance of f ; that is,

σ[f ] =
(

∫

Is

(f(x) − I)2dx
)1/2

. (1.8)

A more precise statement is that

lim
N→∞

Prob(a <
√

N
σ εN < b) = Prob(a < ν < b)

=

∫ b

a
(2π)−1/2e−x2/2dx.

. (1.9)
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This says that the error in Monte Carlo integration is of size O(N−1/2)with
a constant that just the variance of the integrand f . Moreover, the statis-
tical distribution of the error is approximately a normal random variable.
In contrast to the usual results of numerical analysis, this is a probabilistic
result. It does not provide an absolute upper bound on the error; rather it
says that the error is of a certain size with some probability. On the other
hand, this result is an equality, so that the bounds it provides are tight.

1.1.2 Comparison to grid-based methods

Most people who see Monte Carlo for the first time are surprised that it is
a viable method. How can a random array be better than a grid? There
are several ways to answer this question. First, compare the convergence
rate of Monte Carlo with that of a grid-based integration method such as
Simpson’s rule. The convergence rate for grid-based quadrature is O(N−k/s)
for an order k method in dimension s. On the other hand, the Monte Carlo
convergence rate is O(N−1/2) independent of dimension. So Monte Carlo
beats a grid in high-dimension s, if

k/s < 1/2

However, for an analytic function on a periodic domain, the value of k is
infinite, so that this simple explanation fails. A more realistic explanation for
the robustness of Monte carlo is that it is practically impossible to lay down
a grid in high dimension. The simplest cubic grid in s dimension requires at
least 2s points. For s = 20, which is not particularly large, this requires more
than a million points. Moreover, it is practically impossible to refine a grid in
a high dimension, since a refinement requires increasing the number of points
by factor 2s. In contrast to these difficulties for a grid in high dimension, the
accuracy of Monte Carlo quadrature is nearly independent of dimension and
each additional point added to the Monte Carlo quadrature formula provides
an incremental improvements in its accuracy. To be sure, the value of N
at which the O(N−1/2) error estimate becomes valid is difficult to predict,
but experience shows that, for problems of moderate complexity in moderate
dimension(for instance s = 20), the O(N−1/2) error size is typically attained
for moderate values of N .

1.2 Quasi-Monte Carlo integration

We recall that Monte Carlo integration with N random nodes the absolute
value of the error has the average order of magnitude O(N−1/2). Clearly,
there exist sets of N nodes for which the absolute value of the error is not
larger than the average. If we could construct such sets of nodes explicitly,
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this would already be a useful methodological advance. The quasi-Monte
Carlo method for numerical integration aims much higher, as it seeks to
construct sets of nodes that perform significantly better than average. The
integration rules for the quasi-Monte Carlo method are taken from the ap-
propriate Monte Carlo estimate. For instance, for the unit cube integration
domain Is = [0, 1]s, we have the quasi-Monte Carlo approximation

∫

Is

f(x)dx ≈ 1

N

N
∑

k=1

f(xk) (1.10)

which formally looks like the Monte Carlo estimate but is now used with
deterministic nodes x1,x2, · · · ,xN ∈ Is. These nodes should be chosen ju-
diciously so as to guarantee a small error in Eq. (1.10).

So the basic idea of a quasi-Monte Carlo method is to replace random
samples in a Monte Carlo method by well-chosen deterministic points. The
criterion for the choice of deterministic points depends on the numerical
problem at hand. For the important problem of numerical integration, the
selection criterion is easy to find and leads to the concepts of uniformly
distributed sequence and discrepancy.

1.2.1 Discrepancy

The discrepancy can be viewed as a quantitative measure for the deviation
from uniform distribution.

Let P be a point set consisting of x1, · · · ,xN ∈ Is. For an arbitrary
subset B of Is, we define

A(B;P ) =
N

∑

n=1

χB(xn), (1.11)

where χB is the characteristic function of B. Thus A(B;P )is the counting
function that indicates the number of n with 1 ≤ n ≤ N for which xn ∈ B.
If B is a nonempty family of Lebesgue-measurable subsets of Is, then a
general notion of discrepancy of the point set P is given by

DN (B;P ) = sup
B∈B

|A(B;P )

N
− λs(B)|. (1.12)

Note that 0 ≤ DN (B;P ) ≤ 1 always and λs denotes the s-dimensional
Lebesgue measure. By suitable specializations of the family B, we obtain
the three most important concepts of discrepancy. We put Īs = [0, 1)s.
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Definition 1.2.1 (star discrepancy) The star discrepancy D∗
N (P ) = D∗

N (x1, · · · ,xN )
of the point set P is defined by D∗

N (P ) = DN (J ∗;P ), where J ∗ is the family
of all subintervals of Īs of the form

∏s
i=1[0, ui).

Definition 1.2.2 (extreme discrepancy) The (extreme) discrepancy DN (P ) =
DN (x1, · · · ,xN ) of the point set P is defined by DN (P ) = DN (J ;P ), where
J is the family of all subintervals of Īs of the form

∏s
i=1[ui, vi).

Definition 1.2.3 (isotropic discrepancy) The isotropic discrepancy JN (P ) =
JN (x1, · · · ,xN ) of the point set P is defined by JN (P ) = DN (C;P ), where
C is the family of all convex subets of Is.

The properties of the discrepancy are discussed in [6]. The following
error bounds analysis is also from this book.

1.2.2 Koksma-Hlawka inequality

We discuss the most important error bounds for the quasi-Monte Carlo ap-
proximation Eq. (1.10). We start with the one-dimensional case, a classical
result is the following inequality of Koksma.

Theorem 1.2.1 If f has bounded variation V (f) on [0, 1], then, for any
x1, · · · , xN ∈ [0, 1],we have

| 1

N

N
∑

k=1

f(xk) −
∫ 1

0
f(x)dx| ≤ V (f)D∗

N (x1, · · · , xN ). (1.13)

Theorem 1.2.2 If f is continuous on [0, 1], then, for any x1, · · · , xN ∈
[0, 1],we have

| 1

N

N
∑

k=1

f(xk) −
∫ 1

0
f(x)dx| ≤ ω(f,D∗

N (x1, · · · , xN )). (1.14)

where ω(f, δ) = sup
‖t‖<δ

x,x+t∈D

|f(x + t) − f(x)| is modulus of continuity.

To extend Koksma’s inequality to the multidimensional case, we have the
following inequality of Hlawka, which is often called the Koksma-Hlawka in-
equality.
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Theorem 1.2.3 If f has bounded variation V (f) on Is in the sense of
Hardy and Krause, then, for any x1, · · · ,xN ∈ Is,we have

| 1

N

N
∑

k=1

f(xk) −
∫

Is

f(x)dx| ≤ V (f)D∗
N (x1, · · · ,xN )). (1.15)

All the proof of the above mentioned theorems can be found in [6].

It is widely believed that the star discrepancy of any N -element point
set P is of order O(N−1(log N)s−1), so the error bound of quasi-Monte Carlo
integration is of order O(N−1).

1.2.3 Advantages of the quasi-Monte Carlo method

The very nature of the quasi-Monte Carlo method, with its completely deter-
ministic procedures, implies that we get deterministic and thus guaranteed
error bounds. In principle, it is therefore always possible to determine in
advance an integration rule that yields a prescribed level of accuracy. More-
over, with the same computational effort, i.e., with the same number of
function evaluations (which are the costly operations in numerical integra-
tion), the quasi-Monte Carlo method achieves a significantly higher accuracy
than the Monte Carlo method. Thus, on two crucial accounts — determin-
ism and precision — the quasi-Monte Carlo method is superior to the Monte
Carlo method.

1.3 Monte Carlo optimization

Another basic problem of numerical analysis to which quasi-Monte Carlo
methods can be applied is global optimization[7]. Quasi-Monte Carlo ran-
dom search was introduced by Niederreiter [8]. Let f be a bounded real-
valued function defined on the bounded subset E of Rs, s ≥ 1, and let
x1, · · · ,xN be points in E. Then

mN = max
1≤n≤N

f(xn) (1.16)

is taken as an approximation for the correct value M of the supremum of f
over E. Define

dN = dN (E) = sup
x∈E

min
1≤n≤N

d(x,xn) (1.17)

as the dispersion of x1, · · · ,xN in E, where d(y, z) = max
1≤j≤s

|yj − zj | for

y = (y1, · · · , ys), z = (z1, · · · , zs) ∈ Rs. Niederreiter [8] proved that

M − mN ≤ ω(dN ) (1.18)
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where ω(t) = sup
x,y∈E

d(x,y)≤t

|f(x) − f(y)|, t ≥ 0 is modulus of continuity.

If f is continuous on E, the method described above is convergent. In
order to speed up the search and insure the search is global, we propose
an adaptive random search in quasi-Monte Carlo methods for global opti-
mization in Chapter 5. We will discuss how to balance the local and global
search demands.

1.4 Monte Carlo simulation: Metropolis algorithm

Monte Carlo simulation are used very robust in physics related fields such
as Monte Carlo method in liquid simulation [9], particle simulation of heat
equation [10], Boltzmann equation solution [11], etc.

Metropolis algorithm[12] is the origin of Monte Carlo method, it’s very
robust in the physical simulation. So we introduce this algorithm here.

In the simulation of liquid, suppose the system is at state m, the whole
energy is Vm. The system try to transform to state n. First calculate the
total energy Vn of state n, then compare the value of these two energy.
If δVnm = Vn − Vm ≤ 0, which means that the energy of state n is less
than that of state m. Because the system tends to stay at the low energy
state, the probability of staying at state n is greater than the probability of
staring at state m, then the system transform to state n without doubt. If
δVnm = Vn−Vm > 0, which means that the energy of state n is greater than
that of state m. The system transform to state n with probability ρn/ρm.
As for the canonical, or constant-NV T ensemble,

ρn

ρm
= exp(−βδVnm)

where β is Boltzman factor. So generate a random number ξ, if ξ <
exp(−βδVnm), then the state transform to state n; else, the system stays
at the current state. We can conclude that the probability of transforming
from state m to state n is min(1, exp(−βδVnm)). From the initial state, the
system repeat the following two step:

• Step 1: Try to walk from the current state to the next state, calculate
the energy of next state.

• Step 2: Calculate the probability of transforming min(1, exp(−βδVnm))
and decide the real state of next step, transform to next state or stay
at the current state.
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This is a Markov Chain process, the system will come to steady state.

In fact the key of Metropolis algorithm is to calculate the probability of
system transformming from current state to the next state. We will describe
the Monte Carlo methods in light transport in Chapter 7. We will focus on
the probability calculating.

1.5 Further reading

There are many books on Monte Carlo and quasi-Monte Carlo methods.
Some books [13][14][15] are collections of conference which cover all the three
applications, some[16] focus on the random number generation. Others[17]
discuss the Monte Carlo methods in biology fields.



Chapter 2

Random number generator

Random sampling is at the heart of the Monte Carlo method. The success of a
Monte Carlo calculation depends, of course, on the appropriateness of the un-
derlying stochastic model, but also, to a large extent, on how well the random
numbers used in the computation simulate the random variables in the model.
This chapter focuses on the generator of random number.

It is common to make a distinction between uniform and nonuniform random
numbers. Uniform random numbers are random numbers for which the target
distribution is the uniform distribution U on I. Nonuniform random numbers are
usually generated by starting from uniform random numbers and transforming
them to fit a given target distribution F 6= U . We will introduce the generator
of pseudorandom numbers and quasirandom numbers, then describe the trans-
forming method.

2.1 Pseudorandom number

Early in the history of the Monte Carlo method, it already became clear
that “truly random” numbers are fictitious from a practical point of view.
Therefore users have resorted to pseudorandom numbers(PRN) that can be
readily generated in the computer by deterministic algorithms with rela-
tively few input parameters.

A classical and still very popular method for the generation of uniform
PRN is the linear congruential method introduced by Lehmer[18]. As the
parameters in this method, we choose a large positive integer M , an in-
teger a with 1 ≤ a < M and gcd(a,M) = 1, and an integer c ∈ ZM =
(0, 1, · · · ,M − 1). Then we select an initial value y0 ∈ ZM and generate a
sequence y0, y1, · · · ∈ ZM by the recursion

yn+1 ≡ ayn + c mod M n = 0, 1, · · · (2.1)
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From the sequence, we derive the linear congruential pseudornadom
numbers

xn =
yn

M
∈ Ī = [0, 1) n = 0, 1, · · · (2.2)

In this context, M is referred to as the modulus and a as the multiplier. The
choice of the modulus is customarily accorded with the word length of the
machine, typical values being M = 232 or the Mersenne prime M = 232 − 1.
For high-precision calculations , larger values such as M = 248 have also
been used.

2.2 Quasirandom number

For pseudorandom numbers generated by any of methods, the limit is taken
over a cyclic finite set, and the supremum in the discrepancy is a maximum.
It is useful to consider a deterministic sequence with low discrepancy. The
objective is that any finite subsequence fill the space uniformly.

Several such sequence have been proposed, such as Van der Corput se-
quence, Halton sequences [19], Faure sequence [20], Sobol’ sequences [21]
and Niederreiter’s (t,m, s)-nets and (t, s) sequences [22]. These sequences
are called quasirandom sequences. Whereas pseudorandom sequences or
pseudorandom generators attempt to simulate randomness, quasirandom
sequence is for it to “look like” a sequence of realization of uniform random
variables; but for a (finite) quasirandom sequence the objective is that it
fill a unit hypercube as uniformly as possible. For general review of quasi-
random sequences, see [4] and [23].

2.2.1 Halton sequence

Halton sequences are generalizations of Van der Corput sequences. A Hal-
ton sequence is formed by reversing the digits in the representation of some
sequence of integers in a given base. Although this can be done some-
what arbitrarily, a straightforward way of forming a s-dimension Halton
sequence x1,x2, · · · , where xi = (xi1, xi2, · · · , xis) is first to choose s bases,
b1, b2, · · · , bs, perhaps the first s primes. The jth base will be used to form
the jth component of each vector in the sequence. Then begin with some
integer m and

1. Choosing tmj suitably large, represent m in each base:

m =

tmj
∑

k=0

amkb
k
j , j = 1, · · · , s
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2. Form

xij =

tmj
∑

k=0

amkb
k−tmj−1
j , j = 1, · · · , s

3. Set m = m + 1 and repeat

Suppose, for example, s = 3, m = 15, and we use the bases 2, 3, and 5.
We form 15 = 11112, 15 = 1203, and 15 = 305, and deliver the first x as
(0.11112, 0.0213, 0.035) or (0.937500, 0.259259, 0.120000).

2.2.2 Sobol’ sequence

A Sobol’ sequence is based on a set of “direction numbers”, vi. The vi are

vi =
mi

2i
,

where the mi are odd positive integers less than 2i; and the vi are chosen so
that they satisfy a recurrence relation using the coefficients of a primitive
polynomial whose coefficients are either 0 or 1,

f(z) = zp + c1z
p−1 + · · · + cp−1z + cp (2.3)

For i > p, the recurrence relation is

vi = c1vi−1 ⊕ c2vi−2 ⊕ · · · ⊕ cpvi−p ⊕ bvi−p/2
pc (2.4)

where ⊕ denotes bitwise binary exclusive-or. An equivalent recurrence for
the mi is

mi = 2c1mi−1 ⊕ 22c2mi−2 ⊕ · · · ⊕ 2pcpmi−p ⊕ mi−p (2.5)

As an example, consider the primitive polynomial

x4 + x + 1

The corresponding recurrence is

mi = 8mi−3 ⊕ 16mi−4 ⊕ mi−4

If we start with m1 = 1, m2 = 1, m3 = 3, and m4 = 13, for example, we get

m5 = 8 ⊕ 16 ⊕ 1
= 010002 ⊕ 100002 ⊕ 000012

= 110012

= 25
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The ith number in the Sobol’ sequence is now formed as

xi = b1v1 ⊕ b2v2 ⊕ b3v3 ⊕ · · · ,

where · · · b3b2b1 is the binary representation of i.

Antonov and Saleev[24] show that equivalently the Sobol’ sequence can
be formed as

xi = g1v1 ⊕ g2v2 ⊕ g3v3 ⊕ · · · , (2.6)

where · · · g3g2g1 is the binary representation of a particular Gray code eval-
uated at i. (A Gray code is a function, G(i), on the nonnegative integers
such that the binary representation of G(i) and G(i+1) differ in exactly one
bit. namely in the position of the rightmost zero bit in the binary represen-
tation of i) The binary representation of the Gray code used by Antonbov
and Saleev is

· · · g3g2g1 = · · · b3b2b1 ⊕ b4b3b2.

(This is the most commonly used Gray code, which yields function values
0, 1, 3, 2, 6, 7, 5, 4, · · · )The Sobol’ sequence from Eq. (2.6) can be generated
recursively by

xi = xi−1 ⊕ vr

where r is determined so that br is the rightmost zero bit in the binary
representation of i − 1.

Bratley and Fox[25] discuss criteria for starting values, m1,m2, · · · (The
starting values used in the example with the primitive polynomial above
satisfy those criteria.)

Sobol’ sequence of two dimension is plotted in Fig. 2.1, it is compared
with pseudo random sequence in Fig. 2.2. The ran2 is one of pseudorandom
generator from [26]. The C codes of Sobol’ sequence modified from [26] is
presented in appendix.

2.2.3 Niderreiter’s (t, m, s)-net and (t, s)-sequences

In this section we define point sets and sequences with a very regular dis-
tribution behavior. These will be called (t,m, s) nets and (t, s) sequences,
respectively.

For the subsequent definitions, we fix the dimension s ≥ 1 and an integer
b ≥ 2. A subinterval E of Īs of the form

E =

s
∏

i=1

[aib
−di , (ai + 1)b−di)
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Figure 2.1: Sobol’ points of two dimensions. The new generated successive
points fill in the gaps in the previously generated points
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Figure 2.2: Quasirandom sequences have better uniformity properties alter-
native to pseudorandom sequences
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with ai, di ∈ Z, di ≥ 0, 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary
interval in base b.

