
MAS131/231: Introduction to Statistics
Lecturer: Dr Phil Ansell

Office: M511, Phone: 6344

Email: p.s.ansell@ncl.ac.uk

Lectures: Lectures will take place on Wednesdays at 11 in Herschel Build-

ing (Lecture Theatre 1) and Thursdays at 12 in Claremont Tower
(CLT120). Although brief notes for the course will be distributed in

lectures, additional information and most examples (similar to those
on the exercise sheets and the exam), will only be covered in the lec-
tures. Regular lecture attendance is vital to performing well in this

module.

Tutorials: Tutorials will take place in ODD weeks. Computer practical
sessions will take place in WEEKS 2, 6 and 8.

Assessment: Tests in Tutorials will count for 10%. Fortnightly homework

will count for 10%. Project work will count for 10%. The 90 minute
exam at the end of the semester will count for 70%.

Announcements: Announcements relating to the course will be made via

email. You should check your email at least twice a week.

Notes:

1. Handouts/Tutorial sheets/Solutions will only be distributed in lec-

tures. Further copies of handouts/tutorial sheets/solutions will only
be available from

http://www.mas.ncl.ac.uk/~npsa2/Teaching/MAS131/home.html

or via the ’Additional Teaching Material’ link to be found on the

School of Mathematics and Statistics home page.

2. Homework must be handed in by the given deadline. Late homework
will not be accepted unless a good reason (eg. illness) is provided.

3. Homework not handed in will count as zero for assessment purposes

unless there is a good reason and a note from your tutor is provided.

4. The University requires that you attend all lectures, tutorials and
practical sessions.
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Part I

Continuous Probability Models

1 Introduction

Semester 1 should have given you a fairly good understanding of discrete probability
models. When each value of the random variable as well as its probability of occurring
can be listed, the random variable is discrete. In this part of the course, we will discuss
the other type, namely continuous random variables. Continuous random quantities are
random quantities with a sample space which is neither finite nor countably infinite. The
sample space is usually taken to be the real line, or a part thereof. Continuous probability
models are appropriate when the result of an experiment is a continuous measurement,
rather than a count of a discrete set. Example of continuous random variables include
such variables as X = height, X = weight and X = time. If X is a continuous random
quantity with sample space SX , then for any particular a ∈ SX , we generally have that

P (X = a) = 0.

This is because the sample space is so “large” and every possible outcome is so “small” that
the probability of any “particular” value is vanishingly small. Therefore the probability
mass function we defined for discrete random quantities is inappropriate for understanding
continuous random quantities. In order to understand continuous random quantities, we
need a little calculus.

2 The probability density function

If X is a continuous random quantity, then there exists a function fX(x), called the
probability density function (PDF), which satisfies the following:

1. fX(x) ≥ 0, ∀x;

2.
∫ ∞
−∞ fX(x)dx = 1;

3. P (a ≤ X ≤ b) =
∫ b

a
fX(x)dx for any a and b.

Consequently we have

P (x ≤ X ≤ x + δx) =

∫ x+δx

x

fX(y)dy

' fX(x)δx for small δx

⇒ fX(x) ' P (x ≤ X ≤ x + δx)

δx
.

and so we may interpret the PDF as

fX(x) = lim
δx→0

P (x ≤ X ≤ x + δx)

δx
.
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2.1 Example

The length of time required by students to complete a 1-hour exam is a random variable
with a density function given by

fY (y) =

{

cy2 + y, 0 ≤ y ≤ 1,
0, elsewhere.

(a) Find c and sketch fY (y).

(b) Find the probability that a student takes between 30 and 45 minutes to finish the
exam.

Notes

1. Remember that PDFs are not probabilities. For example, the density can take
values greater than 1 in some regions as long as it still integrates to 1.

2. It is sometimes helpful to think of a PDF as the limit of a relative frequency his-
togram for many realisations of the random quantity, where the number of realisa-
tions is very large and the bin widths are very small.

3. Because P (X = a) = 0, we have P (X ≤ k) = P (X < k) for continuous random
quantities.

3 The distribution function

In Semester 1 the cumulative distribution function of a random variable X was defined
to be

FX(x) = P (X ≤ x), ∀x.

This definition works just as well for continuous random quantities, and is one of the
many reasons why the distribution function is so useful. For a discrete random quantity
we had

FX(x) = P (X ≤ x) =
∑

{y∈SX |y≤x}
P (X = y)

but for a continuous random quantity we have the continuous analogue

FX(x) = P (X ≤ x)

= P (−∞ ≤ X ≤ x)

=

∫ x

−∞
fX(z)dz.

Just as in the discrete case, the distribution function is defined for all x ∈ R even if the
sample space SX is not the whole of the real line.
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3.1 Properties

1. Since it represents a probability, FX(x) ∈ [0, 1].

2. FX(−∞) = 0 and FX(∞) = 1.

3. When X is continuous, FX(x) is continuous. Also, by the Fundamental Theorem of
Calculus, we have

d

dx
FX(x) = fX(x),

and so the slope of the CDF FX(x) is the PDF fX(x).

3.2 Example

For Example 2.1, where the probability density function was given by

fY (y) =

{

3y2

2
+ y, 0 ≤ y ≤ 1,

0, elsewhere.

(a) Find and sketch FY (y).

(b) Find the probability that a student finishes in less than half an hour.

(c) Given that a student needs at least 15 minutes to complete the exam, find the
probability that she will require at least 30 minutes to finish.

4 Medians and quartiles

The median of a random quantity is the “middle” of the distribution. That is, it is the
value m such that

P (X ≤ m) = P (X ≥ m) =
1

2
.

Equivalently, it is the value, m such that

FX(m) = 0.5.

Similarly, the lower quartile of a random quantity is the value l such that

FX(l) = 0.25.

and the upper quartile is the value such that

FX(u) = 0.75.

4.1 Example

The proportion of time, Y , that an industrial robot is in operation during a 40-hour week
is a random variable with probability density function

fY (y) =

{

2y, 0 ≤ y ≤ 1,
0, otherwise.

Find the median, upper and lower quartiles of the distribution.
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5 Expectation of continuous random quantities

The expectation or mean of a continuous random quantity X is given by

E[X] =

∫ ∞

−∞
xfX(x)dx.

which is just the continuous analogue of the corresponding formula for discrete random
quantities. Similarly, the variance is given by

V ar(X) =

∫ ∞

−∞
{x − E[X]}2 fX(x)dx =

∫ ∞

−∞
x2fX(x)dx − {E[X]}2 .

Note that the expectation of g(X) is given by

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx.

and so the variance is just

V ar(X) = E
[

(X − E[X])2] = E[X2] − {E[X]}2 .

5.1 Example

Weekly CPU time used by an accounting firm has a PDF (measured in hours) given by

fX(x) =

{

3
64

x2(4 − x), 0 ≤ x ≤ 4,
0, elsewhere.

(a) Check that this is a valid PDF (integrates to 1).

(b) Find the expected value and variance of weekly CPU time.

6 PDF and CDF of a linear transformation

Let X be a continuous random quantity with PDF fX(x) and CDF FX(x). Let Y = aX+b
where a > 0. The CDF of Y is

FY (y) = P (Y ≤ y) = FX

(

y − b

a

)

and by differentiating both sides with respect to y we get

fY (y) =
1

a
fX

(

y − b

a

)

.

6.1 Example

For Example 5.1, where the weekly CPU time used by an accounting firm has a PDF
(measured in hours) given by

fX(x) =

{

3
64

x2(4 − x), 0 ≤ x ≤ 4,
0, elsewhere.

The CPU time costs the firm £200 per hour and a weekly setup cost of £50. What is the
probability that the weekly cost of CPU time exceeds £650?
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7 The uniform distribution

Now that we understand the basic properties of continuous random quantities, we can
look at some of the important standard continuous probability models. The simplest of
these is the uniform distribution. The uniform distribution is very useful for computer
simulation, as random quantities from many different distributions can be obtained from
U(0, 1) random quantities.

7.1 Definition

The random quantity X has a uniform distribution over the range [a, b], written

X ∼ U(a, b)

if the PDF is given by

fX(x) =

{

1
b−a

, a ≤ x ≤ b,

0, otherwise.

7.2 Result

We can show that the CDF of a uniform random quantity defined on the range [a, b] is
given by

FX(x) =







0, x < a,
x−a
b−a

, a ≤ x ≤ b,

1, x > b.

7.3 Result

The lower quartile, median and upper quartile of the uniform distribution are

3

4
a +

1

4
b,

a + b

2
,

1

4
a +

3

4
b,

respectively.

7.4 Result

The expectation and variance of a uniform random quantity are

E[X] =
a + b

2
and V ar(X) =

(b − a)2

12
.

7.5 Example

A parachutist lands at a random point on a line between markers A and B.