Definition 2.2.1 ((t,m, s) − net) Let 0 ≤ t ≤ m be integers. A (t,m, s)-
net in base b is a point set P of bm points in Īs such that A(E,P ) = bt for
every elementary interval E in base b with λs(E) = bt−m.

Definition 2.2.2 ((t, s) − sequence) Let t ≥ 0 be an integer. A sequence
x0,x1, · · · of points in Īs is a (t, s)-sequence in base b if, for all integers k ≥ 0
and m > t, the point set consisting of the xn with kbm ≤ n < (k + 1)bm is
a (t,m, s)-net in base b.

2.3 Transformations of uniform deviates: general

methods

Sampling of random variates from a nonuniform distribution is usually done
by transformation to uniform variates. The methods discussed in this section
are “universal” in the sense that they apply to almost any distribution.

2.3.1 Inverse CDF method

If x is a scalar random variable with a continuous cumulative distribution
function(CDF) Px, then the random variable

ξ = Px(x) =

x
∫

a

p(t)dt (2.7)

has a U(0, 1) distribution. This fact provides a very simple relationship with
a uniform random variable U and a random variable x with distribution
function

x = P−1
x (ξ).

Use of this straightforward transformation is called the inverse CDF tech-
nique. Whenever the inverse of the distribution function is easy to compute,
the inverse CDF method is a good one. However, because it is relatively dif-
ficult to compute the inverse of some distribution functions of interest, the
inverse CDF method is not as commonly used as its simplicity might suggest.

2.3.2 Rejection methods

Let p(x) be a probability density function defined on Is. The algorithm of
standard rejection can be described as follows:
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1. Select γ ≥ supx∈Is p(x).

2. Repeat until N points have been accepted:

(a) Sample (xt, yt) from U([0, 1]s+1).

(b) If yt < γ−1p(xt), accept trial point xt.
otherwise, reject them.

Rejection methods, like any method for generating nonuniform random num-
bers, are dependent on a good source of uniforms.





Chapter 3

B-spline smoothed rejection

sampling and its applications

The rejection sampling method is one of the most popular methods used in
Monte Carlo methods. It turns out that the standard rejection method is closely
related to the problem of Monte Carlo integration of characteristic functions,
whose accuracy may be lost due to the discontinuity of the characteristic func-
tions. We proposed a B-spline smoothed rejection sampling method[27], which
smoothed the characteristic function by B-spline smoothing technique without
changing the integral quantity. Numerical experiments showed that for quasi-
Monte Carlo method, the convergence rate of nearly O(N−1) is regained by
using the B-spline smoothed rejection method in importance sampling. As for
the Monte Carlo method, the error size using B-spline smoothed importance
sampling is better than the standard error size O(N− 1

2 ). These numerical re-
sults prove that the B-spline smoothed rejection sampling is superior to the
standard rejection sampling method.

3.1 Introduction

Standard rejection sampling method is of importance in practical quasi-
Monte Carlo methods such as decision process and sampling from a density
function. However it is not as efficient as theoretically expected.

Rejection sampling method can be interpreted as the integration of a
characteristic function. Recall the quasi-Monte Carlo integration introduced
in Chapter 1, the error can be described by Koksma-Hlawka inequality and
in general the error order of O(N−1) is expected. However, characteristic
functions have infinite variation, the exception being rectangles with sides
parallel to the coordinate axes. So the Koksma-Hlawka inequality cannot be
used to derive an upper bound and theoretical error bounds of size O(N−1)
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are often not observed.

We smoothed the characteristic function by B-spline technique, and re-
gained the error bounds of size O(N−1). B-spline smoothed rejection sam-
pling method is introduced in section 3.2.3. We also developed the impor-
tance sampling by using B-spline smoothed rejection sampling method in
section 3.3.2. Numerical experiments will be given in section 3.4.

3.2 Rejection method

3.2.1 Standard rejection method, interpreted as integration

of characteristic function

We discuss the standard rejection method described in section 2.3.2. By
Bayes’ formula, the density function of accepted points paccept(x) can be
interpreted as a Monte Carlo evaluation of the following integral:

p accept(x) =

∫ 1
0 χ(y < γ−1p(x))dy

∫

Is [
∫ 1
0 χ(y < γ−1p(x))dy]dx

=
p(x)/γ

1/γ
= p(x).

where χ(y < γ−1p(x)) is characteristic function defined as:

χ(y < γ−1p(x)) =

{

1, if y < γ−1p(x),
0, otherwise.

(3.1)

So this algorithm produces an infinite sequence P of accepted points in s
dimensions distributed according to p(x).

But how well is the quality of the first N elements of the sequence P?
We introduce the more general concept of discrepancy[28].

Definition 3.2.1 (F -discrepancy) Assume that PN = {xi, , i = 1, . . . , N}
is a set of points in Is, and FN (x) is the empirical distribution of PN , i.e.

FN (x) = (1/N)
N

∑

i=1

χ{xi ≤ x}

The F -discrepancy of PN with respect to cumulative distribution function
F (x) is defined by

DF (PN ) = sup
x∈Is

|FN (x) − F (x)|. (3.2)
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The F -discrepancy is a measure for the quality of the representation of
F (x) by a point set PN . As shown in the literature[29], The F -discrepancy is
in fact the error of quasi-Monte Carlo integration of a characteristic function
and the known theoretical bounds may only be O(N−1/(s+1)), which is due
to the discontinuity of the characteristic function. A smoothed rejection
method was given[29] [30], which replaced the characteristic functions by
continuous but non-differentiable functions. In section 3.2.3, we propose a B-
spline smoothed rejection sampling method which introduced a differentiable
weight function.

3.2.2 Smoothing characteristic function

We can smooth the discontinuous function by B-spline technique[31]. It’s
well known that for any integrable function f(x), x ∈ R, we call

fh(x) =
1

h

∫ x+ h
2

x−h
2

f(t)dt (3.3)

its average function. Denote D−1f(x) =
∫ x
a f(t)dt, we have

fh(x) = h−1δhD−1f(x)

where δhF (x) = F (x + h
2 ) − F (x − h

2 ). We apply the smoothing operator
h−1δhD−1 (h is smoothing width) to some simple and basic discontinuous
functions. For example, if f(x) = x+, then

fh(x) = 1
2h [(x + h

2 )2+ − (x − h
2 )2+]

=







0, if x ≤ −h
2 ,

(x + h
2 )2/2h, if − h

2 < x ≤ h
2 ,

x, if x > h
2 .

It is obvious that average function fh(x) is continuous function. When
h is sufficiently small, fh(x) is the approximation function of f(x). The
difference between them is the function value over [x − h

2 , x + h
2 ].

Theorem 3.2.1 If fh(x) is the average function of f(x) defined by Eq.(3.3),
then

fh(x) ≈ f(x).

and limh→0 fh(x) = f(x).

We call the above described smoothing technique B-spline smoothing
technique.
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3.2.3 B-spline smoothed rejection sampling method, without

changing the integral quantity

The characteristic function χ(y < γ−1p(x)) defined by Eq. (3.1) can also be
smoothed by B-spline smoothing technique. We rewrite χ(y < γ−1p(x)) as

W0(x, y) = (γ−1p(x) − y)0+, 0 ≤ y ≤ 1.

We apply the smoothing operator (2h)−1δ2hD−1 to W0(x, y), where smooth-
ing width is 2h.

Wδ(x, y) = (2h)−1δ2hD−1W0(x, y)

= (2h)−1[(γ−1p(x) − y + h)+ − ((γ−1p(x) − y − h)+]

Denote f1(y) = (γ−1p(x)−y+h)+ and f2(y) = (γ−1p(x)−y−h)+, applying
the smoothing operator h−1δhD−1 to f1(y) and f2(y) again, we get the
differientable weight function.

Wδδ(x, y) = (2h)−1[h−1δhD−1f1(y) − h−1δhD−1f2(y)]

=



































































1 , 0 ≤ y < γ−1p(x) − 3h
2

[(γ−1p(x)−y+h)− (γ−1p(x)−y−h
2 )2

2h
]

2h , γ−1p(x) − 3h
2 ≤ y < γ−1p(x) − h

2 ,

(γ−1p(x)−y+h)
2h , γ−1p(x) − h

2 ≤ y < γ−1p(x) + h
2 ,

(γ−1p(x)−y+ 3h
2

)2

4h2 , γ−1p(x) + h
2 ≤ y < γ−1p(x) + 3h

2 ,

0 , γ−1p(x) + 3h
2 ≤ y ≤ 1.

(3.4)

The function Wδδ(x, y) is our weight function used to replace character-
istic function χ(y < γ−1p(x)). The modified B-spline smoothed rejection
sampling method is described as follows:

1. Select γ ≥ supx∈Is p(x).

2. Repeat until the sum of weight wt is within one unit of N :

(a) Sample (xt, yt) from U([0, 1]s+1).

(b) Set weight wt = Wδδ(xt, yt) to points xt, namely the accept prob-
ability of point xt is wt.
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Theorem 3.2.2 Wδδ(x, y) is weight function defined by Eq. (3.4), χ(y <
γ−1p(x)) is characteristic function defined by Eq. (3.1). We have

∫ 1

0
Wδδ(x, y)dy =

∫ 1

0
χ(y < γ−1p(x))dy

The sequence generated by B-spline smoothed rejection sampling method is
distributed according to p(x).

Proof: Set t = γ−1p(x) − 3h
2 , then

∫ 1
0 Wδδ(x, y)dy =

∫ t
0 1dy +

∫ t+h
t

[(t−y+ 5h
2

)− (t−y+h)2

2h
]

2h dy +
∫ t+2h
t+h

(t−y+ 5h
2

)

2h dy

+
∫ t+3h
t+2h

(t−y+3h)2

4h2 dy

= t + 11h
12 + h

2 + h
12 = t + 3h

2 = γ−1p(x)

So
∫ 1
0 Wδδ(x, y)dy =

∫ 1
0 χ(y < γ−1p(x))dy.

That is to say that the sequence generated by B-spline smoothed rejec-
tion sampling method is distributed according to p(x).

We will apply the B-spline smoothed rejection sampling method to im-
portance sampling in quasi-Monte Carlo integration in section 3.3.2.

3.3 Importance sampling

3.3.1 Standard importance sampling

Importance sampling is probably the most widely used variance reduction
technique among Monte Carlo methods. Rewrite the integral I(f) as

I(f) =

∫

Is

f(x)dx =

∫

Is

f(x)

p(x)
p(x)dx,

where p(x) is an importance function, which is chosen such that it mimics
the behavior of f(x) over Is. The standard importance-sampled estimate is

I
(IS)
N =

1

N

N
∑

i=1

f(xi)

p(xi)
, (3.5)

where x1, . . . ,xN are samples from the density p(x). Rejection sampling
method is used robustly to sample points from p(x). However, the im-
proved performance for quasi-Monte Carlo method is not often observed,
this degradation is due to the discontinuity of characteristic functions. We
introduced the B-spline smoothed rejection sampling method into the im-
portance sampling, and regained integration error of size O(N−1).
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3.3.2 Improving importance sampling with B-spline smoothed

rejection sampling method

We rewrite the integral I(f) as

I(f) =
∫

Is f(x)dx = γ
∫

Is
f(x)
p(x)γ

−1p(x)dx

= γ
∫

Is
f(x)
p(x) [

∫ 1
0 χ(y < γ−1p(x)dy]dx

= γ
∫

Is
f(x)
p(x) [

∫ 1
0 Wδδ(x, y)dy]dx

≈ γ
N∗

∑N∗

i=1 Wδδ(xi, yi)
f(xi)
p(xi)

The improved importance-sampled estimate of quasi-Monte Carlo integra-
tion is defined as

I
(BIS)
N =

1

N

N∗
∑

i=1

Wδδ(xi, yi)
f(xi)

p(xi)
, (3.6)

where Wδδ(x, y) is defined by Eq. (3.4) and N∗ is chosen such that the sum
of acceptance weights wi is within one unit of N . It is obvious that

N ≈ N∗/γ

Numerical experiments for improved importance sampling in Monte Carlo
and quasi-Monte Carlo integration will be given in the following section.

3.4 Numerical experiments

In this section, the standard estimates, the standard rejection methods and
B-spline smoothed rejection sampling methods for Monte Carlo and quasi-
Monte Carlo integration will be compared on several classical functions. The
following estimates will be computed by Eq. (1.2), (3.5) and (3.6):

Crude Monte Carlo: Y
(1)
N = (1/N)

∑N
i=1 f(xi), xi ∼ U([0, 1]s);

Standard rejection method: Y
(2)
N = (1/N)

∑N
i=1 f(xi)/p(xi), xi ∼ p(xi);

B-spline smooth rej.: Y
(3)
N = (1/N)

∑N∗

i=1 Wδδ(xi, yi)f(xi)/p(xi).

For a given N , take m samples of these estimates, denoted by Y
(j)
N (k) for

1 ≤ k ≤ m(using successive points from a single sequence). The final ap-

proximation of integral I(f) is given by Î(j) = (1/m)
∑m

k=1 Y
(j)
N (k). In all
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cases the errors can be estimated by the empirical standard deviation(sd)
and the empirical root mean square error(rmse), defined respectively as:

sd(σ̂(j)) =

√

√

√

√

1

(m − 1)

m
∑

k=1

[Y
(j)
N (k) − Î(j)]2, j = 1, 2, 3. (3.7)

rmse(σ̂(j)) =

√

√

√

√

1

m

m
∑

k=1

[Y
(j)
N (k) − I]2, j = 1, 2, 3. (3.8)

We use Halton sequences[32] for quasirandom points and generate pseu-
dorandom points using function ran2 [26]. Set m = 75, that is to say that
75 runs for each estimate. Log-log plots are used so that slopes(which are
presented parenthetically in the figure keys)correspond to convergence rates.

Example 1. This example is Monte Carlo and quasi-Monte Carlo integra-
tion over I7 = [0, 1]7 of the function

f1(x) = e1−(sin2(Π
2

x1)+sin2(Π
2

x2)+sin2(Π
2

x3)) arcsin(sin(1) +
x1 + · · · + x7

200
)

using the positive definite importance function:

p1(x) =
1

η
e1−(sin2(Π

2
x1)+sin2(Π

2
x2)+sin2(Π

2
x3)),

where η =
∫

I7 e1−(sin2(Π
2

x1)+sin2(Π
2

x2)+sin2(Π
2

x3))dx = e · (
∫ 1
0 e−(sin2(Π

2
x)dx)3,

which is easily approximated to high accuracy as a one-dimensional integral.

The resulting sd error for example 1 using pseudorandom and quasiran-
dom points are presented in Fig. 3.1 and 3.2.

The computational examples show that:

• Quasi-Monte Carlo methods give much smaller errors than Monte
Carlo methods with the same sample size.

• Both for quasi-Monte Carlo and Monte Carlo, the importance sam-
pling with B-spline smoothed rejection sampling is better than that
with standard rejection sampling.

• For Monte Carlo, the importance sampling with B-spline smoothed
rejection sampling also improves error.
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Figure 3.1: The resulting sd error for example 1 using pseudorandom points.
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Figure 3.2: The resulting sd error for example 1 using pseudorandom points.
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3.5 Conclusions

We can conclude that B-spline smoothed rejection sampling methods can
improve the rejection method, and make the importance sampling more
efficient in quasi-Monte Carlo methods. It can also be seen that use of mod-
ified differentiable weight functions in B-spline smoothed rejection sampling
methods may improve Monte Carlo methods. As shown in the numerical
example, the error size of O(N−0.8) is much better than O(N−0.5) of crude
Monte Carlo. Though we can use quasi-Monte Carlo method to calculate
the integral for the numerical example here, not necessary to use importance
sampling and rejection sampling. It is necessary to use rejection sampling in
decision process and the use of B-spline smoothed rejection sampling method
will be much more efficient than standard rejection sampling.





Chapter 4

Fine antithetic variable

method for Monte Carlo

integration

We get a theoretical error of fine antithetic variables Monte Carlo(FAMC)

method for multidimensional integration. The error size is O(N−( 1
2
+ 2

s
)) for

functions having second continuous derivative, where s is the dimension of the
integrand. We also give the theoretical error result of antithetic variable Monte
Carlo(AMC) method for multi-variable functions whose degree is no more than

two. The constant before O(N− 1
2 ) is less than that of the MC method. We

realize the parallel programming in C language. The results of the numerical
experiments coincide with the theoretical results very well.

4.1 Introduction

Consider the problem of numerical estimation of an absolutely convergent
multidimensional integral

I =

∫

Is

f(x)dx (4.1)

where Is = [0, 1]s is the s-dimensional unit cube. And a crude Monte
Carlo(MC) estimator

M =
1

N

N
∑

k=1

f(ξk) (4.2)

can be used for evaluation I. Here ξ1, ξ2, · · · , ξN are independent values of
random number ξ uniformly distributed on Is. The absolute value of the
error of MC method of size O(N− 1

2 ) has been proved in [4][6]. Another
estimator described here is antithetic variables Monte Carlo(AMC) given in
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[33].

A =
1

2N

N
∑

k=1

[f(ξk) + f(2c− ξk)] (4.3)

where c = (1
2 , · · · , 1

2)T is the center of Is. The name of antithetic variables
was introduced by Hammersley and Morton [34]. Now we divide Is into
N = ns sub-cube Dk by uniformly grids, ck is the center of Dk. Define dk

as the nearest point of Dk to O = (0, · · · , 0)T, set ηk = dk + ξk/N
1/s. And

the fine antithetic variables Monte Carlo(FAMC) estimator we proposed is
defined as:

F =
1

2N

N
∑

k=1

[f(ηk) + f(2ck − ηk)] (4.4)

S.Haber proposed the same method in [35] and gave the theorem proving

that error of FAMC method is of size O(N−( 1
2
+ 2

s
)) for functions having

second continuous derivative. We present the theorem in section 4.2 and
give our proof. The corollary shows that the error of AMC method is the
same size as that of the MC method while the constant before O(N− 1

2 )
of AMC is less than that of MC. Because number of calculated function
values for antithetic variables Monte Carlo is related to the dimension s,
the traditional serial program is time consuming. We realize the parallel
programming in C language in section 4.3. The numerical results given in
section 4.4 coincide with the theoretical results very well.