(a) Find the probability that she is closer to A than B.

(b) Find the probability that her distance from A is more than three times her distance
to B.

(c) Suppose that three parachutists operate independently as described above. What
is the probability that exactly one of the three lands past the midpoint between A
and B?
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8 The exponential distribution

8.1 Definition

The random variable X has an exponential distribution with parameter λ > 0, written

X ∼ Exp(λ)

if it has PDF

fX(x) =

{

λe−λx, x ≥ 0,
0, otherwise.

8.2 Result

The distribution function FX(x) is therefore given by

FX(x) =

{

0, x < 0,
1 − e−λx, x ≥ 0.

Comment

The PDF and CDF for an Exp(1) are shown on below.
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8.3 Result

The expectation and variance of the exponential distribution is

E[X] =
1

λ
and V ar(X) =

1

λ2
.

Comment

This means that the expectation and standard deviation are both 1
λ
.
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Notes

1. As λ increases, the probability of small values of X increases and the mean decreases.

2. The median m is given by

m =
log 2

λ
= log 2E[X] < E[X].

3. The exponential distribution is often used to model lifetimes and times between
random events.

8.4 Example

The magnitudes of earthquakes recorded in a region of North America can be modelled
as having an exponential distribution with mean 2.4, as measured on the Richter scale.
Find the probability that an earthquake striking this region will

(a) exceed 3.0 on the Richter scale,

(b) fall between 2.0 and 3.0 on the Richter scale,

(c) Out of the next 10 earthquakes to strike this region, what is the probability that at
least one will exceed 5.0 on the Richter scale?

8.5 Relationship with the Poisson process

The exponential distribution with parameter λ is the time between events of a Poisson
process with rate λ. Let X be the number of events in the interval (0, t). In Semester 1
we saw that X ∼ P (λt). Let T be the time to the first event. Then

FT (t) = P (T ≤ t) = 1 − e−λt.

This is the distribution function of an Exp(λ) random quantity, and so T ∼ Exp(λ).

8.6 Example

Consider the Poisson process for calls arriving at an ISP at rate 5 per minute. Let T be
the time between two consecutive calls. Then we have

T ∼ Exp(5)

and so E[T ] = SD(T ) = 1/5 minutes.

8.7 Result (the memoryless property)

If X ∼ Exp(λ), then
P (X > s + t|X > t) = P (X > s).
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9 The normal distribution

9.1 Definition

A random quantity X has a normal distribution with parameters µ and σ2, written

X ∼ N(µ, σ2)

if it has PDF

fX(x) =
1

σ
√

2π
e−

1

2
(x−µ

σ )
2

, x ∈ R,

for µ ∈ R and σ > 0. Note that fX(x) is symmetric about x = µ and so (provided the
density integrates to 1) the median of the distribution will be µ. The PDFs for a range
of N(µ, σ2) random quantities are given in the plot below.
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9.2 Result

If X ∼ N(µ, σ2), i.e. X has a normal distribution with parameters µ and σ2, then

E[X] = µ and V ar(X) = σ2.

9.3 Definition

A standard normal random quantity, Z ∼ N(0, 1), is a normal random quantity with
mean zero and variance equal to one. The PDF is denoted φ(z) and is therefore,

fZ(z) =
1√
2π

e−
1

2
z2

, z ∈ R,

N.B. This is symmetric about zero. The CDF is denoted Φ(z) and is given by

Φ(z) = P (Z ≤ z) =

∫ z

−∞
φ(x)dx.

Comment

Note that there is no analytic expression for Φ(z), so tabulated values are used. The
following can all be useful for calculations.

Φ(−∞) = 0, Φ(∞) = 1, Φ(0) =
1

2
, Φ(−z) = 1 − Φ(z).
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The PDF and CDF for a N(0, 1) are given below.
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9.4 Example

Use tables to compute Φ(1.5) and Φ(1.56).

9.5 Example

Use tables to compute Φ(−1.2), Φ(−1.23).

9.6 Result

The standard normal distribution is important because it is easy to transform any normal
random quantity by means of a simple linear scaling. We use the result for the PDF of a
linear transformation. If X ∼ N(µ, σ2), then the CDF of X is given by

FX(x) = Φ

(

x − µ

σ

)

.

9.7 Example

If X ∼ N(3, 22) compute

(a) P (X < 5);

(b) P (2 < X < 4).

9.8 Example

MENSA have established that IQ levels in Britain can be modelled by a normal distribu-
tion with parameters µ = 100 and σ2 = 400 = 202, i.e., X ∼ N(100, 202), where X is the
IQ level of people in Britain.

(a) Compute P (X > 150);

(b) What IQ level do you need to be in the top 2.5% of the population?

9.9 Example

(a) If X ∼ N(µ, 102) and P (X > 20) = 0.1, what is µ?

(b) If X ∼ N(20, σ2) and P (X > 40) = 0.01, what is σ?

(c) If X ∼ N(µ, σ2), P (X < 0) = 0.1 and P (X > 10) = 0.05, what are µ and σ2?
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z -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00
-2.9 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019
-2.8 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026
-2.7 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035
-2.6 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047
-2.5 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062
-2.4 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082
-2.3 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107
-2.2 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139
-2.1 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179
-2.0 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222 0.0228
-1.9 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287
-1.8 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359
-1.7 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446
-1.6 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548
-1.5 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.0668
-1.4 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808
-1.3 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968
-1.2 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151
-1.1 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357
-1.0 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562 0.1587
-0.9 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841
-0.8 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119
-0.7 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420
-0.6 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743
-0.5 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085
-0.4 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446
-0.3 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821
-0.2 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207
-0.1 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602
0.0 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960 0.5000

Table 1: The Standard Normal Distribution. Values of P (Z ≤ z), z ≤ 0, where
Z ∼ N(0, 1)
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

Table 2: The Standard Normal Distribution. Values of P (Z ≤ z), z ≥ 0, where
Z ∼ N(0, 1)

p = Φ(z) z = Φ−1(p)
0.5000 0.000
0.8000 0.842
0.9000 1.282
0.9500 1.645
0.9750 1.960
0.9900 2.326
0.9950 2.576
0.9990 3.090
0.9995 3.291

Table 3: Quantiles of Standard Normal Distribution
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Part II

Expectation

1 Functions of a single random variable

Before we can develop methods for estimating parameters and drawing inferences, we
need some results on expectation. Recall from Semester 1 that the expectation (mean) of
a discrete random variable X with probability function p(x) and sample space S is

E[X] =
∑

x∈S

x p(x).

More generally, the expectation of any function of X, say g(X), is

E[g(X)] =
∑

x∈S

g(x) p(x),

that is, the expectation of g(X) is a sum of all values of g(x) weighted by how likely the
value x is to occur.

A similar result holds for continuous random variables. If X is a continuous random
variable with probability density function fX(x) then

E[g(X)] =

∫ ∞

−∞
g(x) fX(x) dx.

An example of this generalisation is the average squared deviation about the mean, that
is,

V ar(X) = E
[

(X − µ)2
]

,

where E[X] = µ and g(X) = (X − µ)2.

1.1 Example

Suppose the discrete random variable X has probability function

x −2 0 1 4
p(x) 0.1 0.4 0.3 0.2

Find E[X], E[X2] and E[eX ].

1.2 Example

Suppose the continuous random variable X has an exponential distribution with param-
eter θ > 0 and probability density function

fX(x) =

{

θe−θx, x ≥ 0

0 x < 0.

Find E[e−X ].
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The following result holds for both discrete and continuous random quantities:

1.3 Result

(a) E[aX + b] = aE[X] + b,

(b) V ar(aX + b) = a2V ar(X),

where a and b are constants.

1.4 Example

Let X be the maximum daily temperature (in Celsius) in Newcastle during February.

(a) If E[X] = 10oC then what is the expected temperature in Fahrenheit?

(b) Is temperature more or less variable on the Fahrenheit scale than on the Celsius
scale?

2 Linear combinations of independent random vari-

ables

Recall (from Semester 1) that two events E and F are independent if

P (E and F ) = P (E) × P (F ).

Consider two independent discrete random variables X and Y with sample spaces SX and
SY respectively. If we define the events as being two particular outcomes of these random
variables, namely

E = {X = x} and F = {Y = y}
then these events are independent, and so

P (X = x and Y = y) = P (X = x) × P (Y = y), x ∈ SX , y ∈ SY .

The l.h.s. is called the joint probability function of X and Y . It describes how likely pairs
of values are to occur.

The continuous analogue of this is: if X and Y are independent continuous random
variables with probability density function fX(x) and FY (y) then the joint probability
density function of X and Y is

fX,Y (x, y) = fX(x) × fY (y) −∞ < x, y < ∞.

We now quote some results which will be useful in studying the properties of random
samples.