4.2 Theorems on fine antithetic variables Monte

Carlo

Let ‖x‖ = (
s

∑

i=1

(xi)
2)

1
2 for x = (x1, · · · , xs)

T ∈ Rs. Suppose D is the convex

domain in Rs and δ > 0, define modulus of continuity ω(f, δ) and second
order modulus of continuity Ω(f, δ) for f : D → R respectively as:

ω(f, δ) = sup
‖t‖<δ

x,x+t∈D

|f(x + t) − f(x)| (4.5)

Ω(f, δ) = sup
‖t‖<δ

x±t∈D

|f(x + t) − 2f(x) + f(x− t)| (4.6)

For f : D → Rs, the modulus of continuity is defined as

ω(f, δ) = (

s
∑

i=1

ω(fi, δ)
2)

1
2 (4.7)

F is the FAMC estimator and A the AMC estimator of integral I described
in the introduction. We have the following theoretical results.
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Lemma 4.2.1 Denote C1(D) the class of functions having first continuous
derivative on convex domain D. Suppose f ∈ C1(D), then the second order
modulus of continuity Ω(f, δ) and the modulus of continuity ω(f, δ) have the
following inequality.

Ω(f, δ) ≤ 2δω(f ′, δ) (4.8)

where δ > 0.

Proof. For all x± t ∈ D, ∃ θi ∈ (0, 1), i = 1, 2, such that

f(x + t) − f(x) =

s
∑

i=1

∂f(x + θ1t)

∂xi
ti,

f(x− t) − f(x) = −
s

∑

i=1

∂f(x− θ2t)

∂xi
ti.

So f(x + t) − 2f(x) + f(x− t) =

s
∑

i=1

(
∂f(x + θ1t)

∂xi
− ∂f(x− θ2t)

∂xi
)ti.

For all ‖t‖ < δ, an application of Cauchy inequality gives

Ω(f, δ)2 ≤
s

∑

i=1

(

|∂f(x + θ1t)

∂xi
− ∂f(x)

∂xi
| + |∂f(x)

∂xi
− ∂f(x − θ2t)

∂xi
|
)2

s
∑

i=1

(ti)
2

≤
s

∑

i=1

[2ω(
∂f

∂xi
, δ)]2 · δ2

Therefore Ω(f, δ) ≤ 2δω(f ′, δ).

Theorem 4.2.2 Denote C(Is) the space of continuous functions on Is =
[0, 1]s. Consider f ∈ C(Is), the variance of FAMC estimator F can be
estimated by the second order modulus of continuity Ω(f, δ) as

E(F − I)2 <
1

4N
Ω(f,

1

2N1/s
)2 (4.9)

where N is the number of random points.

Proof. Denote

Fk =
1

2N
[f(ηk) + f(2ck − ηk)],

Ik =

∫

Dk

f(x)dx.
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Introducing the change of variable ξk = N1/s(ηk − dk), we have

EFk =
1

2N

∫

Is

[f(ηk) + f(2ck − ηk)]dξk

=
1

2

∫

Dk

[f(ηk) + f(2ck − ηk)]dηk

= Ik.

Substituting Fk and Ik into E(Fk − Ik)
2, then adding and subtracting the

term 2f(ck) , we obtain the variance of Fk.

E(Fk − Ik)
2 = N

∫

Dk

(Fk − Ik)
2dηk

= N

∫

Dk

{[ 1

2N
(f(ηk) − 2f(ck) + f(2ck − ηk))

]

−
[1

2

∫

Dk

(f(x) − 2f(ck) + f(2ck − x))dx
]}2

dηk

Expanding the square term, then regrouping the equation, we have

E(Fk − Ik)
2 =

1

4N

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]2dx

−1

4

{

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]dx
}2

.

<
1

4N

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]2dx

Since ck is the center of Dk, so ‖x− ck‖ <
1

2N1/s
for x ∈ Dk. According to

the definition of Ω(f, δ), we have f(x)− 2f(ck) + f(2ck − x) ≤ Ω(f, 1
2N1/s ).

Therefore

E(Fk − Ik)
2 ≤ 1

4N

∫

Dk

Ω(f,
1

2N1/s
)2dx

=
1

4N2
Ω(f,

1

2N1/s
)2

Since the random points are independent, so Cov(Fi−Ii)(Fk−Ik) = 0, i 6= k.
Summing of E(Fk − Ik)

2 sub k, we have

E(F − I)2 =
N

∑

k=1

E(Fk − Ik)
2 <

1

4N
Ω(f,

1

2N1/s
)2
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The proof is terminated.

Applying Lemma 4.2.1 to Theorem 4.2.2, we get

Corollary 4.2.3 Denote C1(Is) the class of functions having first contin-
uous derivative on Is = [0, 1]s. If f ∈ C1(Is), then the variance of F can be
estimated by the modulus of continuity ω(f, δ) as

E(F − I)2 <
1

4N1+2/s
ω(f ′,

1

2N1/s
)2 (4.10)

where N is the number of random points.

Following in a similar manner, when f ∈ C2(Is), we can estimate E(F − I)2

of size O( 1

N1+ 4
s
). Furthermore we have the following exact result.

Theorem 4.2.4 Denote C2(Is) the class of functions having second con-
tinuous derivative on Is = [0, 1]s. Assume f ∈ C2(Is), then the variance of
F has the following exact estimation.

E(F − I)2 =
1

288

∫

Is

s
∑

i=1

s
∑

j=1

(1 − 3

5
δij)

(∂2f(x)

∂xi∂xj

)2
dx · 1

N1+ 4
s

+ o(
1

N1+ 4
s

),

(4.11)

where δij =

{

0, i 6= j
1, i = j

is the symbol of Kronecleer and N is the number

of random points.

Proof. From the proof of Theorem 4.2.2, we have

E(Fk − Ik)
2 =

1

4N

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]2dx

−1

4

{

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]dx
}2

.

(4.12)

Now
f(x) − 2f(ck) + f(2ck − x)

= (x − ck)
Tf ′′(ck)(x − ck) + o(

1

N
2
s

)

=

s
∑

i=1

s
∑

j=1

∂2f(ck)

∂xi∂xj
(xi − cki)(xj − ckj) + o(

1

N
2
s

)
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Since ck is the center of Dk, so

∫

Dk

(xi − cki)(xj − ckj)dx = 0, we get

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]dx

=
s

∑

i=1

∂2f(ck)

(∂xi)2

∫

Dk

(xi − cki)
2dx + o(

1

N1+ 2
s

)

=
1

12N1+ 2
s

s
∑

i=1

∂2f(ck)

(∂xi)2
+ o(

1

N1+ 2
s

)

(4.13)

And the integration of [f(x) − 2f(ck) + f(2ck − x)]2 on Dk is

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]2dx

=

∫

Dk

s
∑

i=1

s
∑

j=1

∂2f(ck)

∂xi∂xj
(xi − cki)(xj − ckj)

s
∑

m=1

s
∑

n=1

∂2f(ck)

∂xm∂xn
(xm − ckm)(xn − ckn)dx

+o(
1

N1+ 4
s

)

All the non-zero terms satisfy







m 6= i
j = i
n = m

or







j 6= i
m = i
n = j

or







j 6= i
n = i
m = j

or

n = m = j = i.
So
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∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]2dx

=

s
∑

i=1

∑

m6=i

∂2f(ck)

(∂xi)2
∂2f(ck)

(∂xm)2

∫

Dk

(xi − cki)
2(xm − ckm)2dx

+2

s
∑

i=1

∑

j 6=i

(∂2f(ck)

∂xi∂xj

)2
∫

Dk

(xi − cki)
2(xj − ckj)

2dx

+

s
∑

i=1

(∂2f(ck)

(∂xi)2

)2
∫

Dk

(xi − cki)
4dx + o(

1

N1+ 4
s

)

=
1

144N1+ 4
s

s
∑

i=1

∑

m6=i

∂2f(ck)

(∂xi)2
∂2f(ck)

(∂xm)2
+

2

144N1+ 4
s

s
∑

i=1

∑

j 6=i

(∂2f(ck)

∂xi∂xj

)2

+
1

80N1+ 4
s

s
∑

i=1

(∂2f(ck)

(∂xi)2

)2
+ o(

1

N1+ 4
s

)

By adding and subtracting the term
(∂2f(ck)

(∂xi)2

)2
under the summation sub

i, we get

∫

Dk

[f(x) − 2f(ck) + f(2ck − x)]2dx

=
1

144N1+ 4
s

s
∑

i=1

s
∑

m=1

∂2f(ck)

(∂xi)2
∂2f(ck)

(∂xm)2
+

2

144N1+ 4
s

s
∑

i=1

s
∑

j=1

(∂2f(ck)

∂xi∂xj

)2

+(
1

80
− 3

144
)

1

N1+ 4
s

s
∑

i=1

(∂2f(ck)

(∂xi)2

)2
+ o(

1

N1+ 4
s

)

=
1

144N1+ 4
s

(

s
∑

i=1

∂2f(ck)

(∂xi)2

)2
+

1

72N1+ 4
s

s
∑

i=1

s
∑

j=1

(∂2f(ck)

∂xi∂xj

)2

− 1

120N1+ 4
s

s
∑

i=1

(∂2f(ck)

(∂xi)2

)2
+ o(

1

N1+ 4
s

)

(4.14)

Now substitution Eq. (4.14) and Eq. (4.13) into Eq. (4.12), we obtain
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E(Fk − Ik)
2 =

1

288N2+ 4
s

s
∑

i=1

s
∑

j=1

(∂2f(ck)

∂xi∂xj

)2

− 1

480N2+ 4
s

s
∑

i=1

(∂2f(ck)

(∂xi)2

)2
+ o(

1

N2+ 4
s

)

Therefore

E(F − I)2 =

N
∑

k=1

E(Fk − Ik)
2

=
1

288N2+ 4
s

N
∑

k=1

s
∑

i=1

s
∑

j=1

(1 − 3

5
δij)

(∂2f(ck)

∂xi∂xj

)2
+ o(

1

N1+ 4
s

)

=
1

288N1+ 4
s

lim
N→+∞

1

N

N
∑

k=1

[

s
∑

i=1

s
∑

j=1

(1 − 3

5
δij)

(∂2f(ck)

∂xi∂xj

)2]

+ o(
1

N1+ 4
s

)

Since f is function having second continuous derivative, so
s

∑

i=1

s
∑

j=1

(1 −

3

5
δij)

(∂2f(x)

∂xi∂xj

)2
is continuous function. Replacing summation sub k by

integration, we have

E(F − I)2 =
1

288N1+ 4
s

∫

Is

s
∑

i=1

s
∑

j=1

(1 − 3

5
δij)

(∂2f(x)

∂xi∂xj

)2
dx + o(

1

N1+ 4
s

)

The proof is completed.

By suitable modification to the proof of Theorem 4.2.4, we can get

Corollary 4.2.5 Denote u2(I
s) the class of multi-variable functions whose

degree is no more than two on Is = [0, 1]s. If f ∈ u2(I
s), then the variance

of AMC estimator A has the following exact estimation

E(A − I)2 =
1

288N

s
∑

i=1

s
∑

j=1

(1 − 3

5
δij)

( ∂2f(c)

∂xi∂xj

)2
(4.15)

where c = (1
2 , · · · , 1

2)T and N is the number of random points.

From Theorem 4.2.4, we can see that the root mean square error of FAMC
method is of size O(N−( 1

2
+ 2

s
)). It’s better than the result of MC method.
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The Corollary 4.2.5 shows that the constant before O(N− 1
2 ) of AMC is

less than that of MC and the variance is zero for the linear functions, in
particular. We will give numerical experiments in section 4.4.

4.3 Parallel programming for antithetic variable

Monte Carlo integration

We realize the MPI parallel programming in C language. The program run
on the computer cluster “Large Scale Scientific Computing”(lssc.cc.ac.cn)
of state key Laboratory of Scientific and Engineering Computing, Chinese
Academy of Sciences.

In serial program, we calculate N function values on one computer, while
the parallel program distributes these calculating on noprocs processors.
In order to assure the independence of the random numbers, we use only
one random number generator to generate one same sequence, so the seeds
need to be transform among the processors. MPI program starts using the
following codes:

MPI Init(&argc,&argv);
MPI Comm rank(MPI COMM WORLD,&nid);
MPI Comm size(MPI COMM WORLD,&noprocs);

here nid is the serial number for each processor, the value ranges from 0 to
noprocs−1. Each processor once generates a successive sub seq len random
numbers. The remain number of N that can not been divided by sub seq len
is marked as remainder.

procs step=sub seq len∗noprocs;
remainder=N%sub seq len;
size=N−remainder;

After generates random numbers, each processor transforms the seeds of gen-
erator to the next processor, then calculates the function values of these re-
cently generated sub seq len random numbers. The next processor(nid after)
of this processor(nid) repeat the same process while the this processor is
calculating function values. That is, generates random numbers, trans-
forms seeds of random number generator, calculates function values. So,
except the time to generate sub seq len random numbers and transform
the seeds of random number generator, all processors are calculating the
function values simultaneously. Each processor need to know from which
processor(nid before) to receive the seeds of generator before call the gen-
erator.

Because the AMC and FAMC methods need to map the random number
to every sub-cube, the serial number(0 − (N − 1)) of each random number
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is important to be marked. We use nid to control this serial number. In the
call of subroutine MC(), k + m is the serial number of the random number.

for(k=nid∗sub seq len;k<N;k+=procs step)
{...
if (k+sub seq len<=size)

{ for(m=0;m<sub seq len;m++)
MC(k+m,n,random[m],interval,sum);

}
else

{ for(m=0;m<remainder;m++)
MC(k+m,n,random[m],interval,sum);

}
...
}

It is obvious that the value of k for processor 0 starts from 0, so the
function value of the random number whose serial number is 0(among the N
random numbers) should be calculated on processor 0. And after finish every
N function values calculating, the next N function values calculating should
start on the processor 0. It is necessary to trace the processor(last nid) who
deal with the last random number(whose serial number is N − 1) of every
N random numbers. When this processor finishes generating sub seq len
or remainder random numbers, it should transform the seeds of generator
to the processor 0. The processor 0 need to decide whether from processor
noprocs − 1 or from the processor who deals with the N − 1’th random
number to receive the seeds of generator. We use the variable last nid to
mark the source processor of processor 0.

for(i=0;i<runs;i++) {for(j=1;j<=step;j++)
{ N=points step[j];
...
last nid=noprocs−1;
for(k=nid∗sub seq len;k<N;k+=procs step)
{/∗receive the random seeds∗/
if (nid) /∗nid before=(nid+noprocs−1)%noprocs;∗/

nid before=nid−1;
else

nid before=last nid;
MPI Irecv(seeds,NTAB+3,MPI LONG,nid before,10,MPI COMM WORLD,&

req recv seeds);
MPI Wait(&req recv seeds,&status);
...
nid after=(nid+1)%noprocs;
/∗in general the (noprocs−1)’th process send the seeds to process 0∗/
last nid=noprocs−1;
/∗the process who deal with the N’th random number will send the seeds to process 0

then process 0 start the first random number of new successive N random points
∗/
if ((k+sub seq len==N)||k+remainder==N)
{ nid after=0;

last nid=nid;
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/∗boadcast so that process 0 know the change of last nid∗/
MPI Bcast(&last nid,1,MPI INT,nid,MPI COMM WORLD);

}
MPI Isend(seeds,NTAB+3,MPI LONG,nid after,10,MPI COMM WORLD,&

req send seeds);
...

}
...

}/∗end of j : step∗/
...
}/∗end of i : runs∗/

When all the processors finish calculating N function values, the following
code to gather all the sub-sums.

MPI Reduce(sum,G sum,4,MPI DOUBLE,MPI SUM,0,MPI COMM WORLD);

The parallel program ends with

MPI Finalize();

The full codes are in the appendix.

4.4 Numerical experiments

FAMC and AMC method have been compared with MC method for many

classical functions. Denote Y
(1)
N = M , Y

(2)
N = A, Y

(3)
N = F . For the sd error

and rmse defined in Eq. (3.7) and Eq. (3.8), we set m = 75 and use the
pseudo-random generated from ran2 in [26].

The examples given here are from [36][37].

Example 1.

I1 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4x1x
2
3 exp (2x1x3)

(1 + x2 + x4)2
dx1dx2dx3dx4 (4.16)

Example 2.

I2 =

∫ 1

0
· · ·

∫ 1

0

s
∏

i=1

1 + 3(xi)
2

2
dx1 · · · dxs, s = 10 (4.17)

Example 3.

I3 =

∫ 1

0
· · ·

∫ 1

0
exp

s
∑

i=1

xi

i
dx1 · · · dxs, s = 15 (4.18)

The exact value I1 = 0.5753, I2 = 1.0, I3 = 5.610253495
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Table 4.1: rmse error of example 1, s = 4

16 81 256 625 1296 2401 4096

MC 0.26816 0.12726 0.07522 0.04744 0.03278 0.02726 0.01828
AMC 0.19763 0.08531 0.04605 0.03064 0.02021 0.01497 0.01050
FAMC 0.09145 0.01912 0.00774 0.00302 0.00140 0.00082 0.00043

Table 4.2: rmse error of example 2, s = 10

1024 59049 1048576 9765625 60466176 282475249

MC 0.070045 0.010355 0.002235 0.000735 0.000299 0.000127
AMC 0.042890 0.006604 0.001491 0.000522 0.000186 0.000085
FAMC 0.017122 0.001541 0.000209 0.000041 0.000013 0.000004

We denote the error of size O(Nα). From theoretical results, α(MC) =
α(AMC) = −1

2 and α(FAMC) = −(1
2 + 2

s ). For FAMC method, the results
of rmse error are presented in tables 4.1–4.3. The first line of the tables is
size of N , that is to say that N = ns random points have been used for
estimating the integrations. Theoretical α(FAMC) and the corresponding
slopes of linear fit of rmse error(log-log data are used) are presented in table
4.4. For AMC and MC method, The results of sd error are presented in Fig.
4.1–4.6. Log-log plots are used so that slopes correspond to α and intercept
correspond to the constant.