14



2.1 Result

(i) If X and Y are random variables then

E[X + Y ] = E[X] + E[Y ].

(ii) If X and Y are independent random variables then

E[XY ] = E[X]E[Y ].

(iii) If X and Y are independent random variables then

V ar(X + Y ) = V ar(X) + V ar(Y ).

2.2 Result

(i) If X1, X2, . . . , Xn are random variables then

E[a1X1 + a2X2 + · · ·+ anXn]

= a1E[X1] + a2E[X2] + · · ·+ anE[Xn].

(ii) If X1, X2, . . . , Xn are independent random variables then

V ar(a1X1 + a2X2 + · · ·+ anXn)

= a2
1V ar(X1) + a2

2V ar(X2) + · · ·+ a2
nV ar(Xn).

2.3 Example

Suppose X1, X2 and X3 are independent random variables with means −3, 2 and 5, and
variances 1, 3 and 2 respectively. Find the mean and variance of

(i) Y = X1 + 3X2 + X3;

(ii) Y = 2X1 − X2 − 4X3.

2.4 Result

Suppose that X1, X2, . . . , Xn are independent random variables with

E[Xi] = µ, i = 1, . . . , n

and
V ar(Xi) = σ2, i = 1, . . . , n.

(a) Show that E[X̄] = µ and V ar(X̄) = σ2

n
.

(b) Show that E[S2] = σ2.

15



Part III

Statistical Inference

1 Introduction

Statistical inference is the study of how best to draw conclusions from a limited amount
of data. For example,

(a) The performance of a new drug to combat cancer.

(b) Daily demand for beds in a hospital ward.

The statistical problem in both the above examples is how to generalise from the conclu-
sions concerning a relatively small amount of data to a much larger (effectively infinite)
population. Naturally, the larger the initial experiment, the more reliable the conclusions
of the experiment will be when applied to the population. We talk of making inferences
from the data, and quantify the accuracy or reliability of the inferences.

The general area of statistical inference is very broad and ranges from using simple tech-
niques of exploratory data analysis (EDA), including graphical and numerical summaries,
to analysing very sophisticated and complex statistical models. In this course we develop
the central ideas of statistical inference by studying some simple statistical experiments.

The first stage of any analysis of data is to consider how the data were collected and what
is a plausible statistical model for the population.

1.1 Example

In the cancer experiment we may be interested in the survival time (time until death) of
patients and an exponential distribution with probability density function

f(x|θ) =

{

θe−θx, x ≥ 0

0 x < 0,

may be a satisfactory statistical model for describing the survival time X in the population
of cancer patients. The method of choosing (estimating) θ must take into account how
the data were collected, and most importantly, whether they are representative of the
population. For instance, inferences drawn from data collected on a male only ward may
not apply to females. The best way of ensuring that the data are representative of the
population is to take a random sample. This is a collection of data in which all members of
the population are equally likely to be chosen. In this part of the course, we consider how
to make inferences about population quantities using random samples of data. Important
extensions of these techniques to those in which the data are not independent or not
identically distributed are considered in second, third and fourth year modules. To be
successful, you must be familiar with

1. the differences between populations and samples. For example, do you understand
the difference between the sample mean x̄ and the population mean µ?
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2. the differences between random variables (written in capitals) and observations
on random variables (written in lower case). For example, do you understand
that random variables have distributions and observations do not? Do you un-
derstand that the notation X = x represents the random variable X taking the
value/observation x?

1.2 Random Samples

Many statistical investigations involve taking random samples to obtain information
about, or survey opinion in, a population. For example, opinion polls are used not only
by political parties to assess voters reaction to possible new policies and by newspapers
in election periods to gauge the popularity of political parties but also by manufacturers
to assess the impact of an advertising campaign or to find out why customers use a rival
product. The actual sampling method used can be quite sophisticated. For example, it
can ensure that the sample contains known proportions of certain target groups of the
population, such as social classes A, B, C and D. However, the central mechanism of all
statistically valid polling schemes is to take a random sample from the population (or
group within the population).

Suppose we are interested in the cigarette smoking habits of the 1000 smokers on a remote
island. In order to gain some idea of the level of nicotine in these smokers, it is decided
to take a random sample of 5 smokers and measure their blood plasma nicotine level.
Table 1.1 contains the nicotine levels of all 1000 smokers (measured in nanograms per
millilitre, ng/ml), written in blocks of 100 smokers. Note that the population mean level
is µ = 320 ng/ml. We shall pretend that all this information is not available to us, and
see how we can take random samples and possibly draw inferences about µ.

First we must decide exactly how we can take a random sample of size 5 – each member
of the population must have the same probability of being chosen. We begin by number-
ing the population 1–1000: the top left-hand block will be smokers 1–100, counting 1–10
along the first row, then 11–20 along the second row, and so on. The top right-hand block
will contain smokers 101–200, counting again along rows. Repeating this for the other
blocks gives a unique label to each smoker in the population.

The next step is to select the 5 smokers for our random sample. What we need are
5 random numbers from the discrete uniform distribution on {1, 2, . . . , 1000}. We can
generate these using values from a uniform U(0, 1) distribution – these are the random
numbers 0.000–0.999 given by a standard calculator. Taking the first three digits after
the decimal point and then adding one will give values from the required discrete uniform
distribution. For example, if the calculator gives u = 0.636, then we select smoker 637,
giving our first observation as x1 = 374. Repeating this on my calculator produces the
random sample:

u = 0.636 smoker = 637 x1 = 374
u = 0.326 smoker = 327 x2 = 452
u = 0.848 smoker = 849 x3 = 271
u = 0.665 smoker = 666 x4 = 419
u = 0.679 smoker = 680 x5 = 643
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282 258 399 271 343 285 247 513 171 123 168 327 430 240 410 341 90 512 245 336
290 263 446 185 330 111 243 376 139 351 311 389 546 321 393 487 287 514 149 315
264 320 217 257 349 640 97 298 393 454 363 354 360 326 199 502 154 273 213 413
293 407 362 270 344 263 290 263 50 253 345 581 229 264 304 394 246 235 417 452
499 276 412 323 310 177 248 178 409 275 278 307 495 515 232 432 577 269 370 248
339 404 371 262 336 218 274 483 211 245 316 381 432 233 223 447 412 250 262 337
202 133 356 408 224 379 197 278 235 509 171 232 429 315 326 602 63 290 230 121
242 389 219 206 393 437 306 152 294 271 230 398 346 344 379 347 468 300 325 237
305 174 291 261 214 532 335 63 100 357 190 347 208 420 322 463 203 216 356 504
389 236 445 378 255 301 308 150 289 453 464 273 211 450 222 250 214 259 296 356
320 420 357 160 372 99 316 218 248 322 145 399 433 393 403 361 241 234 388 255
261 279 369 342 168 322 304 254 99 503 303 212 105 166 257 422 460 331 288 410
346 370 235 355 65 340 420 338 568 644 164 288 319 159 324 208 452 297 305 259
268 340 305 361 319 519 293 380 286 431 402 329 363 330 612 248 302 592 589 349
446 588 304 454 164 240 293 478 540 339 245 257 222 471 469 273 244 126 174 183
277 216 555 401 380 338 212 476 77 363 140 451 329 66 217 461 435 380 314 324
522 111 119 316 116 471 142 336 277 101 518 264 226 256 539 324 320 292 476 324
333 332 404 362 202 204 341 80 333 267 439 136 343 389 244 370 268 362 317 400
372 595 314 182 470 192 555 374 368 192 225 321 435 403 316 312 307 368 236 452
192 63 407 125 253 89 70 186 491 342 122 367 106 334 161 177 180 355 356 317
454 122 286 39 361 262 316 272 285 201 191 162 229 334 278 231 154 290 277 392
644 297 398 118 246 148 478 167 337 344 395 334 255 401 504 304 408 204 673 126
192 507 41 457 405 306 282 446 195 512 252 510 557 191 321 404 542 438 291 449
377 240 441 308 346 265 375 332 580 130 353 426 95 588 332 109 467 333 388 309
263 529 172 529 315 257 481 260 297 382 438 64 226 185 369 275 320 126 321 375
190 340 337 224 363 212 371 229 175 388 332 315 389 452 266 393 323 253 280 420
219 400 378 241 616 551 359 489 314 450 645 224 320 405 182 251 370 341 318 232
240 471 293 240 184 296 617 565 206 147 169 401 140 462 389 310 262 334 263 269
323 351 187 544 387 425 353 175 378 484 205 295 413 189 559 251 480 283 262 304
213 574 579 325 246 206 419 306 471 264 270 300 278 131 561 328 440 514 280 391
281 403 256 348 183 161 444 482 338 268 313 252 179 414 444 266 400 435 433 506
203 269 450 322 459 183 212 242 144 406 401 174 605 270 487 494 235 316 368 319
260 254 157 377 145 284 401 220 452 59 335 467 251 192 371 298 317 382 363 397
282 303 328 378 363 636 374 143 495 239 423 496 411 462 282 411 203 395 590 388
278 272 417 666 233 316 287 268 186 247 339 397 276 291 324 81 271 399 129 325
247 152 315 224 130 323 352 276 398 338 231 258 310 421 215 85 237 356 439 348
507 277 240 188 321 419 370 374 211 224 340 264 441 226 563 279 297 114 546 277
281 196 498 375 348 234 469 103 324 643 315 293 444 109 408 100 477 293 138 206
485 279 494 513 97 293 669 312 425 70 181 210 241 187 448 55 253 564 404 382
31 496 234 200 411 386 218 382 483 405 435 414 379 360 194 291 393 247 314 285

204 188 444 416 106 485 276 250 248 200 352 463 251 197 197 456 293 333 373 240
295 297 271 141 319 256 197 110 338 237 249 291 393 437 432 274 202 182 176 212
482 96 272 296 323 289 285 160 203 336 217 321 202 266 253 436 390 259 596 383
236 291 226 250 270 439 360 310 326 415 447 336 354 273 243 390 213 318 346 599
637 255 61 393 324 492 484 259 271 150 550 185 224 352 387 441 232 261 313 410
246 529 97 448 369 199 140 498 287 293 258 431 267 396 217 340 278 297 387 281
162 237 305 239 246 412 632 385 342 340 673 414 298 383 152 438 408 452 492 603
439 223 404 466 380 214 155 410 291 234 248 325 391 338 416 262 361 358 484 129
152 363 90 383 365 500 362 190 343 138 233 179 200 476 128 308 221 649 278 152
525 275 355 585 394 183 488 323 312 595 257 434 160 375 478 353 239 331 426 477

Table 1.1: Blood plasma nicotine levels for 1000 smokers (ng/ml)

Obviously, care must be taken not to select any smoker more than once. Therefore, when
selecting a random sample of smokers, if a smoker is selected that is already in the sam-
ple, this additional selection should be rejected and another smoker selected (using this
algorithm). This technique is called sampling without replacement.

Thus, we have a random sample on which to try to draw inferences about µ, the mean
nicotine level in the population as a whole. The most obvious best guess for µ is the
sample mean x̄ = 431.8 ng/ml. Clearly, this is some way from the correct population
value µ = 320 ng/ml. This result begs the question of how accurate our sample mean x̄
can be in estimating the population mean µ.
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Take another random sample of size n = 5:

u = 0.557 smoker = 558 x1 = 253
u = 0.427 smoker = 428 x2 = 446
u = 0.902 smoker = 903 x3 = 251
u = 0.427 smoker = 428 try again
u = 0.363 smoker = 364 x4 = 256
u = 0.013 smoker = 14 x5 = 185

giving a sample mean x̄ = 278.30 ng/ml. This sample mean is much closer to the popula-
tion mean but still not very close. Also, it is quite different from the mean of the previous
random sample.

Repeat this procedure yourself (filling the tables below) to select three more random
samples of size n = 5 and calculate the sample means. How close are these sample means
to the correct population value µ = 320 ng/ml?

Your random sample 1

u = smoker = x1 =

u = smoker = x2 =

u = smoker = x3 =

u = smoker = x4 =

u = smoker = x5 =

x̄ =

Your random sample 2

u = smoker = x1 =

u = smoker = x2 =

u = smoker = x3 =

u = smoker = x4 =

u = smoker = x5 =

x̄ =

Your random sample 3

u = smoker = x1 =

u = smoker = x2 =

u = smoker = x3 =

u = smoker = x4 =

u = smoker = x5 =

x̄ =
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1.3 Examples of Statistical Inference

1. Returning to the cancer example, suppose we have data in the form of two independent
random samples, one for males and one for females. Suppose the variation in the data looks
like an exponential distribution is appropriate, but with (possibly) different parameters
θM for males and θF for females. Questions of interest may include

(a) Using the data, what are the best guesses at the values of θM and θF ?

(b) How accurate are these guesses? We know that our guesses won’t have 100% ac-
curacy since it is very likely that we would get different data if we repeated the
experiment.

(c) How plausible is it that the drug affects males and females in a similar way, that is,
is θM = θF ?

(d) Are the data consistent with exponential distributions?

(e) Suppose the initial experiment is a small-scale pilot study. How many males and
females should be recruited into the main study in order that our final conclusions
will be reliable?

2. Suppose we have data on the number X of attempts required for people to pass a
driving test. If the result of driving tests are independent of one another, each with
success probability θ, then

Pr(X = i) = Pr(fail i − 1 tests and pass the ith test)

= (1 − θ)i−1θ, i = 1, 2, 3, . . . .

This is called the Geometric(θ) distribution. This distribution is the simplest one which
can be used to model data of this type. It is the independence assumption between
test results which makes this model relatively simple (and perhaps unrealistic). A more
realistic model may take into account that learning to drive may be a cumulative process
with diminishing returns, that is, people learn from taking tests but if they don’t pass
after say 3 tests then their chance of passing reduces with each test taken. Such a model
would have

Pr(X = 1) < Pr(X = 2) < Pr(X = 3) > Pr(X = 4) > Pr(X = 5) > . . .

whereas, the (simple) geometric model has decreasing probabilities

Pr(X = 1) > Pr(X = 2) > Pr(X = 3) > Pr(X = 4) > Pr(X = 5) > . . . .

Suppose the data are recorded by age group and sex, and that a (simple) geometric model
is thought to be correct. We may be able to answer:

(a) What are the estimates of the values of θ in the different groups? How accurate are
these estimates?

(b) Are there any obvious patterns in the estimates? For example, are there any dif-
ferences between males and females? Is there a consistent pattern in the estimates
across ages?

(c) Are the data consistent with geometric distributions? If not, is θ a decreasing function
in age? Can we find a (fairly simple) distribution which is more consistent with the
data and which satisfies our “learning” model equations?
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2 Estimation of Population Quantities

2.1 Introduction

Suppose we are interested in determining some summary measure of a characteristic X in
a very large population, such as the mean µ or variance σ2 of X. For example, X may be
annual wages in the U.K. or the amount of alcohol drunk weekly by students. We cannot
obtain all values of X in the population because of its size, so we sample the values in a
small proportion of the population. We choose people randomly to make sure that the
sample is truly representative of the population. Suppose we take a random sample of
size n. We write this as x1, x2, . . . , xn. As these observations are made on people chosen at
random, we can think of them as observations on independent and identically distributed
(i.i.d.) random variables X1, X2, . . . , Xn. Sometimes, we refer to X1, X2, . . . , Xn as the
random sample. For example, if we are measuring wages in the UK, then X1 represents
the wage of the first person to be chosen in the random sample, X2 the wage of the second
person chosen and so on. Before we obtain our sample, the value of X1 (say) is unknown
but does have a distribution, namely the distribution of wages in the UK. Once we we
have sampled, we observe the value x1 (say £15000) on X1. This is also the case for the
other random variables and so X1, X2, . . . , Xn represent the possible values of the wages
before we take the sample and the observations x1, x2, . . . , xn the actual values observed
in the sample.

We will now see how random samples can be used to estimate the population mean µ and
the population variance σ2. The key statistical properties of the random sample we shall
be using are that X1, X2, . . . , Xn are independent random variables, each with the same
distribution (the population distribution), and, in particular, that they have the same
mean and the same variance:

E[X1] = E[X2] = · · · = E[Xn] = µ

and

V ar(X1) = V ar(X2) = · · · = V ar(Xn) = σ2.

2.2 Estimation of the Population Mean

An obvious estimate of the population mean µ is the sample mean x̄. But how good an
estimate is it? Does it make best use of all the information in the data? Each time a
sample is taken from the population, the values in the sample will change because different
members of the population will be selected and so we will get different values for x̄ in
different samples. But which one should we use? They can’t all be correct! Is it possible
to get a value of x̄ which is “miles away” from µ? To answer such questions we study the
distribution of all possible values of x̄ we can get when sampling the population, that is,
we study the distribution of the random variable

X̄ =
X1 + X2 + · · ·+ Xn

n
.
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Sometimes this distribution is called the sampling distribution of X̄ to reflect the origin
of the random variation. We say that X̄ is the estimator of µ and x̄ is the estimate of µ
(from the current sample). Two useful properties of an estimator are that

(i) on average the estimator gives the (true) parameter value, and

(i) the estimator has small variance.

2.3 Definition

An estimator T is unbiased for a parameter θ if E[T ] = θ.

2.4 Example

We have shown that the variance estimator S2 is unbiased for population variance σ2. We
might therefore think that S is a good (unbiased) estimator for σ. But is this so?