We have the following results:

• From tables 4.1–4.3, we can see that the error of FAMC method is
much less than that of the AMC and MC methods.

• Fig. 4.1–4.6 show that the constant before O(N− 1
2 ) of AMC is less

than that of MC method.

Table 4.3: rmse error of example 3, s = 15

32768 14348907 1073741824

MC 0.0093009 0.0004967 0.0000651
AMC 0.0023853 0.0001140 0.0000118
FAMC 0.0006000 0.0000134 0.0000008
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Figure 4.1: The sd error of example 1 for MC method.
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Figure 4.2: The sd error of example 1 for AMC method.
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Figure 4.3: The sd error of example 2 for MC method.
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Figure 4.4: The sd error of example 2 for AMC method.
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Figure 4.5: The sd error of example 3 for MC method.
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Figure 4.6: The sd error of example 3 for AMC method.
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Table 4.4: Theoretical α(FAMC) and slope of linear fit of rmse error for FAMC

method

s α(FAMC) slope

Example 1 4 -1.00 -0.96
Example 2 10 -0.70 -0.67
Example 3 15 -0.63 -0.64

• Slopes of linear fit in table 4.4 fit with α(FAMC) very well. For exam-
ple, when s = 10, α(FAMC) = −0.7, the slope is −0.67.

4.5 Conclusions

Both from the theoretical and numerical experiment results, we can conclude
that the FAMC method is superior to the AMC and MC method because of
error size of O(N−( 1

2
+ 2

s
)) for functions having second continuous derivative.

The numerical experiments also coincide with the theoretical result on that
the error of AMC method is the same order as that of the MC method, while
the constant before O(N− 1

2 ) is less than that of MC method.



Chapter 5

Adaptive random search in

quasi-Monte Carlo methods

for global optimization

Quasi-Monte Carlo random search is useful in nondifferentiable optimization.
We introduce an adaptive random search in Quasi-Monte Carlo Methods (AQMC)
for global optimization. First, we use adaptive technique in the local search [38]
such that it can head for local extremum points quickly because the search
direction and search radius are adjusted according to the previous search result.
Then, we develop the adaptive technique [39] by borrowing ideas of popula-
tion evolution from Genetic Algorithms. New individuals will be imported into
the population adaptively according to population evolution degree. For quasi-
random sequences with low discrepancy, the new generated successive points
fill in the gaps in the previously generated distribution, which ensures that the
domain of function can be searched evenly and the global extremum can be
found. In conclusion, the AQMC method not only speeds up the random search
but also balances the global and local demands (adaptive equalization).

5.1 Introduction

The standard quasi-Monte Carlo optimization introduced in Chapter 1 is
convergent. However, the rate of convergence is in general very slow. In
order to speed up the method, Niederreiter and Peart [40] developed the
quasi-random search by using “localization of search”(LQMC). Analogous
to the method described in [40], in 1990, Y. Wang and K.T. Fang [41] intro-
duced a sequential number-theoretic method for optimization (SNTO) and
its applications in statistics.

The successes of LQMC and SNTO depend to great extent on the con-
dition dN < ε, where ε is contraction ratio that is a positive number less
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than 1
2 . Since dN ≥ 1

2N−1/s is an absolute low bound for the dispersion
of any N points in Is = [0, 1]s according to [42], it follows that N must at
least be of an order of magnitude ε−s. In addition, if the function has many
local maxima, in particular, the local maximum is much close to M , then
“localization of search” could be lead into a “wrong track”, that is to say,
the global maximum could not be found.

In this chapter, we introduce an adaptive technique in local search and
in the procedure of population evolution. We call the methods Adaptive
Quasi-Monte Carlo methods for global optimum (AQMC). AQMC not only
speeds up the random search methods considerably, but also balances the
global and local demand (adaptive equalization). The algorithm is described
in section 5.3, Numerical experiments will be given in section 5.4.

5.2 LQMC vs. LAQMC

Assume f be defined on rectangular region E = [a,b],a,b ∈ Rs. The
Niederreiter’s local search (LQMC) algorithms can be described as following:

• Step 1(initialization): generate N quasi-random points, find xm such
that f(xm) = max

1≤n≤N
f(xn)

• Step 2(mapping): map the N points to a s dimension cube with xm

as center, εi as radius. gC(x) = xm + εi(2x − (a + b)).

• Step 3: find new xm, such that f(xm) = max(f(xm), max f
1≤n≤N

(gC(xn)))

• Step 4: repeat step 2 and 3 till the search radius is close to zero.

Where N is the order of O(ε−s). εi is decreased in each mapping step, it
is usually be set as εi = εi, 0 < ε < 1/2(see Fig. 5.3). We call each mapping
a generation.

We develop local search in order to find the local extremum more quickly,
which means we can use smaller number of points to obtain the extremum .
We call it LAQMC method. LAQMC method also have the ability to jump
out the local extremum to global extremum sometimes.

LAQMC is different from LQMC in three aspects. Here we mark the
generation no. i as subscript. Search direction and search radius εik are ad-
justed according to the previous search result. In addition, Ni is proportion
to εik.
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START

c     xik, j   1

if(j>Ni)

gcxj     c + εik(2xj - (a+b))

No

if ( f(gcxj)>f(c) )

c     gcxj

j     j+1

if (c==xik)

Yes

No

Yes

εi+1,k= d(c,xik),

    xik     c

No

if ( fmaxi<f(c) )

Yes

fmaxi     f(c)
  xmax     c

No
εi+1,k=c3*εik

Yes

END

Figure 5.1: Flow chart of local search of AQMC(LAQMC)
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r=0.25;//search radius
a=x[m];//the center
Ni=int(c2*N*max(r,c1));
for(i=1;i<=Ni;i++)
  {gcx[i]=a+r*(x[i]-1);
    if(f(gcx[i])-f(a)>1.0E-8)
          a=gcx[i];
   }
tempx=fabs(x[m]-a);
if(tempx>1.0E-8)
      r=tempx;
else
      r=c3*r;//c3<1;

r=0.25;//search radius
a=x[m];//the center

for(i=1;i<=N;i++)
  {
    gcx[i]=a+r*(x[i]-1);
   }

r=r*r;

LQMC LAQMC

Figure 5.2: Codes of LQMC vs LAQMC

For the selected individual xik, map the first Ni points of the segment
x1, · · · ,xN to the neighborhood of xik by gC : E → C.

1 ≤ Ni = [c2 × N × max{εik, c1}] ≤ N, 0 < c1 ≤ 1, 0 < c2 ≤ 1 (5.1)

gC(x) = c + εik(2x − (a + b)) for x ∈ E (5.2)

where [x] denotes the greatest integer < x. c is initially set to be xik, if
f(gC(xj)) > f(c), then c is set to be gC(xj), j = 1, · · · , Ni. As shown in
flow chart (Fig. 5.1), εi+1,k, the next search radius of k’th individual, will be
adjusted according to this search result. If function value bigger than f(xik)
is found, then εi+1,k = d(c,xik), and xik will be replaced by c. Otherwise,
we have εi+1,k = c3 × εik , where 0 < c3 < ε0. We suggest that c3 = ε3

0.

We give parts of C codes for LAQMC and LQMC method in Fig. 5.2.
To be simplex, the dimension s is set to be 1.

We will test the LAQMC and LQMC method in section 5.4. The adap-
tive local search of AQMC algorithms is timesaving.

5.3 AQMC algorithms

But local search is not enough for global optimization. Borrowing ideas
of population evolution from Genetic Algorithms [43][44][45][46], We intro-
duce an adaptive quasi-Monte Carlo global optimization. We take the initial
segment x1, · · · ,xN ∈ E of infinite quasi-random sequence(N is relatively
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small when s is large ) as the initial population and each point is an individ-
ual. First calculate fitness for each individual. Then select one individual
(selection probability is proportion to fitness) and perform adaptive local
search. New individuals will be imported into the population adaptively
according to population evolution degree Ed. If better individual is found,
Ed will increase, and the probability of importing new individual into the
population increases. As we have discussed in section 2.2, the new gen-
erated successive points of quasi-random sequence fill in the gaps in the
previously generated distribution in E (the domain of function f ), which
ensures that E can be searched evenly and the global maximum can be
found. Let fmaxi = max

1≤k≤i

1≤j≤N

f(xkj) and xmax denote the corresponding ap-

proximate maximum point. The nondecreasing sequence fmax1, fmax2, · · ·
is taken as an approximation for the correct value M of the supremum of f
described above.

Definition 5.3.1 (fitness) Set Fij = f(xij) − Cmin, where Cmin is the
minimal function value of all individuals till current generation and f(xij)
is the function value of j’th individual of i’th generation. Then

pij = Fij/

N
∑

k=1

Fik

denotes the fitness of the j’th individual of i’th generation. Obviously

pij ≥ 0, j = 1, · · · , N and

N
∑

j=1

pij = 1.

Definition 5.3.2 (evolution degree) The mean function value of the i’th
generation is denoted by mi =

∑N
j=1 f(xij)/N, i = 1, · · · . Initially set m0 =

m1, once the worse individuals of the i’th population be replaced by new
points from the sequence, set m0 = mi . Then

Edi = |1 − mi/m0| (i = 1, · · · )

denotes the population evolution degree of i’th generation.

The concept of evolution degree Ed represents the saturation of local
search ability. As for the initial population, Ed = 0, the probability to
generate new individual is zero, the local search overwhelm generating new
individual. As the local search improves the approximation of maximum,
the ability of local search to find better maximum points degrades. The
evolution degree Ed increases and the probability to generate new individ-
ual increases too. When the new random points are generated to be as new
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individuals, the population is renewed, the evolution degree Ed is reset to
be 0, the evolution restarts. We can see that the AQMC method focus on
local search, it only introduces new individuals to avoid stay in the neighbor
of local extremum.

Now we describe AQMC algorithms as follows:

• Step 1:

1. Generate initial segment x1, · · · ,xN of sequence, set xij = xj, εij =
ε0(0 < ε0 < 1

2 ) for i = 1, j = 1, · · · , N as the initial population
and calculate pij.

2. Let fmaxi = f(xik) = max
1≤j≤N

f(xij) and xmax = xik.

3. Calculate m1 and put m0 = m1.

• Step 2:

If (the stop criteria satisfied):

Program end

Else:

(a) i = i + 1

(b) Select one individual according to pij and perform adaptive
local search, fmaxi may be changed after local search(LAQMC).

• Step 3: Calculate pij,mi, Edi.

• Step 4:

1. Generate a random number newp.

2. If (newp < Edi):

(a) Generate c4 × N(0 < c4 ≤ 1) new successive points from
the sequence and replace the worse individuals of the i’th
population (elitist model) by new points. εij of new imported
individual is reset to be ε0.

(b) Let tempx denote the maximum of the function values of
the new imported individuals. If (fmaxi < tempx), then
fmaxi = tempx.

(c) Calculate pij , mi , set m0 = mi.

3. Goto Step 2.

The stop criteria may be set according to various situations. For ex-
ample, if fmaxi has not been improved after several generations, then we
stop running the program. We can also set the total generation number in
advance. Moreover, there are many applications that are to find optimal pa-
rameters, that is to say, the global extremum is known, and we can control
the error between fmaxi and the global extremum.
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search radius:

generation no.: 1 2 i... ...

ε ε ε... ...1 2

i =ε i

Figure 5.3: The search radius of each generation for local search of Nieder-
reiter’ method(LQMC)

search radius:
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7

ε7
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ε9
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Figure 5.4: The search radius of outer iteration of local search of Niederre-
iter’ method (see Eq. (5.4)), Compare with Fig. 5.3

5.4 Numerical experiments

We have carried out numerical experiments on some classical functions with
AQMC. Sobol’ sequences [26][25] were used in the experiments. Some ex-
amples are given as follows, in which f1 is taken from [44]. We compare the
search result of AQMC with that of LQMC and SNTO, the improvement
obtained by AQMC is considerable.

Example 1:

f1 = 100(x2
1 − x2)

2 + (1 − x1)
2, −2.408 ≤ xi ≤ 2.408 (5.3)

is a function hard to be minimized. The global minimum point is at (1.0, 1.0)
and the global minimum is 0. We take N = 64, ε0 = 0.25, δ = 4.0 and we
have carried out 81920 runs. For the LQMC method, the errors between
the global minimum and its approximation are all greater than size O(10−4).

For procedure of outer iteration of LQMC [40], if set(see Fig. 5.4)

εi = εi−1 × δ if(!i%5)
εi = ε0 if(!i%10)

}

(5.4)

Then the minimum was found at the 45th generation(see Fig. 5.5 LQMC).
Meanwhile, by using the adaptive local search of AQMC(LAQMC), c1 = 1.0,
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Figure 5.6: Contour of the function of example 2

c2 = 1.0, c3 = ε3
0, the minimum was found at the 4th generation(see Fig.

5.5 LAQMC), and 41885 runs out of 81920 runs (51.13%) find the global
minimum. Define err as the error between the exactly minimum and the
approximation for the minimum, Fig. 5.5 shows that the ability of adaptive
local search of AQMC is stronger than LQMC.

Furthermore, adaptive local search of AQMC can avoid the deficiency of
LQMC that it could lead into “wrong track”. Let’s consider the following
function.

Example 2:

f2 = sA +

s
∑

i=1

[x2
i − A cos(2πxi)], −4.0 ≤ xi ≤ 5.0, A ∈ R (5.5)

The global minimum is 0. Here we set A = 8. For the dimension s = 2,
the global minimum point is at (0, 0) and there exist many local minima in
the domain [0, 1]× [0, 1](see Fig. 5.6). For LQMC method, 36320 runs out of
81920 runs(44.33%) can’t find the global minimum. For outer procedure of
LQMC method, and εi is set as Eq. (5.4). If N = 64, then the method found
a local minimum at the 11th generation and stayed at the local minimum
point(see Fig. 5.7, LQMC N=64). If N is increased to 200, then the global
minimum was found at the 25th generation (see Fig. 5.7, LQMC N=200),
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Figure 5.7: Approximation(fmin) for global minimum of function f2(s = 2)
with LQMC and LAQMC

which means that LQMC calculated 50000 function values before it found
the global minimum. Same as the situation of function f1 , the adaptive
local search of AQMC found the global minimum at the 5th generation(see
Fig. 5.7, LAQMC N=64). The facts owe to the adaptive search direction
and radius.

AQMC is superior to LQMC not only in local search ability, but also
in global search ability. For function f2 defined in Eq. (5.5), LQMC can
hardly find the global minimum when s = 6. If N = 1024 and ε0 = 0.25,
then 8092 runs out of 8192 runs (98.78%) can’t find the global minimum.
But AQMC can find the global minimum eventually. Table 5.1 shows the
results of AQMC methods for f2 when s = 6, where Np means the total
number of calculated function values and fmin means the approximation
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Table 5.1: Approximations for the global minimum of f2(s = 6) with AQMC

methods. Compared with the result of LQMC result for dimension 2, the size of

Np is relatively not large.

c1 c2 c3 c4 Np fmin

0.040000 1.0 0.0625 0.25 134254 0.0000018688
0.050000 1.0 0.0625 0.25 145119 0.0000052123
0.080000 1.0 0.0625 0.25 190176 0.0000018547

for the minimum of f2. Remember that LQMC calculated 50000 function
values for dimension s = 2, here dimension is s = 6. So compared with the
result of LQMC result for dimension 2, the size of Np is relatively not large.

Now, we will compare the result of AQMC with that of SNTO. The fol-
lowing two functions are taken from [28].

Example 3:

f3(x, y, z, u) = exp(xyzu) sin(x + y + z + u), (x, y, z, u) ∈ I4.

Example 4:

f4(x, y, z, u) = −(x− 3

11
)2−(y− 6

13
)2−(z−12

23
)2−(u− 8

37
)2, (x, y, z, u) ∈ I4.

We have known that the maximum of f3 is 1.0261986 and the maxi-
mum of f4 is 0. Tables 3.4 and 3.5 in [28]show that for both f3 and f4, the
SNTO methods can obtain the error of size O(10−7) after calculating more
than 2000 function values. However, the same precision is attained only
after calculation less than 400 function values for AQMC methods. The
improvement is considerable. Tables 5.2 and 5.3 show the results of AQMC
methods. All symbols in the tables have been explained in section 5.3.

The computational results show the following:

• AQMC methods are global optimization methods when LQMC and
SNTO may lead into “wrong track”.

• The local search of AQMC is about 5 times faster than LQMC and
SNTO.