Comment: The above results show that S2 is an unbiased estimator for σ2 and that S2
∗ is

biased. This is one of the reasons for preferring S2 as an estimator. Also, it can be shown
that, when taking random samples from a population whose characteristic X follows a
normal distribution,

V ar(S2) =
2σ4

n − 1

and so V ar(S2) decreases as n increases. Therefore, large samples produce more accurate
estimates of σ2 than small samples.

2.5 Example

Consider a queueing system in which we are interested in the arrival and departure rates.
It is common to model the time X between arrivals by an exponential distribution with
parameter θ, and probability density function

f(x) =

{

θe−θx, x ≥ 0

0 x < 0.

Here θ represents the arrival rate to the queue. How do we estimate θ from a random
sample? We know that

µ = E[X] =
1

θ
.

If we use the mean estimator X̄ to estimate the population mean µ then perhaps we
should estimate θ by 1/X̄. However, is this estimator a good one?
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3 Comparison of Estimators

3.1 Introduction

Various unbiased estimators were proposed

(i) X1 + X2 − 2X3 + X4, variance 7σ2;

(ii) (2X1 + X2 − 2X3 + X4)/2, variance 5σ2/2;

(iii) (2X1 + X2 + X3 + · · ·+ Xn)/(n + 1), variance (n + 3)σ2/(n + 1)2;

(iv) X̄, variance σ2/n.

and it was shown that amongst unbiased estimators of the form a1X1 +a2X2 + · · ·+anXn,
the estimator with smallest variance is X̄. Are there any unbiased estimators that are
better than X̄? If the distribution of X is symmetric about its mean (as is the normal
distribution), then there are unbiased estimators of µ which are not linear combinations
of the X’s. We will study two such estimators

(a) the sample median, M ,

(a) the sample mid-range, MR = [min(Xi) + max(Xi)]/2,

and compare their performance to that of X̄. But before we can do this we must consider
the attributes of a “good” estimator.

3.2 What Makes a Good Estimator?

The merits of an estimator T are judged by looking at its performance over all possible
samples. In other words, by looking at the sampling distribution of T . There are many
properties which characterise a “good” estimator, some theoretical and some practical.
There is rarely a “best” estimator. The following properties are desirable:

(i) Unbiasedness
On average the estimator gives the correct answer: E[T ] = µ.

(ii) Efficiency
The estimator has small variance: V ar(T ) is small.

(iii) Consistency
Larger samples give more precise estimates: E[T ] → µ and V ar(T ) → 0 as n → ∞.

(iv) Robustness/resistance
The estimator will perform well even if the assumed model is not quite correct or
there are outlying values in the data.

(v) Ease of calculation
An estimator is preferred if it is easy to calculate and to understand.

For many distributions it is possible to derive the sampling distribution of an estimator
theoretically. However, such techniques go beyond the scope of this course.
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Part IV

Likelihood Methods

1 Introduction

In Part III, we saw that sample means and variances were good estimators for population
means and variances. In most practical situations, simply being able to estimate the
population mean and variance is not enough. The results of an experiment may need to be
described by a probability distribution which depends on some unknown parameters. The
statistical problem becomes one of how to estimate these unknown parameters. Sometimes
it is obvious what estimator to use, other times it is far from clear. Consider how you
would estimate the parameter in the following example.

1.1 Example

The scene is a hospital consultant’s office. A patient is waiting to find out whether the
consultant has detected early the onset of some disease. Fortunately, treatment after an
early detection of the disease results in a cure. It is possible to detect whether the patient
has the disease by waiting to see if certain symptoms appear; however, once they have,
treatment is more problematic. The consultant has recently discovered that the disease is
caused by the mutation of a certain type of cell; the mutation causes the cell to be larger
than its non-mutated form. Healthy patients have very few mutated cells. Therefore, the
consultant wants to know what proportion of mutated cells the patient has in order to
detect whether they have the disease. Unfortunately, it is not easy to detect which cells
are mutated and which are not as some non-mutated cells are large and some mutated
cells are small. However, the mutation can be detected using very expensive equipment –
too expensive to be used on a day-to-day basis. This equipment reveals that the size (in
µm) of non-mutated cells follows a normal N(50, 102) distribution and those of mutated
cells, a normal N(80, 102) distribution; see Figure 1. If the proportion of mutated cells
is p then, using the Law of Total Probability, the overall distribution of cell sizes X has
density

f(x) = pfmutated(x) + (1 − p)fnormal(x);

see Figure 2.

Typical histograms of (random samples of) the cell sizes of healthy and ill patients are
given in Figures 3 and 4.

The problem for the clinician/statistician is that given data from a patient (such as that
displayed in Figure 4), can we determine the correct value for p? Comparing this his-
togram with Figure 2, it looks as if p > 0.3 and p < 0.5. But can we get a more accurate
answer? Obtaining the correct value of p may be crucial in deciding which treatment to
give the patient.

In this part of the course, we consider a general method for estimating parameters, such
as p in the above example, using likelihood methods. We begin by developing the concept
of likelihood for very simple problems and then consider more complicated problems
involving random samples of data.
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Figure 1: Distribution of cell sizes for normal cells (solid line) and mutated cells (dashed
line)
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Figure 2: Distribution of cell sizes with p = 0.1 (solid line), p = 0.3 (line with long dashes)
and p = 0.5 (line with short dashes)
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Figure 3: Distribution of cell sizes for a healthy patient
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Figure 4: Distribution of cell sizes for an ill patient
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1.2 Example (Single Observation)

Suppose that your car suffers from two intermittent problems, one caused by a fault in
the engine (θ1) and the other due to a fault in the gearbox (θ2). When examined by a
garage mechanic your car exhibits one of the following symptoms

x1 : overheating only,

x2 : irregular traction only,

x3 : both.

Suppose it is known in the garage trade that these symptoms occur with the following
probabilities

O/H I/T Both
Pr(X = x|θ) x1 x2 x3

θ1: fault in engine 0.1 0.4 0.5
θ2: fault in gearbox 0.5 0.3 0.2

Construct a diagnostic rule which will help the garage mechanic to determine faults.

1.3 Example

Suppose we are interested in the proportion θ of people in Newcastle who have been to the
Metro Centre in the past year. In a sample of 10 randomly chosen people, 6 responded
that they had been to the Metro Centre. What value of θ is most consistent with these
data?

1.4 Definition

The likelihood function L(θ|x) for θ is the probability (density) of observing the data,
regarded as a function of θ.

1.5 Result

Suppose the data consist of a single observation x on a discrete random variable X with
probability function p(x|θ) then

L(θ|x) = p(x|θ).

If X is a continuous random variable with probability density function f(x|θ) then

L(θ|x) = f(x|θ).

1.6 Definition

The maximum likelihood estimate (m.l.e.) for θ is any value maximising the likelihood
function L(θ|x). The m.l.e. is written as θ̂.
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1.7 Example

Consider a queueing system at a supermarket checkout. Suppose that times X between
arrivals can be described by an exponential distribution with parameter θ and that we
observe one such time x = 2. What value of θ is most consistent with this observation?
What would the most likely value of θ if we had to wait x minutes before seeing the first
arrival?

2 Likelihood (Random Samples)

In the examples we have looked at so far we have used only one observation to estimate the
parameter. However, in most practical situations we have a random sample of observations
with which to estimate the parameter. How do we combine the information in the sample
to produce an estimate? The answer lies in the definition of the likelihood function.
Recall that the likelihood function equals the probability (density) function of observing
the data x1, x2, . . . , xn.

2.1 Result

The likelihood function L(θ|x) for θ given observations x = (x1, x2, . . . , xn) on a random
sample x1, x2, . . . , xn is

L(θ|x) = Pr(X1 = x1, X2 = x2, . . . , Xn = xn|θ)
= p(x1|θ) × p(x2|θ) × · · · × p(xn|θ)

when the Xs are discrete random variables, each with probability function p(x|θ), and

L(θ|x) = f(x1|θ) × f(x2|θ) × · · · × f(xn|θ)

when the Xs are continuous random variables, each with probability density function
f(x|θ).

Our aim is to use the likelihood function to determine the most likely estimate for θ, given
the data. The value of θ which maximises the likelihood function L(θ|x) will also be the
same as the value of θ which maximises the log-likelihood function

`(θ|x) = loge L(θ|x).

In many cases, the calculations involved in maximising the log-likelihood function are
easier than those for the likelihood function, and so we generally determine m.l.e.s using
the log-likelihood function.