• The population size of AQMC is rather less than the sample size of
LQMC and SNTO.
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Table 5.2: The results of AQMC methods for f3(c1 = 0.5, c2 = 1.0, c3 =

0.0625, c4 = 0.25)

Ni fmaxi x y z u

64 1.0170369 0.2187500 0.3437500 0.5312500 0.5937500
32 1.0250066 0.4375000 0.4375000 0.4375000 0.3125000
32 1.0250066 0.4375000 0.4375000 0.4375000 0.3125000
32 1.0256147 0.4340668 0.4310455 0.4357147 0.3428497
32 1.0261741 0.4150982 0.3969021 0.4091587 0.4149303
32 1.0261741 0.4150982 0.3969021 0.4091587 0.4149303
32 1.0261921 0.4139015 0.4027446 0.4100738 0.4123259
32 1.0261969 0.4100674 0.4065787 0.4098912 0.4125084
32 1.0261973 0.4115052 0.4080165 0.4084534 0.4120292
32 1.0261983 0.4106066 0.4085556 0.4100709 0.4104117

352

Table 5.3: The results of AQMC methods for f4 (c1 = 0.5, c2 = 1.0, c3 =

0.015625, c4 = 0.25)

Ni fmaxi x y z u

64 -0.06343331 0.32812500 0.67187500 0.45312500 0.10937500
32 -0.01104883 0.31250000 0.46875000 0.59375000 0.28125000
32 -0.01104883 0.31250000 0.46875000 0.59375000 0.28125000
32 -0.00684690 0.30773926 0.46875000 0.57788086 0.26538086
32 -0.00004844 0.27798462 0.46279907 0.52432251 0.21975708
32 -0.00004844 0.27798462 0.46279907 0.52432251 0.21975708
32 -0.00000507 0.27474183 0.46206683 0.52254421 0.21651429
32 -0.00000211 0.27291776 0.46105346 0.52274688 0.21712231
32 -0.00000013 0.27286076 0.46156648 0.52154983 0.21649529

320
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5.5 Conclusions

As shown in numerical experiments, adaptive quasi-Monte Carlo search
method is a global search method. The adaptive technique in local search
take advantage of the previous search results and jump from a point to its
nearest local extremum point. The local search speeds up the search hugely
for function with good quality of continuous, in particular. The examples in
this Chapter almost find their global extrema by the adaptive local search.
In addition, generating new individuals according to the evolution degree
assures the search is a global search.

We suggest that the adaptive local search of AQMC be used for lo-
calization of search combined with GA (Genetic Algorithms). The hybrid
algorithms will be promising. Chapter 6 gives an example of integrating
genetic programming and AQMC method.





Chapter 6

Hybrid of genetic

programming and AQMC

optimization method

There are many complex systems in real life. In order to analyze, design and
predict the system, we often want to model the dynamic systems of ordinary dif-
ferential equations according to the observed data. In this chapter, we combine
genetic programming and adaptive quasi-Monte Carlo optimization method to
solve prediction problems. Genetic programming algorithms are used to opti-
mize the right functions of the ordinary differential equations(model structure).
Adaptive quasi-Monte Carlo optimization methods are used to optimize the
coefficients(model parameters) of the functions.

6.1 Problems

Although there are many complex systems exist in engineering technology,
economic management, nature science and social science. problems that
demand predictions. The abstract model can be described as that we have
the history data, we want to know the data in the future.







x1(t1) · · · x1(tm)
... · · · ...

xn(t1) · · · xn(tm)






⇒







x1(tm+1) · · · x1(tm+num)
... · · · ...

xn(tm+1) · · · xn(tm+num)







where xi(tj) is the value of i’th variable at time tj. We want to get the value
at time tm+1, · · · , tm+num from the history data at previous time t1, · · · , tm.

Because the variables interact each other, it is a complex system. The
ordinary differential equations can be used to describe such dynamic sys-
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tems.


























































dx1

dt
= f1(t, x1, x2, · · · , xn)

dx2

dt
= f2(t, x1, x2, · · · , xn)

...

dxn

dt
= fn(t, x1, x2, · · · , xn)

(6.1)

Then we can use Euler method to get the next data from the previous
data(regression data).

x′
i(t + ∆t) = xi(t) + fi(t, x1(t), x2(t), · · · , xn(t)) × ∆t (6.2)

What we have to do is to find good function fi so that the regression
data consist to the history data. The fitness function can be defined as
following:

fit =

n
∑

i=1

m
∑

j=1

(x′
i(tj) − xi(tj))

2 (6.3)

Once we get the good function fi which minimizes the above fitness
function, we can use Euler method to predict the data in the future.

6.2 Genetic programming

Genetic programming[47][48] is developed from genetic algorithm. It can
be used to optimize complex structure such as computer program with dy-
namic size and structure. Here we want to optimize functions(mathematical
expression). The population consist of N individuals. Each individual is a
set of n functions. Through the evolution, we get the next generation of
population from the previous generation.

The optimization object is equations set, i.e., n functions. Function
can be expressed by tree in computer program. The process of evolution
of genetic programming is the same as that of genetic algorithm, except
that the object of evolution operator is tree, not the chromosomes with
fix length as in genetic algorithm. We will explain the expression of tree
and the evolution operator on trees later. The evolution progress of genetic
programming is as follow:

• Step 1: (initialization)Generate population consisting of N individu-
als, that is to generate N equations, each equation is n functions(mathematical
expression), i.e., n trees;
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sin

3.1

+

x

sin(3.1)

t

x+t

Figure 6.1: Function is expressed by a binary tree. The left child of the
math operator node is the first variable of this operator, the right child of
the left child of the math operator is the second variable of this operator.

• Step 2: Calculate fitness according to Eq. (6.3);

• Step 3: Get the individuals(trees) of next generation through evolution
by duplicate, mutate and crossover operator;

• Step 4: Optimize the coefficients of the functions using AQMC method;

• Step 5: Go to step 2.

We write the program in C++ language [49], in this section we will show
the points of the program using part of C++ codes. We first discuss how to
express the mathematical expression by tree, then explain how to calculate
function values, lastly describe the three evolution operator on trees. The
coefficient optimization will be presented in the next section.

Each function is expressed by a binary tree . As shown in Fig. 6.1, if the
math operator has only one variable, the tree has only left child, so the left
tree in the figure expresses sin 3.1. If the math operator has two variables,
the left child of the math operator node is the first variable of this operator,
the right child of the left child of the math operator is the second variable of
this operator. The right tree in the figure expresses x + t, where the second
variable t is the right child of the first variable x. We use this kind of binary
tree but not to regard the second variable as the child of the math operator
in order to generalize the codes. If we regard all the branches as the chil-
dren of the root node, as for the structure with three branches, for example,
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class node

class plus class sin class variable class constant...

Figure 6.2: The operator class, the constat class and the variable class are
derived from the base class node

the computer program, then the root should have three children. As for
structure with four branches, the root should have four children, · · · ; But
we can use the binary tree to express all structures with nondeterministic
branches. Set the third branch as the right child of the second branch, the
fourth branch as the right child of the third branch · · · .

Tree is expressed by data structure link. Because all the mathematical
expressions have been expressed by binary, each node having only two chil-
dren. Therefore each node only need two pointers point to left child and
right child. But our trees have different type nodes including math opera-
tor such as “+”, “−”, “×”,“/”, “ sin”, “cos”, “ln”, “exp” and constant(for
example, “3.1” in Fig. 6.1) and variable(t, x1, · · · ). These elements can not
been expressed by same data structure. We take the advantage of concept
“class” of C++ language. Class has three good properties of encapsulation,
inherit and polymorphic so that we can realize the link(tree) with hetero-
geneous nodes. We create a base class “node”. The operator class such as
“+”, “−”, “×”, “/”, “sin”, “cos”, “ln”, “exp”, the constat class and the
variable class are derived from the base class “node” (Fig. 6.2). All the
common properties are defined in the base class. For example, there are
two pointer, an int variable “rank” to mark these elements’ serial numbers
as well. A node with “rank=0” means this node is operator node “+”,
“rank=8” means this node is constant node, “rank=9” means this node is
variable node “t”, and so on. In fact, the links don’t store the expression
such as “+”, “t”, “3.1” who we can see in Fig. 6.1. The links only store
the serial numbers which present different elements. There are three virtual
functions in the base class, they are copy node() who copies node to get a
same node, eval() to calculate the function value of the tree whose root is
this node, estr() to return the function expression of the tree whose root is
this node. Except the same members, each derived class has its respective
members. For example, the constant class “constant” has a member to store
the value of this constant. Meanwhile, the operate manners for the math
operator, constant and variable are not same, the virtual functions in the
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node

function

individual

population

Figure 6.3: Relationship among all classes, class function has class node as
its member, and so on · · ·

base class will be overrode in the derived classes. The overriding of virtual
functions will be explained in the function value calculating.

class node
{ public :

friend class function;
friend class individual ;
node ∗right,∗ left ;
int rank;//node rank
int tag;//if operand,tag is the number of variable node(int Rank)
node(int Rank,int Tag)
{ rank=Rank;

tag=Tag;
right=NULL;
left =NULL;

}
virtual node ∗copy node(){return NULL;}// copy the node
virtual double eval(){return 0.;}//get the value of the tree (function)
virtual char ∗estr(){return NULL;}// get the expression of the tree

};

class constant:public node
{ public :

double random const;
...

};

The function value calculating is realized by the member function eval()
of each node. Every tree has a pointer(node *root) points to its root, through
this pointer we can find the left child of the root and the children of this left
child, then all the nodes of this tree(tree tour). Once we call the function
eval() of the root node, C++ language will automatically call the suit func-
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tion according to the class type of the root node. We has mentioned formerly
that there are three types of node including math operator, constant and
variable, so the virtual function eval() should have different managements
for different class type. That is what we call virtual function overriding. For
example, as for math operator node “+”, the first variable of this node is its
left child, the second variable is the right child of its left child, so we should
find these two nodes acting as variables of the operator “+” and plus the
values of the two sub-trees whose roots are these two nodes.

double plus::eval()
{ node ∗p=left;

p=p−>right;
return left−>eval()+p−>eval();

}

It is obvious that the call is a recursion, because the call should calculate
function values of two sub-trees.

However, it is easy for constant class to calculate its value, just to get
the value stored in its member variable.

double constant::eval()
{ return random const;
}

How to calculate the value of variable is the key of the function value cal-
culating. We have to get the value of variables (“t”, “x1”, etc.) from outside
and we hope to get the function value of f1 by directly call function f1(x) as
usual. We use a class “symbol table” to store the expression and value of the
variable in its member “table”(it is an array). There are a member “index”
in the class “variable” to index the array “table” of class “symbol table”.
For example, “index=0” corresponding to the first element(“t”) of the array
“table”, the expression and value of “t” are stored in the first element of
array “table”.

symbol table sym tab;
class symbol table
{private :

struct info
{ char var name[3];/∗to store the expression of the variable∗/
double var value;/∗to store the value of the variable∗/

};
info table [n+1];//t,x1,x2
int table index;

public :
symbol table();
void add value(int index,double r);
void add variable(char ∗s);
char ∗get name(int index);
double get value(int index);/∗to get the value of the variable by index∗/
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void clear() ;
};

The value of the variable is got by

double variable::eval()
{return sym tab.get value(index);
}

In order to get the value of f1 by directly calling f1(x), we have to
overload the operator.

double function::operator()(double x[])
{double temp;
for(int i=0;i<=n;i++)

sym tab.add value(i,x[ i ]) ;/∗x[0]=t, x[1]=x1∗/
temp=root−>eval();
return temp;
}

We can see that this routine call the member function add value() of class
“symbol table” to transform the values of x(x is an array) to array “table”.
Once the values of variables are updated, call the function eval() of root
node of the tree and get the value of the tree(funciton).

Analogy as the function value calculating, we can call root->estr() to
get the expression of the tree. The virtual function estr() is also a recursion,
it need to be overrode for different class node.

By far, we finish explaining the expression of function and how to cal-
culate the function value. Except that class “node”(node of tree) and class
“function”(mathematical function), we need other class such as class “indi-
vidual”(equations) and class “population”(a set of equations) to build up a
whole data structure. These classes have one class as another class’ mem-
ber(see Fig. 6.3), for example, class “node” is the member of class “func-
tion”, class “function” is the member of class “individual”, and so on · · · · · · .

Now we will describe the operate manner of evolution operators. The
three evolution operator including duplicate , mutate and crossover are all
handle the trees (functions). Duplicating is to copy the selected tree and
get a same tree. Mutating (see Fig. 6.4) first select one node(for example,
the node “sin” in Fig. 6.4) randomly, then find the left sub-tree(“sin(3.1)”)
including this node and the sub-tree whose root is the left child of this node,
not including the right child((“t”)) of this node, and replace this sub-tree by
a new generated tree. We should not replace the right child of this selected
node because the right child(node “t”) of this node is the second variable of
its parent(“∗”)(please refer to the above description of binary tree). In Fig.
6.4, the sub-tree “sin(3.1)” is replaced by new generated tree “x1 + t”, and
the origin function “4.∗(sin(3.1)∗ t)” mutates to function “4.∗((x1 + t)∗ t)”.
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*
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sin

3.1 t

*

4.

*

t

+

x1

t

4.*(sin(3.1)*t)

*

4.*((x1+t)*t)

Figure 6.4: Mutate operator of evolution. Select one node of the tree ran-
domly, the left sub-tree of this node “sin(3.1)” replaced by the new generated
tree “x1 + t”, the right child of this node(“t”) stay in the same place.
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sin(3.1)+t 5.-x1

Figure 6.5: Crossover operator of evolution. First respectively select one
node “x1” and “sin” of each of the two trees randomly. Then look for the
left sub-trees “x1” and ‘sin(3.1)” of these nodes, exchange these two sub-
trees. The right children remain unchanged.
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Crossing (Fig. 6.5) first select each node in two trees randomly, then find
the left sub-trees and exchange these sub-trees. All operating on tree should
remain the right child of the selected node so that the expression of the tree
is mathematical valid.

We have to tour tree many times in the programm, stack is need for tree
tour. Stack is actually an array with a set of functions so that the data in
the stack is first in last out. In order to deal with different type of data with
the stack, for example, sometimes we want to deal with pointer, sometimes
to deal with numerical value, we use the concept of template. Same as the
using of binary tree, template using is to generalize the codes.

template <class Tdatatype,int m0> class TStack
{public:

friend class function;
TStack(int t ini ,int StackDepth ini)
{ t=t ini ;
StackDepth=StackDepth ini;
}
void reset position (int position)
{ t=position;}
void push(Tdatatype X);
void pop();
void top(Tdatatype ∗X);
int sempty();
Tdatatype ptop();

private :
Tdatatype s[m0+1];//s[1−m0]
int t ;
int StackDepth;

};

All the program focus on how to deal with complex structure of opti-
mization object(here optimization object is function, we consider how to
store and calculate it in computer), this is the task of genetic programming.
So we can say the expressing of structure and the operating manner of the
evolution operator is the key of genetic programming.

6.3 Coefficients optimization

We imbed coefficient optimization by adaptive quasi-Monte Carlo optimiza-
tion (AQMC) algorithm described in Chapter 5 in the genetic programming.
The function with good structure will be rejected if the coefficients are bad.
For example, if the coefficient 3. of variable x1 in the function (Fig. 6.6)
“sin(0.5 ∗ t) + 3. ∗ x1” be changed to 5., the function fits the system very
well. But if we don’t do coefficient optimization, the original function with
good structure but bad coefficient maybe rejected during the evolution. So
we optimize the coefficients once we get a new generation of population.
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Figure 6.6: Coefficients optimization: tour the tree (function) and trace
the address of constant nodes, then use AQMC algorithm to optimize these
coefficients

We tour the tree (function) and trace the address of constant nodes, then
use AQMC algorithm to optimize these coefficients. The fitness function is
the same as that of genetic programming.

6.4 Example

We test our hybrid method by an example of electric power consumption
prediction of Hangzhou city (year 2000). We have the electric power con-
sumption from year 1990 to year 1999. We use the method to predict the
consumption of year 2000. In fact, we also know the consumption of year
2000. Table 6.1 compared the one predicted data with the original data, the
relative error is 4.5% which is less than the practical demanding error(10%).
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Table 6.1: Electric power consumption prediction of Hangzhou city (year
2000) 4.5% error

t (year) x1 (107 wh) x′
1 (107 wh)

1990 485278.06
1991 535014.80 548806.96
1992 604257.63 605577.47
1993 680473.09 684688.80
1994 784010.28 771858.12
1995 851131.16 890411.27
1996 930382.96 967341.10
1997 992755.26 1058242.41
1998 1048329.91 1129830.92
1999 1168747.17 1193650.49
2000 1394604.41 1332031.53

The prediction errors of our runs are almost within 6%, and the time each
run is very short. When compared with other prediction methods such as
neural network, our method is the most excellent. Other methods can not
predict the sudden change of the system. For example, the electric power
consumption from year 1999 to year 2000 increased rapidly while the con-
sumption from year 1990 to year 1999 steady. The neural network method
can not predict the consumption of year 2000 using the history data. Our
method can predict this rapidly change owe to the ordinary differential equa-
tions describing complex dynamic systems. And genetic programming is a
powerful tool to optimize ordinary differential equations. It is superior to
gray system method for the systems with multiple variables.



Chapter 7

The application of AQMC

methods to light transport in

tissue

Among various methods solving light transport, Monte Carlo simulation has
been used widely because it has advantage in dealing with macroscopical tissue
and it is easy to be realized and program. Monte Carlo simulation method is
time saving when compared with fine methods such as finite difference time do-
main(FDTD) method and is more suitable to be as forward method when solve
the inverse problem of light transport. Monte Carlo simulation of photon prop-
agation offers a flexible yet rigorous approach toward photon transport in turbid
tissues. In this chapter, we introduce the Monte Carlo simulation method for
light transport in tissue. Then use the Adaptive quasi-Monte Carlo optimization
method to solve the inverse problem of light transport in tissue.

7.1 Introduction

The knowledge of light interacting in biological tissue is important when
developing new diagnostic methods and medical treatments utilizing lasers.
The more these methods are fined, the more detailed studies of the transport
of light in tissue are required.

Monte Carlo simulation method is a probability method based on the
the [transport equation. When light propagates, two processes — absorption
and scattering — occur to various extents due to the medium. A common
way of describing the optical properties of the medium is by the refraction
index, n, the absorption coefficient, µa, the scattering coefficient, µs, and the
anisotropy coefficient, g. The absorption and scattering coefficients describe
the probability per unit path length of a photon being absorbed or scattered,
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respectively. The reciprocal of µa + µs, 1/(µa + µs), is interpreted as the
mean free path length between photon interactions with the medium. The
quantity µt = µa + µs is called the total attenuation coefficient. The g-
factor is defined by the mean value of the cosine of the scattering angle.
These optical parameters can be used as input parameters for Monte Carlo
simulation and determine the random walk of the photon.

There are fundamental assumptions made throughout this chapter. First,
the distribution of light is assumed static with time, and consequently, both
optical properties which change and irradiance times shorter than about one
nanosecond are excluded. Second, all media are assumed to have homoge-
neous optical properties. The index of refraction is assumed to be uniform
so that light will travel in a straight line until it is scattered or absorbed.
A third assumption is that the tissue geometry may be approximated by an
infinite plane-parallel slab with finite thickness. This assumption requires
that the beam width be smaller than the width of the tissue. The bound-
aries are assumed smooth and to reflect specularly according to Fresnel’s
law. Such a shape allows generalization to layered tissues or extension to an
infinitely thick tissue. The last assumption is that the polarization of light
may be ignored.

7.2 Monte Carlo simulation

The Monte Carlo method relies on tracing photon packet trajectories in a
random walk fashion, where the scattering and absorption events are gov-
erned by the probabilities given by µs and µa, as well as the phase function
p(s, s

′
). The key decisions to be made in a simulation are the mean free

path between scattering events, and the scattering angle. In addition, the
internal reflection must be handled.

Prahl described the rules of Monte Carlo simulation and give the flowchart
(Fig. 7.1) in [50].

A photon will be absorbed or scattering according to µa and µs, the
probability of absorption at any photon interaction site is µa/(µa +µs). Un-
less µa is very low, the probability of photon surviving after a few scattering
events is low. This means a very large number of photons have to be traced
to yield acceptable accuracy at large distance from the source. Variance
reduction techniques are used to improve the accuracy of the simulation for
smaller number of photons. Instead of terminating one photon at absorp-
tion, photon packets are launched with initial weights (usually set to be 1).
A proportion of µa/µt weight will be absorbed and the rest will be scattered.
The packet will be traced for ever till it is terminated using roulette method.



7.2 Monte Carlo simulation 71

Variable Stepsize Monte Carlo
with Weighting

Initialize Photon

Generate ∆s

Move Photon

Photon 
in 

Medium?

yes

noInternally
Reflected?

yes

Update
Absorption and
Photon Weight

Weight
too small?

no

yes

Survive
roulette?

Update
Reflection or
Transmision

Change
photon direction

Last
photon?

no

no

yes

yes

End

Figure 7.1: Flowchart of Monte Carlo simulation for light transport. Once
launched, the photon is moved a distance 4s where it may be scattered,
absorbed, propagated undisturbed, internally reflected, or transmitted out
of the tissue. The photon is repeatedly moved until it either escapes from or
is absorbed by the tissue. If the photon escapes from the tissue, the reflection
or transmission of the photon is recorded. If the photon is absorbed, the
position of the absorption is recorded. This process is repeated until the
desired number of photons have been propagated. The recorded reflection,
transmission, and absorption profiles will approach true values (for a tissue
with the specified optical properties) as the number of photons propagated
approaches infinity.
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When the weight falls below some threshold value,e.g., 0.001, there is a one
in m chance that the photon packet will survive the roulette procedure. In
case it survives, its weights is increased m times in that the total amount of
launched energy in the simulation is conserved.

The photon packets will travel a distance before the event of absorption
and scattering. Here we focus on the generation of the step size 4s using in-
verse continuous cumulative distribution function (CDF) method described
in Chapter 2.

According to the definition of µt, the probability of interaction per unit
path length in the medium between s and s + ds is µtds. This can also be
expressed in terms of the probability:

µtds =
−dP (S ≥ s)

P (S ≥ s)
(7.1)

Integrating this equation, yields

µts = − ln P (S ≥ s)

So

P (s) = 1 − exp(−µts)

using the Eq. (2.7), we get

s =
− ln(1 − ξ)

µt

where ξ is uniformly distributed random number over [0, 1], so the equation
is equivalent to

s =
− ln ξ

µt
(7.2)

We use six parameters to describe the position of photon packet, three
Cartesian coordinates for the spatial position and three direction cosines for
direction of the travel. So for a photon packet located at (x, y, z) travelling
a distance 4s in the direction (µx, µy, µz), the new coordinates (x′, y′, z′)
are given by

x′ = x + µx4s
y′ = y + µy4s
z′ = z + µz4s

(7.3)

The possibility of internal reflection occurs when the photon is propa-
gated across a boundary into a region with a different index of refraction.
We assume that tissue geometry be approximated by a plane-parallel slab
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geometry, infinite in the x and y directions with a thickness τ in the z-
direction. The probability that the photon will be internally reflected is
determined by the Fresnel reflection coefficient R(θi)

R(θi) =
1

2

[sin2(θi − θt)

sin2(θi + θt)
+

tan2(θi − θt)

tan2(θi + θt)

]

(7.4)

where θi = cos−1 µz is the angle of incidence on the boundary and the angle
of transmission θt is given by Shell’s law

ni sin θi = nt sin θt (7.5)

where ni and nt are the indices of refraction of the medium from which
the photon is incident and transmitted, respectively. A random number ξ
uniformly distributed between zero and one is used to decide whether the
photon is reflected or transmitted. If ξ < R(θi) then the photon is internally
reflected, otherwise the photon exits the tissue and the event is recorded as
backscattered light (when the photon exits the top) or transmitted light
(when it exits the bottom). If the photon is internally reflected, then the
internally reflected photon position (x′′, y′′, z′′) is obtained by changing only
the z-component of the photon coordinates

(x′′, y′′, z′′) =

{

(x, y,−z) if z < 0,
(x, y, 2τ − z) if z > τ.

(7.6)

The new photon direction (µ′
x, µ′

y, µ
′
z) is

(µ′
x, µ′

y, µ
′
z) = (µx, µy,−µz) (7.7)

and both µx and µy remain unchanged.

If the photon packets are still in the tissue after propagated or internal
reflect when across a boundary, it will be absorbed partly. If the weight
after absorbed is low than an threshold, we use roulette procedure to deter-
mine if the photon will be survived. If the photon packets has large enough
weight(need’t do roulette) or survive the roulette procedure, they will scat-
ter. The scattering deflection angle θ can be sampled from phase function.
The scattering phase function p(s, s′) describes the angular probability of
scattering from direction s′ to s. The phase function is sometimes written
as p(cosθ) to emphasize the angular dependency. The most common phase
function in turbid medium is called Henyey-Greenstein phase function [51],
with the form:

p(cos θ) =
(1 − g2)

2(1 + g2 − 2g cos θ)3/2
(7.8)
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Figure 7.2: The shape of the Henyey-Greenstein phase function for three
values of g-factor

where g is called the scattering anisotropy factor. The shape of the Henyey-
Greenstein function is shown in Fig. 7.2 for three values of g. Inserting Eq.
(7.8) in Eq. (2.7), and solving for cos θ, yields

cos θ =
1

2g
[1 + g2 − (

1 − g2

1 − g + 2gξ
)2] (7.9)

As for the isotropy media, p(cos θ) = 1
2 , so

cos θ = 2ξ − 1 (7.10)

The azimuthal scattering angle is uniformly distributed in the interval 0 <
φ < 2π, so we get

φ = 2πξ (7.11)

If a photon is scattered at an angle (θ, φ) from the direction (µx, µy, µz)
in which it is travelling, then the new direction (µ′

x, µ′
y, µ

′
z) is specified by

µ′
x = sin θ√

1−µ2
z

(µxµz cos φ − µy sin φ) + µx cos θ

µ′
y = sin θ√

1−µ2
z

(µyµz cos φ + µx sin φ) + µy cos θ

µ′
z = − sin θ cos φ

√

1 − µ2
z + µz cos θ

(7.12)

If the angle is too close to the normal (say |µz| > 0.99999), the following
formulas should be used

µ′
x = sin θ cos φ

µ′
y = sin θ sin φ

µ′
z = µz

|µz | cos φ
(7.13)

to obtain the new photon directions.

The photon package is repeatedly moved until it either escapes from or is
absorbed by the tissue(dies in the roulette procedure). If the photon escapes
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from the tissue, the reflection or transmission of the photon is recorded. If
the photon is absorbed, the position of the absorption is recorded. This pro-
cess is repeated until the desired number of photons have been propagated.
The recorded reflection, transmission, and absorption profiles will approach
true values (for a tissue with the specified optical properties) as the number
of photons propagated approaches infinity.

7.3 Inverse problem

The photon medical treatments design is to find the optical properties such
as the refraction index (n), the absorption (µa),the scattering coefficients
(µs)and the scattering anisotropy factor (g) given that we have measured
the propagation light. This is what we say inverse problem of light trans-
port. We use the program Monte Carlo simulation multi-layered media (
MCML ) [52] as the forward method. The adaptive quasi-Monte Carlo op-
timization described in Chapter 5 is used to optimize the optical properties.

We mentioned in the introduction that the model of infinite plane-
parallel slab with finite thickness can be generalize to layered tissue. MCML
program is to deal with multi-layered tissue. Except that the above de-
scribed procedure, MCML also consider the internal reflection and trans-
mission between the layers. To be simplex, we only set the layer to be 1, the
above medial and below media are all glass. We define the fitness function
as the following

fit =

num−1
∑

n=0

(Tr[n]− Tr0[n])2 (7.14)

Where Tr0 is the transmission profile(or reflection profile, but it is easy
to measure transmission profile in experiments)measured in the experiments.
If there is no experiment data, we can use the simulation data when the op-
tical properties are set as the exact values. Here Tr0 is the transmission
profile in one Monte Carlo simulation when set the optimal parameters as
the known optimal parameters. Tr is the transmission for one run when
the optical properties ranged in the domain. So we have to find the best
parameters which minimize the fitness function fit. For each run of MCML,
randomly select optical parameters as the input parameters of MCML and
get the transmission profile, then calculate the value of function fit.

We study the demand of local search and generating new individuals
when we use adaptive quasi-Monte Carlo(AQMC) optimization method. For
this practical physical problem, the values of the fitness function changes
sharply and there are a great deal of minima. We need to generate much
more individuals during the search process. The AQMC method introduced
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in chapter 5 focus on local search, though it generate new individuals ac-
cording to the evolution degree. The concept of evolution degree represents
the saturation of local search ability, the probability of generating new in-
dividuals will be large only when it is hard for local search to find better
extremum. In addition, the evolution degree will be reset to be 0 once a set
of new random points is generate and the population is updated. Even if a
much more less approximation for the minimum is find when generate new
individuals, the program have to jump to local search, not continue generat-
ing new individuals. Therefore, this method is slow to find global extremum
for the problem who need to generate more new individuals because this
method generate new individuals according to evolution degree.

We need to find a measurement to present the ability of local search
and generating new individuals. The measurement should consider the im-
provement on individuals. If local search finds better extremum point, the
probability of local search should be increased; if better extremum point is
find when generating new individuals, the probability of generating new in-
dividuals should be increased. We use the concept of performanc/cost ratio
to present the search ability.

Definition 7.3.1 (performanc/cost ratio) Denote max initial as the max-
imal fitness of the initial population. If it find new maximum max current
after calculating Nc funciton values, define performanc/cost ratio as:

eff = (max current − max initial)/Nc

Then we can calculate the performanc/cost ratio of local search , lseff ,
and performanc/cost ratio of generating new individuals, nieff , respectively.
The probability of generating new individuals newp can be determined by
these two ratio. The weights, lsw and niw, are used to decide the proportion
of the two search process. So we have

if ( lseff <1.0E−10 && nieff< 1.0E−10)
newp=niw;

else

newp=niw∗nieff/(lsw∗lseff+niw∗nieff);

and do local search or generate new individuals according the probability,
that is generate random number rnd, if rnd < newp, then generate a set of
new individuals.

do{
rnd=(double)(rand())/RAND MAX;
if (rnd<newp)
{ /∗generate new individual∗/
...

}
else

{ /∗ local search∗/
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Table 7.1: One example of AQMC optimization algorithms solving for in-
verse problem of light transport in tissue

n µa µs g

origin 1.375 1 100 0.9
approximation 1.375 1.13 101. 0.9

...
}

}while(fglobalmax[S]<−1.0E−5);

The full codes of the optimization are in appendix.

For the tissue with 1cm thickness of the slab and optical parameters
n = 1.375, µa = 1, µs = 100, g = 0.9, we set the domain of the four
parameters as n ∈ [1.0, 2.0], µa ∈ [0.01, 3] (the absorption coefficients can
not be set as zero to avoid infinite loop of the program), µs ∈ [2, 200] and
g ∈ [0.0, 1.2] (in fact g is physically ranged in [-1, 1], here we use the posi-
tive values and extend the maximal value 1 to 1.2 to avoid too much invalid
value in local search). We got the approximation values of these four optical
properties(Fig. 7.1) after 263 MCML runs.

The optimization method can also be used for multi-layered tissue, but
the results are not as good as that of the one layer tissue. Compared with
the numerical experiments in chapter 5, we can see that we should study
the property of problem for real physical optimization. We hope to do some
research using real experiment data to study the demands of local search
and global search for Monte Carlo optimization method and find an efficient
measurement.





Chapter 8

AppendixC codes

8.1 C code of Sobol’sequence generator

This program is modified from [26], it can generate maximum 160-dimension
Sobol’ sequence. The input file sobol para.txt stores the values of array
mdeg[](the degree of primitive polynomial) and ip[](the value of binary ex-
press consisting of the coefficints of the primitive polynomial).

#include ”math.h”
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define MAXBIT 30
#define MAXDIM 160
#define S 2

/∗When n is negative, internally initializes a set of
MAXBIT direction numbers for each of MAXDIM different
Sobol ’ sequences . When n is positive (but <= MAXDIM),
returns as the vector x [1.. n] the next values from n
of these sequences.
(n must not be changed between initializations .)∗/

int IMIN(int a,int b)
{

return a<b ? a:b;
}

void sobseq(int ∗n, double x[])
{ FILE ∗fr1;

int j ,k, l ;
unsigned long i,im,ipp;
static double fac;
static unsigned long in,ix[MAXDIM+1],∗iu[MAXBIT+1];
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static unsigned long mdeg[MAXDIM+1];
static unsigned long ip[MAXDIM+1];
static unsigned long iv[MAXDIM∗MAXBIT+1];
long temp;

if(∗n < 0)
{ //read mdeg[] and ip[]
if (( fr1=fopen(”sobol para.txt”,”r”))==NULL)
{

printf (”\nFile not found!”);
exit (0) ;

}
for(i=1;i<=MAXDIM;i++)

fscanf ( fr1 ,”%d”,&mdeg[i]);//read mdeg[]
for(i=1;i<=MAXDIM;i++)

fscanf ( fr1 ,”%d”,&ip[i]);//read ip []
fclose (fr1) ;
//set the values of iv []//
srand((unsigned)time(NULL));//give the rand seed
for(i=1;i<=mdeg[MAXDIM];i++)
{
for(j=1;j<=MAXDIM;j++)
{ temp=2∗(int((1L<<(i−1))∗float(rand())/RAND MAX)+1)−1;

iv [( i−1)∗MAXDIM+j]=temp;
}
}
/∗ Initialize , don’t return a vector .∗/
for (k=1;k<=MAXDIM;k++)

ix [k]=0;
in=0;
if ( iv [1] != 1)

return;
fac=1.0/(1L << MAXBIT);
for ( j=1,k=0;j<=MAXBIT;j++,k+=MAXDIM)

iu [ j] = &iv[k ];
/∗To allow both 1D and 2D addressing.∗/
for (k=1;k<=MAXDIM;k++)
{

for ( j=1;j<=mdeg[k];j++)
iu [ j ][ k] <<= (MAXBIT−j);

/∗Stored values only require normalization.∗/
for ( j=mdeg[k]+1;j<=MAXBIT;j++)
{

/∗Use the recurrence to get other values .∗/
ipp=ip[k];
i=iu[j−mdeg[k]][k];
i ˆ= (i >> mdeg[k]);
for ( l=mdeg[k]−1;l>=1;l−−)

{
if (ipp & 1)

i ˆ= iu[ j−l ][k ];
ipp >>= 1;

}
iu [ j ][ k]=i;
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}
}
}
else

{
/∗Calculate the next vector in the sequence.∗/
im=in++;
for ( j=1;j<=MAXBIT;j++)
{

/∗Find the rightmost zero bit .∗/
if (!( im & 1))

break;
im >>= 1;

}
if ( j > MAXBIT)

printf (”\nMAXBIT too small in sobseq\n”);
im=(j−1)∗MAXDIM;
for (k=1;k<=IMIN(∗n,MAXDIM);k++)
{
/∗XOR the appropriate direction number into each
component of the vector and convert to a floating
number.∗/
ix [k] ˆ= iv [im+k];
x[k]=ix[k]∗fac ;

}
}

}

void main( )
{FILE ∗fw1;
static double xsob[S+1];
int i , j ;
int ini ,run;
ini=−1;
sobseq(&ini,xsob);
if ( ( fw1 = fopen( ”sobol points”, ”w” )) == NULL )
{printf ( ”The file ’ sobol points ’ was not opened\n” );
exit (0) ;

}
for(i=1;i<=1024;i++)
{run=S;
sobseq(&run,xsob);
for(j=1;j<=S;j++)

fprintf (fw1,”%f\t”,xsob[j ]) ;
fprintf (fw1,”\n”);
}//end of i
fclose (fw1);
}

// begin of input file sobol para . txt
1
2
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3 3
4 4
5 5 5 5 5 5
6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
0
1
1 2
1 4
2 4 7 11 13 14
1 13 16 19 22 25

1 4 7 8 14 19 21 28 31 32 37 41 42 50 55
56 59 62

14 21 22 38 47 49 50 52 56 67 70 84 97 103
115 122

8 13 16 22 25 44 47 52 55 59 62 67 74 81
82 87 91 94 103 104 109 122 124 137 138 143
145 152 157 167 173 176 181 182 185 191 194
199 218 220 227 229 230 234 236 241 244 253
4 13 19 22 50 55 64 69 98 107 115 121 127

134 140 145 152 158 161 171 181 194 199 203
208 227 242 251 253 265 266 274 283 289 295
301 316 319 324 346 352 361 367 382 395 398
400 412 419 422 426 428 433 446 454 457 472
493 505 508
// end of input file

8.2 C code of Halton sequence generator

This program is traslated into C language by me from the Fortan codes
written according to [53].