2.2 Example

Suppose that the numbers of arrivals at the queue for the fish counter in a supermarket
in consecutive 10 minute periods are 3, 1, 3, 2, 0 and 3. If people arrive at the queue
randomly (in time) then it can be shown that these observations are a random sample
from a Poisson distribution. We write the data as x = (3, 1, 3, 2, 0, 3). Suppose we are
interested in mean arrival rate θ. What is the maximum likelihood estimate of θ?
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2.3 Definition

Consider an experiment which consists of n independent trials, each of which has one of
r possible outcomes E1, E2, . . . , Er, and the probability of outcome Ei is pi for each trial,
where

∑r

i=1 pi = 1. Let Xi be the number of times outcome Ei occurs in the n trials
(i = 1, 2, . . . , r). The result of a typical experiment will be the number of times each
outcome occurs, that is, x = (X1, X2, . . . , Xr). The random quantity x has a multino-
mial distribution M(n; p1, p2, . . . , pr) with index n and parameters p1, p2, . . . , pr, and has
probability function

Pr(X1 = x1, X2 = x2, . . . , Xr = xr) =
n!

x1! x2! · · ·xr!
px1

1 px2

2 · · · pxr

r

for x1, x2, . . . , xr = 0, 1, . . . , n and
∑r

i=1 xi = n.

Note that this distribution is a generalisation of the binomial distribution: if we have
r = 2 possible outcomes (success and failure) then x2 = n − x1 and p2 = 1 − p1 and we
obtain binomial probabilities.

2.4 Example

In a genetic experiment concerning the leaf characteristics of the Indian creeper plant
Pharbitis nil, four different combination of leaf-types were possible. In a sample of 290
leaves the following frequencies were observed

Type Frequency
A 187
B 35
C 37
D 31

The standard theory suggested that these types are produced independently with proba-
bilities

9

16
:

3

16
:

3

16
:

1

16
.

However, if this were true then we would expect the frequencies to look like

163.125 : 54.375 : 54.375 : 18.125,

and so the theory was rejected.

An alternative theory which allows for genetic linkage suggests that these types are pro-
duced independently with probabilities

9

16
+ θ :

3

16
− θ :

3

16
− θ :

1

16
+ θ,

where 0 < θ < 3/16. If this is true, what is the most likely value for θ?

2.5 Example

We now consider the general case of the problem posed in Example 2.2. Suppose that the
numbers of arrivals at the queue in n consecutive 10 minute periods are x = (x1, x2, . . . , xn)
and that they form a random sample from a Poisson distribution with mean parameter
θ. What is the maximum likelihood estimate for θ?
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2.6 Example

We now consider the general case of the problem posed in Example 1.7. Suppose now
that we have the times x = (x1, x2, . . . , xn) between successive arrivals to the queue and
that these times are a random sample from an exponential distribution with parameter θ.
What is the maximum likelihood estimate for θ?

2.7 Example

Suppose we have a random sample x = (x1, x2, . . . , xn) from a normal N(θ, 1) distribution,
with probability density function

f(x|θ) =
1√
2π

exp

{

− 1

2
(x − θ)2

}

.

What is the maximum likelihood estimate for θ?

2.8 Example

Suppose we have a random sample x = (x1, x2, . . . , xn) from a Pareto(θ) distribution,
with probability density function

f(x|θ) =

{

θ
xθ+1 , if x ≥ 1,

0, otherwise.

A version of this distribution is often used to model wage distributions. What is the
maximum likelihood estimate for θ?

2.9 Example

Recall that we wanted to determine the proportion of mutated cells using a random sample
of cell sizes from the distribution with density

f(x|p) = pfmutated(x) + (1 − p)fnormal(x),

where fnormal(x) ≡ N(50, 102) and fmutated(x) ≡ N(80, 102). The likelihood function is

L(p|x) = f(x1|p) × f(x2|p) × · · · × f(xn|p)

= {pfmutated(x1) + (1 − p)fnormal(x1)}
× {pfmutated(x2) + (1 − p)fnormal(x2)}

× · · · × {pfmutated(xn) + (1 − p)fnormal(xn)} .

This function is rather complicated and is not particularly simplified when we take logs:
the log–likelihood function is

`(p|x) = log L(p|x) =

n
∑

i=1

log {pfmutated(xi) + (1 − p)fnormal(xi)} .

It is rather tricky to determine the maximum point as this has to be done using numerical
methods. However, it is easily plotted for a given set of data. Figures 5 and 6 show the
likelihood function and log-likelihood function for the data of the ill patient displayed in
Figure 4. The maximum point looks to be between p = 0.3 and p = 0.35. It is, in fact, at
p̂ = 0.321 (3 d.p.).
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2.10 Properties of Maximum Likelihood Estimators

Earlier in the course we found unbiased estimators for the population mean µ and vari-
ance σ2. These estimators also had the property that increasing the sample made them
more accurate, for example, V ar(X̄) = σ2/n → 0 as n → ∞.

Maximum likelihood estimators also possess “good” properties, including

(i) they are often unbiased (E[θ̂] = θ); if not, then they are asymptotically unbiased,
that is

E[θ̂] → θ as n → ∞;

(ii) their variance decreases with increasing sample size, and in particular

V ar(θ̂) → 0 as n → ∞;

(iii) they are invariant under 1-1 transformations, that is,

if θ̂ is the m.l.e. for θ then g(θ̂) is the m.l.e. for g(θ)

Property (iii) appears to be rather technical, but in fact provides a very useful result.
In Example 2.6 we calculated the m.l.e. for the arrival rate θ in a queue, assuming
exponential times X between arrivals. Here θ̂ = 1/x̄. Suppose now we are interested in
calculating the average time µ between arrivals. Because X ∼ Exp(θ), we have

µ = E(X) =
1

θ
.

How should we estimate µ? Property (iii) tells us that m.l.e. for µ is µ̂ = 1/θ̂ = x̄. If
instead we were interested in β, the probability that times between arrivals exceed 1, then
since

β = Pr(X > 1) = e−θ,

the m.l.e. for β is

β̂ = e−θ̂.

2.11 Example (A Two Parameter Problem)

The problems we have considered so far have concerned how we can determine the most
likely value of a single parameter θ. In most realistic situations, the variation in the data
is sufficiently complex that we need to use distributions with many more parameters.
Here we give an example of how the likelihood method works when we have a random
sample from a two-parameter distribution.

Suppose we have a random sample x = (x1, x2, . . . , xn) from a normal N(µ, σ2) distribu-
tion, with probability density function

f(x|µ, σ) =
1√
2πσ

exp

{

− 1

2σ2
(x − µ)2

}

.

What are the maximum likelihood estimates for µ and σ?
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2.12 Example

The straw yield data have summary statistics n = 50, x̄ = 6.862 kg and s = 0.8456 kg
(s∗ = 0.8371 kg). Assuming that straw yields follow a normal N(µ, σ2) distribution, the
log-likelihood function is

`(µ, σ|x) = −n

2
log(2π) − 50 log σ − 17.52 + 25(6.862 − µ)2

σ2
.

Plots of the log-likelihood surface and contours are given in Figure 7, and those for the
likelihood function in Figure 8. Note that the likelihood function here has been scaled so
that Maple produces a better looking plot – the scaling doesn’t change the shape or the
location of the maximum point.

How do the likelihood and log-likelihood functions depend on sample size? Suppose we
obtained the same data summaries (x̄ and s) from a sample of size n. The log-likelihood
function would be

`n(µ, σ|x) = −n

2
log(2π) − n log σ − n{0.83712 + (6.862 − µ)2}

σ2

= n

(

−1

2
log(2π) − log σ − {0.83712 + (6.862 − µ)2}

σ2

)

= n`1(µ, σ|x),

that is, the log-likelihood from n observations is n times that from a single observation.
Thinking now about the likelihood function itself, we have

Ln(µ, σ|x) = exp {`n(µ, σ|x)}
= exp {n`1(µ, σ|x)}
= [exp {`1(µ, σ|x)}]n

= {L1(µ, σ|x)}n ,

that is, the likelihood from n observations is that from a single observation raised to
the nth power. Figures 9 and 10 show the likelihood function for n = 10 and n = 500
respectively using the same data summaries as in Figure 8. Notice that, as the sample
size increases (and hence the information we have about µ and σ), the likelihood function
becomes more concentrated around its mode. In fact, as you will see in future modules, it
is possible to determine the accuracy of the m.l.e.s using the curvature of the surface at its
mode: the higher the curvature, the more accurate the estimates. The plots were drawn
using the following Maple commands. Note that \ is the Maple continuation symbol.

loglik:=(mu,sigma,n)->-n*log(2*evalf(Pi))/2-n*log(sigma)\

-n*(0.8371^2+(6.862-mu)^2)/(2*sigma^2);

with(plots);

plot3d(loglik(mu,sigma,50),mu=6.3..7.3,sigma=.5..1.5,\

orientation=[-140,60],axes=NORMAL,style=PATCHCONTOUR);

contourplot(loglik(mu,sigma,50),mu=6.3..7.3,sigma=.5..1.5,\

grid=[50,50]);

plot3d(exp(55+loglik(mu,sigma,50)),mu=6.3..7.3,sigma=.5..1.5,\

orientation=[-140,60],axes=NORMAL,style=PATCHCONTOUR);

contourplot(exp(55+loglik(mu,sigma,50)),mu=6.3..7.3,sigma=.5..1.5,\
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Figure 10: (Scaled) Likelihood function L(µ, σ|x) if n = 500
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grid=[50,50]);

plot3d(exp(11+loglik(mu,sigma,10)),mu=6.3..7.3,sigma=.5..1.5,\

orientation=[-140,60],axes=NORMAL,style=PATCHCONTOUR);

plot3d(exp(620+loglik(mu,sigma,500)),mu=6.3..7.3,sigma=.5..1.5,\

orientation=[-140,60],axes=NORMAL,style=PATCHCONTOUR);
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(1) Suppose that a random variable Y has CDF given by

FY (y) =







0, y < 0,
y2, 0 ≤ y ≤ 1,
1, y ≥ 1.