//============the program to generate Halton sequence====//
#include ”math.h”
#include <stdio.h>

#include <stdlib.h>

#include <time.h>
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#define MAXBIT 64
#define MAXDIM 40
#define MAXNUM 1000
#define S 2 /∗dimension∗/

/∗input:n, if the first time to run the subroutine , ∗n=−S;∗/
void halseq(int ∗n, double x[])
{ int j , s ;

static double prime[MAXDIM+1]={0.0,2.0,3.0,5.0,7.0,11.0,13.0,17.0,19.0,23.0,\
29.0,31.0,37.0,41.0,43.0,47.0,53.0,59.0,61.0,67.0,71.0,73.0,\

79.0,83.0,89.0,97.0,101.0,103.0,107.0,109.0,113.0,127.0,\
131.0,137.0,139.0,149.0,151.0,157.0,163.0,167.0,173.0};

static double xhal[MAXDIM+1],E,Delta,Tiny=1.0;
static unsigned char Flag[2]={0,0};
double T,F,G,H;
if(∗n < 0)
{ /∗FIRST CHECKS WHETHER THE USER−SUPPLIED DIMENSION ”

DIMEN”
OF THE QUASIRANDOM VECTORS IS ACCEPTABLE
( STRICTLY BETWEEN 0 AND 41):
IF SO, FLAG(1)=.TRUE.∗/
s=−∗n;/∗the dimension∗/
Tiny=1L>>MAXBIT;
if ((s>=1)&&(s<=40))

Flag[0]=1;
else

{
printf (”The dimension must between 1 and 40!\n”);
exit(0) ;

}
/∗ COMPUTE AND CHECK TOLERANCE∗/
E = 0.9∗ (1.0/ ((double)MAXNUM∗prime[s])−10.0∗Tiny);
Delta = 100.0∗Tiny∗(double)(MAXNUM+1)∗log10((double)MAXNUM);
if (Delta <= (0.09∗ (E−10.0∗Tiny)))

Flag[1]=1;
else

{
printf (”The dimension must between 1 and 40!\n”);
exit(0) ;

}
/∗NOW COMPUTE FIRST VECTOR∗/
for(j=1;j<=s;j++)

{
prime[j]=1.0/prime[j ];
xhal[ j]=prime[j ];
x[ j]=xhal[j ];

}
}

else

{
s=∗n;
for(j=1;j<=s;j++)
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{
T = prime[j];
F = 1.0 − xhal[j ];
G = 1.0;
H = T;
while ((F−H)<E)

{
G = H;
H = H∗T;

}
xhal[ j ] = G + H − F;
x[ j]=xhal[j ];

} /∗end of for(j=1;j<=s;j++)∗/
} /∗end of else∗/

}

void main( )
{

FILE ∗result;
double xhal[S+1];
int i , j ;
int ini ,run;
int num random=120;
if ( ( result = fopen( ”halton.dat”, ”w” )) == NULL )
{ printf ( ”The file ’halton.dat’ was not opened\n” );

exit (0) ;
}
fprintf ( result ,”Halton sequence ........\ n”);
/∗ initialize and generate the first random number∗/
ini=−S;
halseq(&ini,xhal);
for(j=1;j<=S;j++)

fprintf ( result ,”%f\t”,xhal[j ]) ;
fprintf ( result ,”\n”);
fclose ( result ) ;
for(i=2;i<=num random;i++)
{ if ( ( result = fopen( ”halton.dat”, ”a” )) == NULL )

{ printf ( ”The file ’halton.dat’ was not opened\n” );
exit (0) ;

}
run=S;
halseq(&run,xhal);
for(j=1;j<=S;j++)

fprintf ( result ,”%f\t”,xhal[j ]) ;
fprintf ( result ,”\n”);
fclose ( result ) ;

} //end of i
}
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8.3 Parallel programming for MC, AMC and AMC

This MPI parallel program can be run on computer cluser. All the codes
except the sub-routine from [26] are written by the author, all right resev-
ered.

/∗
Copyright 2003 by Guiyuan Lei
All rights reserved . All codes except the ran2() in this section can be used in the

case that user cite this thesis .
Monte Carlo integration in parallel programming(MPI)
all the processes use a same sequence,
passing the random seeds and serial of random number(n) through the processes.
the pseudorandom sequence is generated by rans()
from book ”Numerical recipes in C: The art of scientific computing”
seeds :
static long idum2=123456789;
static long iy=0;
static long iv [NTAB];

∗/
#include ”math.h”
#include ”mpi.h”
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define MAXBIT 64
#define MAXDIM 40
#define MAXNUM 1000000
#define S 15 //dimension=15
#define Pi 2∗arcsin(1.)
/∗length of sub−sequence generated by each process∗/
#define Max Len 32768

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1−1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e−7
#define RNMX (1.0−EPS)
/∗Uniformally distributed random sequence generator

p282 Chapter 7. Random Numbers in ”Numerical Recipes in C”
∗/
static long idum2=123456789;
static long iy=0;
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static long iv[NTAB];

/∗Long period (> 2 ∗ 10ˆ18 ) random number generator of L’Ecuyer with Bays−
Durham shuffle

and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (
exclusive of

the endpoint values) . Call with idum a negative integer to initialize ; thereafter ,
do not alter

idum between successive deviates in a sequence. RNMX should approximate the
largest oating

value that is less than 1.
∗/
float ran2(long ∗idum)
{

int j ;
long k;
float temp;
if (∗idum <= 0)
{ /∗ Initialize ∗/

/∗Be sure to prevent idum = 0∗/
if (−(∗idum) < 1)
∗ idum=1;

else

∗ idum = −(∗idum);
idum2=(∗idum);
for ( j=NTAB+7;j>=0;j−−)
{ /∗Load the shuffle table ( after 8 warm−ups)∗/

k=(∗idum)/IQ1;
∗ idum=IA1∗(∗idum−k∗IQ1)−k∗IR1;

if (∗idum < 0)
∗ idum += IM1;

if ( j < NTAB)
iv [ j] = ∗idum;

}
iy=iv [0];

}
/∗Start here when not initializing .∗/
k=(∗idum)/IQ1;
/∗ Compute idum=(IA1∗idum) % IM1 without over ows by Schrage’s method.∗/
∗ idum=IA1∗(∗idum−k∗IQ1)−k∗IR1;
if (∗idum < 0)

∗ idum += IM1;
k=idum2/IQ2;
/∗Compute idum2=(IA2∗idum) % IM2 likewise.∗/
idum2=IA2∗(idum2−k∗IQ2)−k∗IR2;
if (idum2 < 0)

idum2 += IM2;
j=iy/NDIV;/∗Will be in the range 0..NTAB−1.∗/
iy=iv[j]−idum2;/∗ Here idum is shuffled, idum and idum2 are combined to generate

output.∗/
iv [ j] = ∗idum;
if ( iy < 1)

iy += IMM1;
if (( temp=AM∗iy) > RNMX)
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return RNMX; /∗Because users don’t expect endpoint values.∗/
else

return temp;
}

/∗the integrand from:
Math. Comput. Modelling Vol. 23, No, 8/9, pp. 87−96, 1996
p92 Example2,Figure2,5

∗/
double f(double x[])
{/∗use the first S dimension of x [], just 1−S elements∗/

double f;
int i ;
double sum x=0.;
for(i=1;i<=S;i++)

sum x+=x[i]/i;
f=exp(sum x);
return f;

}
/∗Calculating function value and sum the value usint CMC,AMC,FAMC method∗/
void MC(long temp serial, int n, double x[],double interval,double sum[])
{

int l ;
double f x;
double x k[S+1];
double c k[S+1];
f x=f(x);/∗function value of x∗/
sum[1]+=f x;/∗Crude Monte Carlo estimate∗/
sum[2]+=f x;
for(l=1;l<=S;l++)

c k[ l]=1.0− x[l ]; /∗the antithetic variables of x∗/
sum[2]+=f(c k);/∗Antithetic Monte Carlo estimate∗/
for(l=1;l<=S;l++)
{ /∗The domain of function is devided into N=nˆS subcube D k

c k[ l ]: leftest border of subcube k∗/
c k[ l]=temp serial%n;
temp serial=temp serial/n;
x k[ l]=(c k[ l]+x[l ])∗ interval ;

}
sum[3]+=f(x k);
for(l=1;l<=S;l++)
{ /∗Here c k[l ] is centre of subcube k

interval is the interval of subcube∗/
c k[ l]=(0.5+c k[l ])∗ interval ;
x k[ l]=2∗c k[l]− x k[ l ]; /∗the antithetic variables∗/

}
sum[3]+=f(x k);/∗Fine Antithetic Monte Carlo estimate∗/

}
/∗end of calculating function value usint CMC,AMC,FAMC method∗/
/∗Linear fit of the data (X,T), least square error method∗/
void Fit linear (long X[],double T[],int count,double A[])
{

int i ;
double Xi;
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double Ti;
int sum true=1;/∗if sum the data∗/
double sum Xi=0.0;
double sum Xi square=0.0;
double sum Ti=0.;
double sum Xi Ti=0.;
double a;/∗slope∗/
double b;/∗intercept∗/
for(i=1;i<=count;i++)
{

sum true=1;/∗to sum the data∗/
Ti=T[i];
if (Ti<1.0E−20)

sum true=0;
/∗to calculate slope∗/
if (sum true)

{
Xi=log10(X[i]);
sum Xi+=Xi;/∗sum x∗/
sum Xi square+=Xi∗Xi;/∗sum xˆ2∗/
Ti=log10(T[i]);
sum Ti+=Ti;/∗sum T∗/
sum Xi Ti+=Xi∗Ti;/∗sum x∗T∗/

} /∗end of if (sum true)∗/
else

count−−;
} /∗end of i(step)∗/

a=(count∗sum Xi Ti−sum Xi∗sum Ti)/(count∗sum Xi square−sum Xi∗sum Xi);
b=(sum Ti∗sum Xi square−sum Xi∗sum Xi Ti)/(count∗sum Xi square−sum Xi∗

sum Xi);
A[0]=a;
A[1]=b;

}
/∗Empirical standard deviate(sd) error∗/
double sd error(double s run[],int runs)
{

int l ;
double temp;
double proximate int average=0.;
for(l=0;l<runs;l++)

proximate int average+=s run[l];
proximate int average/=runs;
temp=0.0;
for(l=0;l<runs;l++)

temp+=(s run[l]−proximate int average)∗(s run[l]−proximate int average);
temp=sqrt(temp/(runs−1));
return temp;

}
/∗Empirical root mean square error(rmse)∗/
double rmse(double s run[],double exact int,int runs)
{

int l ;
double temp=0.;
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for(l=0;l<runs;l++)
temp+=(s run[l]−exact int)∗(s run[l]−exact int);

temp=sqrt(temp/runs);
return temp;

}

main(int argc,char∗∗ argv)
{

FILE ∗f value,∗f rmse, ∗ f sd ;
char str [20]; /∗ file name∗/
double s step run [4][4][76];
double variance step[4];
int step=3;
long points step [4];
long N;/∗number of random point points∗/
int runs=75;/∗compute the root mean square error over 75 runs∗/
/∗the sum of function value for Crude MC, AMC and FAMC methods∗/
double sum[4],G sum[4];
long i, j ,k,m;

int l ;/∗index for dimension∗/
int n;/∗number of sub−interval∗/

double interval;
double exact int=5.6102534948577798;/∗for s=15∗/
/∗exact int=3.0060133559748561; //for s=4∗/
long ini ;

double A[2];/∗the coefficient of linear fit ∗/
/∗each process calculate sub seq len random points every procs step random points

∗/
long procs step;
long size ,remainder;/∗size, loop size∗/
int sub seq len=Max Len;/∗no more than Max Len∗/
double random[Max Len][S+1];

int nid,nid before , nid after ,noprocs, last nid ;/∗for parallel programming∗/
MPI Status status;
long seeds[NTAB+3];/∗iv[NTAB],idum,iy,ini∗/
MPI Request req send seeds,req recv seeds;

/∗call MPI initialization∗/
MPI Init(&argc,&argv);
MPI Comm rank(MPI COMM WORLD,&nid);
MPI Comm size(MPI COMM WORLD,&noprocs);

for(j=2;j<=step+1;j++)
{

N=1;
for(i=0;i<S;i++)

N∗=j;
points step [ j−1]=N;/∗set calculating points for each step∗/

}
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if (nid==noprocs−1)
{

for(i=1;i<=3;i++)/∗deal with three methods:CMC=1,AMC=2,FAMC=3∗/
{ sprintf ( str ,”f value−%d.dat”,i);

f value=fopen(str, ”w” );
for(j=1;j<=step;j++)

fprintf ( f value ,”%ld\t\t”,points step[ j ]) ;
fprintf ( f value ,”\n”);
fclose ( f value ) ;

}
ini=−S;/∗the value of ini will be changed by ran2()∗/
for(m=1;m<=2500;m++)/∗ingore the first 2500 random number∗/

ran2(&ini);
/∗envelope the seeds∗/
for(m=0;m<NTAB;m++)

seeds[m]=iv[m];
seeds[m]=idum2;
seeds[m+1]=iy;
seeds[m+2]=ini;
nid after=(nid+1)%noprocs;
MPI Isend(seeds,NTAB+3,MPI LONG,nid after,10,MPI COMM WORLD,&
req send seeds);

}
/∗generate next random numbers and perform integration∗/
for(i=0;i<runs;i++)
{

for(j=1;j<=step;j++)
{

N=points step[j];
n=j+1;
interval=1./n;
/∗calculate the sum on distributed noprocs computer∗/
for(k=0;k<4;k++)

sum[k]=0.;
/∗the number of random points each process should calculate∗/
procs step=sub seq len∗noprocs;
remainder=N%sub seq len;
size=N−remainder;
last nid=noprocs−1;
/∗============loop for size===========∗/
for(k=nid∗sub seq len;k<N;k+=procs step)

{ /∗receive the random seeds∗/
if (nid) /∗nid before=(nid+noprocs−1)%noprocs;∗/

nid before=nid−1;
else

nid before=last nid;
MPI Irecv(seeds,NTAB+3,MPI LONG,nid before,10,

MPI COMM WORLD,&req recv seeds);
MPI Wait(&req recv seeds,&status);
/∗unenvelope the seeds∗/
for(m=0;m<NTAB;m++)

iv [m]=seeds[m];
idum2=seeds[m];
iy=seeds[m+1];



8.3 Parallel programming for MC, AMC and AMC 91

ini=seeds[m+2];

if (k+sub seq len<=size)
{

for(m=0;m<sub seq len;m++) /∗generate sub−sequence∗/
{ for(l=1;l<=S;l++)

random[m][l]=ran2(&ini);
}

}
else

{
for(m=0;m<remainder;m++) //generate remainder points∗/

{
for(l=1;l<=S;l++)

random[m][l]=ran2(&ini);
}

}
/∗send the seeds

envelope the seeds∗/
for(m=0;m<NTAB;m++)

seeds[m]=iv[m];
seeds[m]=idum2;
seeds[m+1]=iy;
seeds[m+2]=ini;

nid after=(nid+1)%noprocs;
/∗in general the (noprocs−1)’th process send the seeds to process 0∗/
last nid=noprocs−1;
/∗the process who deal with the N’th random number will send the

seeds to process 0
then process 0 start the first random number of new successive N

random points
∗/
if ((k+sub seq len==N)||k+remainder==N)

{
nid after=0;
last nid=nid;
/∗boadcast so that process 0 know the change of last nid∗/
MPI Bcast(&last nid,1,MPI INT,nid,MPI COMM WORLD);

}
MPI Isend(seeds,NTAB+3,MPI LONG,nid after,10,

MPI COMM WORLD,&req send seeds);
/∗calculate the function value and sum them∗/
if (k+sub seq len<=size)

{
for(m=0;m<sub seq len;m++)

MC(k+m,n,random[m],interval,sum);
}

else

{
for(m=0;m<remainder;m++)

MC(k+m,n,random[m],interval,sum);
}

} /∗end of k: loop size of sub seq len∗/
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/∗send the data to process 0∗/
MPI Reduce(sum,G sum,4,MPI DOUBLE,MPI SUM,0,

MPI COMM WORLD);
if (nid==0)

{
for(k=1;k<=3;k++)

s step run [k ][ j ][ i ]=G sum[k];
}

} /∗end of j : step∗/
if (nid==0)

{
for(j=1;j<=step;j++)

{
N=points step[j];
s step run [1][ j ][ i ]=s step run [1][ j ][ i ]/N;
for(k=2;k<=3;k++)

s step run [k ][ j ][ i ]=s step run[k ][ j ][ i ]/N/2.;
}
for(k=1;k<=3;k++)/∗deal with three method:CMC=1,AMC=2,FAMC=3∗/

{ sprintf ( str ,”f value−%d.dat”,k);
f value=fopen(str, ”a” );
for(j=1;j<=step;j++)

fprintf ( f value ,”%.20f\t”,s step run[k ][ j ][ i ]) ;
fprintf ( f value ,”\n”);
fclose ( f value ) ;

}
} /∗end of if (nid==0)∗/

} /∗end of i : runs∗/

if (nid==0)
{

for(k=1;k<=3;k++)
{

sprintf ( str ,”rmse−%d.dat”,k);
f rmse= fopen(str, ”w” );
for(i=1;i<=step;i++)

{
fprintf (f rmse,”%ld\t”,points step[ i ]) ;
variance step [ i]=rmse(s step run[k][ i ], exact int ,runs);
fprintf (f rmse,”%.10f\t”,variance step[ i ]) ;
fprintf (f rmse,”\n”);

}
Fit linear (points step , variance step ,step,A);
fprintf (f rmse,”\nFit Linear ...\n”);
fprintf (f rmse,”Y=%.10f∗X+%.10f\n”,A[0],A[1]);
fclose (f rmse);

} /∗end of k∗/
for(k=1;k<=3;k++)

{
sprintf ( str ,”sd error−%d.dat”,k);
f sd= fopen(str, ”w” );
for(i=1;i<=step;i++)

{
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fprintf ( f sd ,”%ld\t”,points step[ i ]) ;
variance step [ i]=sd error(s step run [k ][ i ], runs);
fprintf ( f sd ,”%.10f\t”,variance step[ i ]) ;
fprintf ( f sd ,”\n”);

}

Fit linear (points step , variance step ,step,A);
fprintf ( f sd ,”\nFit Linear...\n”);
fprintf ( f sd ,”Y=%.10f∗X+%.10f\n”,A[0],A[1]);
fclose ( f sd ) ;

} /∗end of k∗/
} /∗end of if (nid==0),analysize∗/
MPI Finalize();/∗end of MPI∗/

}

8.4 Code of AQMC solving inverse problem of light

transport

All the codes except the MCML codes are written by the author, all right
resevered.

This program use Monte Carlo Multi-Layer simulation as the forward
method. AQMC method is used to solve the inverse problem of the light
transport. The probabilities of local search and generating new individuals
are decided by the performance/cost ratios.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Copyright 2003 by Guiyuan Lei
All rights reserved . All codes except the MCML in this section can be used in the case

that user cite this thesis .
AQMC for inverse problem of light transport(optimize the optical parameters)
We use the Monte Carlo Multi−Layer(MCML) simulation programmer as the forward

method.

The Monte Carlo random search method for the global maximum
( if to find the global minimum, use the minus of the fitness function).
Do local search or generate new individuals according to their performance/cost ratio.
We use the Sobol’ sequence in optimization(so we need sobol.c file in compiling)

You can download MCML programs from the website
http://omlc.ogi.edu/software/mc/index.html

MCML’s inputfile is sample.mci, output file is sample.mco
in this program we use sample.mco as the inputfile and do optimization
all the file list :

mcmlaqmc.c //this file
sobol .h
sobol .c // sobol generator
mcml.h
mcmlgo.c
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mcmlio.c
mcmlnr.c

∗/

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#include ”mcml.h”
#include ”sobol.h”

#define N 100
#define S 4

/∗Declare before they are used in main()∗/
void sobseq(int ∗n, double x[]);

FILE ∗GetFile(char ∗);
short ReadNumRuns(FILE∗ );
void ReadParm(FILE∗ , InputStruct ∗ );
void CheckParm(FILE∗ , InputStruct ∗ );
void InitOutputData(InputStruct, OutStruct ∗);
void FreeData(InputStruct, OutStruct ∗);
double Rspecular(LayerStruct ∗ );
void LaunchPhoton(double, LayerStruct ∗, PhotonStruct ∗);
void HopDropSpin(InputStruct ∗,PhotonStruct ∗,OutStruct ∗);
void SumScaleResult(InputStruct, OutStruct ∗);
void WriteResult(InputStruct, OutStruct, char ∗);

InputStruct in parm;
InputStruct in parm opti;

OutStruct out parm;
OutStruct out parm opti;

/∗The pseudorandom number generator∗/
unsigned long Y1=3115,Y2=3115;
unsigned long m1=1L<<31,m2=1L<<30;
unsigned long a1=65539,a2=410092949;
int b1=0,b2=1;
unsigned long GambleMAX1=1L<<31−1,GambleMAX2=1L<<30−1;

unsigned long Gamblerand1()
{

Y1=(Y1∗a1+b1)%m1;
return Y1;

}

unsigned long Gamblerand2()
{

Y2=(Y2∗a2+b2)%m2;
return Y2;

}
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/∗end of the pseudorandom number generating∗/

double DMAX(double a,double b)
{

return a>b ? a:b;
}

//===============mcml.c==================//
void DoOneRun(InputStruct ∗In Ptr,OutStruct ∗out parm)
{

register long i photon;
/∗ index to photon. register for speed .∗/
/∗ distribution of photons.∗/
PhotonStruct photon;
long num photons = In Ptr−>num photons, photon rep=10;
out parm−>Rsp = Rspecular(In Ptr−>layerspecs);
i photon = num photons;
do

{
LaunchPhoton(out parm−>Rsp, In Ptr−>layerspecs, &photon);
do

HopDropSpin(In Ptr, &photon, out parm);
while (!photon.dead);

}
while(−−i photon);

}

/∗the range of variable of the function∗/
double xrange[S ][2]={{0.01,3},{2,200},{0.0,1.2},{1.0,2.0}};
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Report time and write results .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void ReportResult(InputStruct In Parm, OutStruct Out Parm)
{

char time report[STRLEN];

strcpy(time report , ” Simulation time of this run.”);
PunchTime(1, time report);
SumScaleResult(In Parm, &Out Parm);
WriteResult(In Parm, Out Parm, time report);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
function definition

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
double f(double x[S])
{

int i ;
double f;
f=0.;
in parm.layerspecs [1]. mua=x[0];
in parm.layerspecs [1]. mus=x[1];
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in parm.layerspecs [1]. g=x[2];
in parm.layerspecs [1]. n=x[3];
InitOutputData(in parm, &out parm opti);

DoOneRun(&in parm,&out parm opti);
ReportResult(in parm, out parm opti);

for(i=0;i<50;i++)/∗nr==50∗/
f+=(out parm.Tt r[i]−out parm opti.Tt r[i])∗(out parm.Tt r[i]−out parm opti.
Tt r[i]);

f=−f;/∗to find the minimum of f equal to find the maximum of −f∗/
return f;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
calculate fitness

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void fitness (double fv[N+1],double pf[N+1])
{

double Cmin;
double Sumf=0.;
int i ;
Cmin=fv[1];
Sumf+=fv[1];
for( i=2;i<=N;i++)
{

Sumf+=fv[i];
if ((Cmin−fv[i])>1.0E−8)

Cmin=fv[i];
}
Sumf=Sumf−Cmin∗N;
for( i=1;i<=N;i++)

pf[ i]=(fv[ i]−Cmin)/Sumf;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
select individual to do local search

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
int individual select (double pf[])
{

int m;
double gamblep;
double gamblesum;
gamblep=(double)(Gamblerand1())/GambleMAX1;
gamblesum=0.0;
for(m=1;m<=N;m++)
{

gamblesum=gamblesum+pf[m];
if ((gamblesum−gamblep)>1.0E−20)

break;
}
if (m>N)

m=N;
return m;
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}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
roulette , select individual to be replaced by new point

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
int individual replace (double pf[])
{

int m;
double gamblep;
double gamblesum;
gamblep=(double)(Gamblerand2())/GambleMAX2;
gamblesum=0.0;
for(m=1;m<=N;m++)
{ /∗the bigger fitness ,the less to be replaced∗/

gamblesum=gamblesum+(1−pf[m])/(N−1);
if ((gamblesum−gamblep)>1.0E−20)

break;
}
if (m>N)

m=N;
return m;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
adaptive local search of AQMC method

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void laqmc(double x[N+1][S],double c[S],double ∗fv c, int Ni,double ∗search step,

double c3,int ∗vanish)
{

double gcx[N+1][S];
double flocalmax=∗fv c;
int j ,k;
int indomain;
double radius=∗search step;
double tempx;
for(j=0;j<S;j++)

gcx [0][ j]=c[j ];

for(j=1;j<=Ni;j++)
{

for(k=0;k<S;k++)
gcx[j ][ k]=gcx[0][k]+radius∗(2∗x[j ][ k]−(xrange[k][0]+xrange[k ][1]) ) ;

indomain=1;
for(k=0;k<S;k++)

{
if ((xrange[k][0]−gcx[j ][ k])>1.0E−6||(gcx[j][k]−xrange[k][1])>1.0E−6)

indomain=0;
}
if (indomain)

{
tempx=f(gcx[j]);
if ((tempx−flocalmax)>1.0E−8)

{
flocalmax=tempx;
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for(k=0;k<S;k++)
gcx [0][ k]=gcx[j ][ k ];/∗to store the tempory max value∗/

}
} /∗end of indomain∗/
else

{
(∗ vanish)++;

printf (”\t%dth point not in the domain\t”,j);
printf (”(%f,%f,%f,%f)\n”,gcx[j ][0], gcx[j ][1], gcx[j ][2], gcx[j ][3]) ;

}
} /∗end of for j∗/
if ((flocalmax−∗fv c)>1.0E−8)
{

radius=fabs(c[0]−gcx [0][0]) /(xrange[0][1]−xrange [0][0]) ;
c[0]=gcx [0][0];
for(k=1;k<S;k++)

{
tempx=fabs(c[k]−gcx[0][k])/(xrange[k][1]−xrange[k][0]) ;
if ((tempx−radius)>1.0E−10)

radius=tempx;
c[k]=gcx[0][k ];//to store the tempory max value

}
∗ search step=radius;
∗ fv c=flocalmax;

}
else

∗ search step=(∗search step)∗c3;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
report the result

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void report(double fglobalmax[S+1],int count, int vanish)
{

int j ;
FILE ∗result;
if ( ( result = fopen( ”mcmlmin”, ”a” )) == NULL )
{

printf ( ”The file ’mcmlmin’ was not opened\n” );
exit (0) ;

}
fprintf ( result ,” mcmlmin=%.10f\n”,−fglobalmax[S]);
for(j=0;j<S;j++)

fprintf ( result ,”x[%d]=%.10f\t”,j,fglobalmax[j]);
fprintf ( result ,”\n”);
fprintf ( result ,”count(the calculated function value number)=%d\n”,count−vanish

);
fprintf ( result ,”

======================================\n”);
fclose ( result ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
look for the global maximum
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void fmax()
{

FILE ∗result;
int vanish=0;
int count=0;/∗to count the calculation function value number∗/
double x[N+1][S];/∗the initial N Sobol’ random number∗/
double fx[N+1][S];/∗variable(x) of each individual∗/
double pf[N+1];/∗fitness of each individual∗/
double fv[N+1];/∗function value of each individual∗/
double ss[N+1];/∗search radius of each individual∗/
double fglobalmax[S+1];/∗to store the varible and max value of the function∗/
int fglobalposition ;
int i , j ,k,m;
int Ni;/∗the search number in local search∗/
double epslon=0.25;/∗the initial value of search radius∗/
/∗parameters of AQMC optimization method∗/
double c1=0.04;
double c2=1.0;
double c3=epslon∗epslon;
double c4=0.04;
int newN=c4∗N;
double radius=1.0;
double temp;
double evolution;
double lseff=1.0, nieff =1.0;/∗ local search and new individual performance/cost

ratio∗/
double ls max initial,ls max current, ni max initial ,ni max current;
double ls N=0,ni N=0;/∗the count of local search and new individual∗/
double newp=0.2;/∗the probability to generate new individuals∗/
double rnd;/∗random number∗/
int ini ,run;

static double xsob[S+1];
srand((unsigned)time(NULL));/∗give the rand seed∗/

printf ( ”The Monte Carlo random search method for the global optimum starts
...\n”);

if ( ( result = fopen( ”mcmlmin”, ”w” )) == NULL )
{

printf ( ”The file ’mcmlmin’ was not opened\n” );
exit (0) ;

}
fprintf ( result ,”===The Monte Carlo random search method for the global

optimum===\n\n”);
fprintf ( result ,”N(population size)=%d\n”,N);
fprintf ( result ,”epslon(the initial search radius)=%f\n”,epslon);
fprintf ( result ,”c1=%f\tc2=%f\tc3=%f\tc4=%f\n”,c1,c2,c3,c4);
fprintf ( result ,”\n”);
fprintf ( result ,”\n”);
fprintf ( result ,”==================\n”);
fclose ( result ) ;

i=1;
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printf (”Generation %d(initial population)...\n”,i ) ;
/∗generate N quasirandom,dimension S∗/
ini=−1;
sobseq(&ini,xsob);/∗the Sobol ’ generator initilization ∗/
run=S;
count=count+N;
for( i=1;i<=N;i++)
{

sobseq(&run,xsob);
for(j=0;j<S;j++)

{
x[ i ][ j]=xrange[j][0]+(xrange[j ][1]−xrange[j ][0]) ∗xsob[j+1];
fx [ i ][ j]=x[i ][ j ];

}
fv [ i]=f(fx [ i ]) ;
printf (”\t %dth point: %f(%f,%f,%f,%f)\n”,i,−fv[i],x[i ][0], x[ i ][1], x[ i ][2], x[ i
][3]) ;

ss [ i]=epslon;
}
/∗end of generating N quasirandom,dimension S∗/

/∗globalmax∗/
fglobalposition =1;
for( i=2;i<=N;i++)
{

if ((fv [ i]−fv[ fglobalposition ])>1.0E−8)
fglobalposition =i;

}
for(i=0;i<S;i++)

fglobalmax[i]=fx[ fglobalposition ][ i ];
fglobalmax[S]=fv[ fglobalposition ];
/∗to calculate the fitness ∗/
fitness (fv ,pf) ;
i=1;
report(fglobalmax,count,vanish);
ni max initial =fglobalmax[S];
ls max initial =fglobalmax[S];
ls max current=fglobalmax[S];
ni max current=fglobalmax[S];
i=2;
do

{
printf (”Generation %d...\n”,i);
printf (”\t probability to generate new individuals %f\n”,newp);
/∗========fitness=======∗/
rnd=(double)(rand())/RAND MAX;
if (rnd<newp)/∗generate new individual∗/

{ printf (”\tgenerate %d new points...\n”,newN);
count=count+newN;
ni N+=newN;
/∗to find the invidicual to be replaced by new point∗/
for(j=1;j<newN;j++)

{
do
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{
m=individual replace(pf);

}
while(m==fglobalposition);/∗keep the best individual∗/
/∗to generate one new point∗/
sobseq(&run,xsob);
for(k=0;k<S;k++)

fx [m][k]=xrange[k][0]+(xrange[k][1]−xrange[k ][0])∗xsob[k+1];
fv [m]=f(fx[m]);
printf (”\t %dth point: %f(%f,%f,%f,%f)\n”,j,−fv[m],fx[m][0],fx[m][1],

fx [m ][2], fx [m][3]) ;
ss [m]=epslon;
if ((fv [m]−fglobalmax[S])>1.0E−8)

{
fglobalposition =m;
fglobalmax[S]=fv[m];
for(k=0;k<S;k++)

fglobalmax[k]=fx[ fglobalposition ][ k ];
report(fglobalmax,count,vanish);
ni max current=fv[m];
printf (”\tFind max when generate new individual!\n”);

}
} /∗end of generating New points∗/

nieff =(ni max current−ni max initial)/ni N;
printf (”\tnew individuals performance/cost ratio %f\n”,nieff);
fitness (fv ,pf) ;

} /∗end of if (newp .....)∗/
else /∗ local search∗/

{ /∗to select one point for local searching∗/
m=individual select(pf);
Ni=(int)(c2∗N∗DMAX(ss[m],c1));
ls N+=Ni;
count=count+Ni;
temp=fv[m];
printf (”\tlocal search, %d points...\n”,Ni);
/∗ local search∗/
laqmc(x,fx[m],&(fv[m]),Ni,&(ss[m]),c3,&vanish);
if (fv [m]−temp>1.0E−5)/∗if find new local max∗/

{ fitness (fv ,pf) ;
}

/∗global max∗/
if ((fv [m]−fglobalmax[S])>1.0E−8)

{
for(j=0;j<S;j++)

fglobalmax[j]=fx[m][j ];
fglobalmax[S]=fv[m];
fglobalposition =m;
report(fglobalmax,count,vanish);
ls max current=fv[m];
printf (”\tFind max in local search!\n”);

}
lseff =(ls max current−ls max initial)/ls N;/∗performance/cost ratio of

local search∗/
printf (”\tlocal performance/cost ratio %f\n”,lseff);
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} /∗end of local search∗/
/∗calculate the probability of generating new points∗/
if ( lseff <1.0E−10 && nieff< 1.0E−10)

newp=0.2;
else

newp=0.2∗nieff/(0.8∗ lseff+0.2∗nieff) ;
i++;

}while(fglobalmax[S]<−1.0E−5);
}

time t PunchTime(char F, char ∗Msg)
{
#if GNUCC

return(0);
#else

static clock t ut0; /∗ user time reference . ∗/
static time t rt0 ; /∗ real time reference . ∗/
double secs;
char s[STRLEN];

if (F==0)
{

ut0 = clock();
rt0 = time(NULL);
return(0);

}
else if (F==1)
{

secs = (clock() − ut0)/(double)CLOCKS PER SEC;
if ( secs<0)

secs=0; /∗ clock() can overflow. ∗/
sprintf (s , ”User time: %8.0lf sec = %8.2lf hr. %s\n”,

secs , secs /3600.0, Msg);
puts(s) ;
strcpy(Msg, s);
return(difftime(time(NULL), rt0));

}
else if (F==2)

return(difftime(time(NULL), rt0));
else

return(0);
#endif

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Get the file name of the input data file from the
∗ argument to the command line.
∗∗∗∗/
void GetFnameFromArgv(int argc, char ∗ argv[], char ∗ input filename)
{

if (argc>=2)
{ /∗ filename in command line ∗/

strcpy(input filename , argv [1]) ;
}
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else

input filename[0] = ’\0’ ;
}

void main(int argc, char ∗argv[])
{

char input filename[STRLEN];
FILE ∗ input file ptr ;
short num runs;/∗ number of independent runs. ∗/
/∗InputStruct in parm;
OutStruct out parm;∗/
GetFnameFromArgv(argc, argv, input filename);
input file ptr = GetFile(input filename);
CheckParm(input file ptr, &in parm);
num runs=ReadNumRuns(input file ptr);
ReadParm(input file ptr, &in parm);
ReadParm(input file ptr, &in parm opti);

InitOutputData(in parm, &out parm);
DoOneRun(&in parm,&out parm);
ReportResult(in parm, out parm);

fmax();
FreeData(in parm, &out parm);
FreeData(in parm opti, &out parm opti);
fclose ( input file ptr ) ;

}
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