(i) Determine the PDF of Y .

(ii) Determine E[Y ].

(2) Suppose that four random variables X1, X2, X3 and X4 form a random sample from
a population whose mean is 7 and variance is 2.

(i) Consider Y1 = X1 − 1;

Does E[Y1] = (a) 5, (b) 6, (c) 7, (d) 8?

Does V ar(Y1) = (a) 0, (b) 1, (c) 2, (d) 3?

(ii) Consider Y2 = 2X1 − X2 − X3 − X4 + 7;

Does E[Y2] = (a) 0, (b) 5, (c) 12, (d) 56?

Does V ar(Y2) = (a) -7, (b) 0, (c) 1, (d) 14, (e) 21?

(3) Suppose that four random variables X1, X2, X3 and X4 form a random sample from
a population whose mean is µ and variance is σ2.

(i) Consider Y1 = X1 + 2X2 + 3X3 + 4X4;

Does E[Y1] = (a) 10, (b) 10µ, (c) 0, (d) 30µ?

Does V ar(Y1) = (a) 0, (b) 10σ2, (c) 30σ2, (d) 30?

(ii) Consider Y2 = 2X2 − 2X4 + 3

Does E[Y2] = (a) 3µ, (b) 4µ + 3, (c) 3, (d) 4µ + 3?

Does V ar(Y2) = (a) 0, (b) 3, (c) 4σ2, (d) 8σ2, (e) 8σ2 + 3?

(4) A random sample is taken from a population that can be described by a geometric
probability model with pX(x) = (1 − p)x−1p, x = 1, 2, 3, . . .. There are four observa-
tions, namely, 3,2,1,3.

(i) Show that L(p|x) = (1 − p)5p4.

(ii) Obtain `(p|x) and maximise it.
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Part V

Other Important Continuous
Random Variables

1 Introduction

In this short section of the course, we will discuss some other important families of con-
tinuous random variables. These distributions will come into their own when we start
to discuss Bayesian Statistics in the final part of the course. The first one that we will
consider is the gamma family of random variables. The gamma distribution is a general-
isation of the exponential distribution and has a wide range of applications in statistics,
acturial science and engineering.

1.1 Result (The Gamma Function)

To be able to work with the gamma distribution we need to look at the gamma function
which is denote by Γ and is defined as

Γ(α) =

∫ ∞

0

xα−1e−xdx, α > 0.

The gamma function has a number of important properties, namely,

(i) Γ(α) = (α − 1)Γ(α − 1),

(ii) Γ(1) = 1,

(iii) Γ(α) = (α − 1)! for α = positive integer.

2 Gamma Distribution

A continuous random variable X is called a gamma random variable if it has probability
density function (PDF) given by

fX(x) =
λα

Γ(α)
xα−1e−λx, x > 0,

and fX(x) = 0 otherwise, where α and λ are positive real numbers. We write X ∼ Γ(α, λ)
to denote that X has a gamma distribution with parameters α and λ.

2.1 Comments

(i) The overall shape of the gamma PDF depends on its α parameter; its λ parameter
affects scale only.

(ii) If α is a positive integer then the gamma distribution can be thought of as the
distribution of the time to the αth event in a Poisson process with rate λ.

(iii) In the special case when α = 1, the Gamma distribution is equivalent to the expo-
nential distribution with parameter λ.
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(iv) The Γ(ν
2
, 1

2
) distribution is also known as the chi-square distribution with ν degress

of freedom.

(v) PDFs of gamma random variables for various choices of the parameter α and λ = 2
are given in Figure 11.
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Figure 11: PDFs of gamma random variables for various choices of the parameter α and
λ = 2

2.2 Example

A piece of electrical equipment has two components - one active, the other as a backup.
If the first component fails, the second is automatically brought into action. Suppose
that the piece of equipment is expected to be used continuously for at most 50 hours.
According to the manufacturers specifications, the components are expected to fail once
every 100 hours. What are the chances that the equipment would not remain functioning
for the full 50 hours?
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3 Beta Distribution

We now consider the family of beta random variables. The range of a beta random variable
is the interval of real numbers between 0 and 1 which makes beta distributions particularly
useful for modelling proportions, percentages or probabilities. For example, we might use
a beta distribution to model

(i) the proportion of customers who are satisfied with their service each month,

(ii) the percentage of defective items in a shipment,

(iii) the percentage of data-entry errors for a particular task,

(iv) an unknown success probability in Bernoulli trials.

A random variable X is called a beta random variable if it has PDF given by

fX(x) =
1

B(α, β)
xα−1(1 − x)β−1, 0 < x < 1,

and fX(x) = 0 otherwise, where α and β are positive real numbers and

B(α, β) =

∫ 1

0

xα−1(1 − x)β−1dx

is the Beta function. Note that

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

3.1 Comments

(i) Beta distributions are particularly useful because a wide variety of random phe-
nonema can be modelled by varying the paramaters appropriately.

(ii) When α = β = 1 the beta distribution is equivalent to the U(0, 1) distribution.

(iii) When α = β the beta distribution is symmetric about x = 1/2, otherwise the beta
PDF is skewed.

(iv) PDFs of beta random variables for various choices of the parameter α and β are
given in Figure 12.

(v) Beta and Gamma distributions (along with others) are widely used as prior distri-
butions in Bayesian Statistics (see later).
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Figure 12: PDFs of beta random variables for various choices of the parameter α and β

4 Expectation and variance of Gamma and Beta ran-

dom variables

The following table shows the mean and variance of gamma and beta random variables

Family Parameters Expected Value Variance
Gamma α and λ α

λ
α
λ2

Beta α and β α
(α+β)

αβ

(α+β)2(α+β+1)
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Part VI

Introduction to Bayesian Statistics

1 Introduction

The result in which Bayesian Statistics rests - Bayes Theorem - is uncontroversial. It is
simply a result in elementary probability theory. It was originally given by the Reverend
Thomas Bayes (1702-61) and can be expressed in several different ways.

However, for now, let us take a step back and think about our understanding of the
concept of probability.

2 Probability

Probability as a concept has been around in one form or another for a very long time.
As you might expect, probability theory has developed through games of chance and
gambling. The Eygptians were playing games of chance with cubical dice as early as 2000
B.C. The mathematical theory of probability was started around the 17th century when
people like Galilei, Bernoulli and De Moivre tried to understand why some bets lead to
the winning of more money than others. There are three main ways of understanding and
thinking about probability.

2.1 Classical probability

If the outcome of an experiment must be one of n different outcomes and these outcomes
are equally likely then the probability of each outcome is 1/n.

2.2 Frequentist probability

The probability of an outcome is the long-run proportion of times that the event occurs in
a large number of replications of the experiment under similar conditions. For example,
if a coin is tossed 1,000,000 times and a head appears n times then

Pr(Head) =
n

1, 000, 000

2.3 Subjective probability

This measures an individuals uncertainty in an event and may very form individual to
individual. Your subjective probability represents your own judgement of the likelihood
that the outcome will occur. You will (hopefully) base your judgement on the information
that you have at the time.
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2.4 Example

Which of the interpretations of probability could be used to determine the probability of
the following events?

(i) The probability that England win the toss at the Boxing Day Ashes test match,

(ii) The probability that Andrew Murray wins at Wimbledon this year,

(iii) The probability that a student chosen at random was born in April.

2.5 Bayes Theorem

If A1, A2, . . . An form a partition of the sample space S and B is any event with P (B) > 0
then

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)

=
P (B|Ai)P (Ai)

∑n

j=1 P (B|Aj)P (Aj)
, i = 1, 2, . . . , n.

2.6 Example

A virus can be one of two strains A and B, and an attempt is being made to classify the
strain from the symptoms displayed by the person suffering from the virus instead of by
costly medical tests. There are three symptoms and a large study of people who have
caught known strains of the virus suggest the following probability model for symptom
variability.

Symptom
Strain Fever Headache Fever and Headache

A 0.4 0.2 0.4
B 0.6 0.2 0.2

On the assumption that strain B is twice as likely to occur than strain A, evaluate the
probability that the virus type is A when the symptom observed is

(i) Fever,

(ii) Headache,

(iii) Fever and Headache.

3 Bayesian statistics

In Bayesian statistics we calibrate our prior information about unknown quantities by
constructing a probability distribution which describes how likely we believe different
values are to occur. This prior information is then combined with that from experimental
data using Bayes Theorem. The key ingredients are then:

• a statistical model for the experimental data,

• quantifiable prior information about any unknown parameters.
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4 Bayes Theorem for distributions

Suppose that we have a single parameter θ. Recall that the Bayesian regards θ as a
random variable and that before the experiment he picks a prior distribution for θ with
probability (density) function π(θ) to describe his beliefs about θ. Precise prior knowledge
implies a sharply peaked prior. Vague prior knowledge gives a flatter prior.

To get information about θ we observe x1, x2, . . . , xn from a distribution with probability
(density) function f(x|θ). The likelihood function for θ is therefore given by:

L(θ|x) = f(x1|θ) × f(x2|θ) × · · · × f(xn|θ).

Our revised beliefs about θ are then given by the posterior distribution, which is the
conditional distribution of θ given X = x. We combine both pieces of information by
using the following version of Bayes Theorem.

Bayes Theorem

The posterior (density) function for θ is

π(θ|x) =
π(θ)L(θ|x)

f(x)

where

f(x) =























∫

Θ
π(θ)L(θ|x)dθ if θ is continuous

∑

Θ π(θ)L(θ|x) if θ is discrete

Notice that, as f(x) is not a function of θ, it is often simplest to ignore it initially and
use Bayes Theorem in the form

π(θ|x) ∝ π(θ)L(θ|x)

discarding any factors which do not depend on θ, i.e.

posterior ∝ prior × likelihood.

Then use the fact that the posterior (density) function must integrate to 1 to find the
normalising constant. In the case of standard distributions, the normalising constant can
be inserted by inspection, if necessary.

4.1 Example

Max, a video game pirate (and Bayesian) is trying to identify the percentage of potential
customers, θ who might be interested in buying “World Cup Zombie Manager” during
the summer holidays. Suppose that Max believes that all values of θ are equally likely.
Suppose that he asks 5 potential customers and only 1 of them would be willing to buy
the game from him. Using this information, what is Max’s posterior distribution?

In the previous summer, Max sold his previous game “Ashes Fever (Zombie Edition)” to
10% of the customers who came to his stall. Obtain a sensible prior distribution for the
parameter θ. With this prior distribution, what is the posterior distribution?
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Figure 13: Priors and Posteriors for Example 4.1
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4.2 Example

Let x1, x2, . . . , xn be a random sample from a Poisson distribution with unknown mean
θ. Suppose that we take a gamma prior Γ(α, λ) where α and λ are known.

Obtain the posterior distribution of θ.

4.3 Example

Let x1, x2, . . . , xn be a random sample from a N(θ, 1
w
), where we assume that 1

w
is known.

As our prior we choose a specific Normal distribution N(θ0,
1

kw
), where k can be any pos-

itive number (i.e. the prior variance is not subject to any restriction).

Obtain the posterior distribution for θ.

4.4 Example

Two physicists A and B want more accurate estimates of some physical constant θ,
previously known approximately. Both observe a random variable

Y ∼ N(θ, 402)

i.e. they see the result of the same experiment.

Physicist A has more experience in the field of study then B. A chooses the prior

θ ∼ N(900, 202)

and B chooses the prior
θ ∼ N(800, 802).

(i) Suppose that they observe a single observation, y = 850. Using this information,
compute the physicist’s posterior distributions.

(ii) Suppose that 100 independent observations of Y are taken and that ȳ = 870. What
are the posterior distributions now?
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Figure 14: Priors for Example 4.4

600 700 800 900 1000 1100 1200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 15: Posteriors for Example 4.4(i)
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Figure 16: Posteriors for Example 4.4(ii)
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Point and Interval Estimates

Since the posterior incorporates all the available information, the informative conclusion
to an experiment is to state the posterior, or to provide a graphical representation. If
we attempt to summarise the posterior distribution, we will inevitably waste information.
However, if a summary is necessary, point or interval estimates can be found.

4.5 Point Estimates

When a point estimate is required for the unknown parameter we will often use the mean,
median or mode of the posterior distribution.

4.6 Interval Estimates

An interval estimate is often a more useful way of summarising the posterior distribution
as it reflects the variation of the distribution. In the Bayesian framework, a confidence
interval is a conceptually simple idea.

4.7 A Bayesian Confidence Interval

A 100(1 − α)% Bayesian Confidence Interval for θ is any region (a, b) such that

∫ b

a

π(θ|x)dθ = 1 − α.

Bayesian confidence intervals are sometimes called credible regions or plausible regions.
Clearly these regions will not be unique, since there will be many intervals with the
correct probability coverage for a given posterior distribution.

4.8 A Highest Density Interval (H.D.I)

A 100(1−α)% Highest Density Interval is a Bayesian Confidence Interval which also has
the property that for θ1 ∈ (a, b) and θ2 /∈ (a, b), π(θ1|x) ≥ π(θ2|x).

4.9 Example

Suppose that the posterior distribution for θ is (i) a Beta(1, 24); (ii) a Beta(2, 23) distri-
bution. In each case, obtain a 95% H.D.I for θ.
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Figure 17: Posteriors for Example 4.9
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Examples

(i) Telephone calls are received at a telephone switchboard at a constant rate. Let X denote
the number of calls received per day.

(ii) Suppose that we want to model the percentage of customers who would want to receive
email correspondence from a bank. Let X denote our beliefs about the value of that
percentage.

(iii) A manufacturing process makes electrical components. If 5% of the components are de-
fective, and a batch of 1000 components is taken, let X denote the number of defective
items.

(iv) A post office opens at 9am. Customers arrive at a constant rate. Let X be the time until
the first customer arrives at the shop.

(v) A person suffering from a recurrent illness will be put on medication after their third bout
of the illness. The rate at which bouts occur is assumed to be constant. Let X denote the
be the time until the patient is put on medication.

(vi) A commuter train arrives punctually at a station every half hour. Each morning John leaves
his house and casually strolls to the train station. Let X denote the time, in minutes, that
John has to wait for the train from the time he reaches the station.

(vii) A six-sided die is rolled repeatedly. Let X denote the number of rolls until the first six is
obtained.

Summary of Discrete Distributions

Distribution PMF E[X] V ar(X)

Binomial X ∼ Bin(n, θ) ⇒ P (X = x) =

(

n
x

)

θx(1 − θ)n−x, x = 0, 1, 2, . . . , n nθ nθ(1 − θ)

Poisson X ∼ Poisson(λ) ⇒ P (X = x) = λxe−λ

x!
, x = 0, 1, . . . , λ > 0 λ λ

Geometric X ∼ Geometric(p) ⇒ P (X = x) = (1 − p)x−1p, x = 1, 2, . . . , 1
p

(1−p)
p2
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Summary of Continuous Distributions

Distribution PDF E[X] V

Uniform X ∼ U(a, b) ⇒ fX(x) =

{

1
b−a

, a ≤ x ≤ b,

0, otherwise.
a+b
2

(

Exponential X ∼ Exp(λ) ⇒ fX(x) =

{

λe−λx, x ≥ 0,
0, otherwise.

1
λ

Normal X ∼ N(µ, σ2) ⇒ fX(x) = 1
σ
√

2π
e−

1

2
(x−µ

σ )
2

, x ∈ R, µ ∈ R and σ > 0. µ

Gamma X ∼ Γ(α, λ) ⇒ fX(x) = λα

Γ(α)
xα−1e−λx, x, α, λ > 0 α

λ

Beta X ∼ Beta(α, β) ⇒ fX(x) = 1
B(α,β)

xα−1(1 − x)β−1, 0 < x < 1, α, β > 0 α
(α+β) (α+β
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Specimen Section B question

(Bx) The number of scratches per item for n = 150 newly manufactured items was
recorded. The observations are regarded as a sample from a Poisson distribution,
with mean θ. Also suppose that a Γ(α, λ) random variable, with probability density
function (PDF) given by

π(θ) =
λα

Γ(α)
θα−1e−λθ θ, α, λ > 0,

with α = 40 and λ = 10 is chosen as the prior distribution for θ.

(a) What is the prior mean and variance?

(b) Obtain the likelihood function, L(θ|y).

(c) What is the posterior distribution π(θ|y)?

(d) What is the posterior mean and variance? Show that the posterior mean can
be written as a weighted average of the prior mean and the sample mean.

(e) Show that any value of ȳ > 4 would lead to the posterior mean being greater
than the prior mean?
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