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4.1 Introduction

In this section we consider the problems we face if we wish to
model the extremal behaviour of two or more (dependent)
processes simultaneously.

There are several reasons we may wish to do this:

m to model the extreme behaviour of a particular variable
over several nearby locations (e.g. rainfall over a network
of sites);

m to model the joint extremes of two or more different
variables at a particular location (e.g. wind and rain at a
site);

m to model the joint behaviour of extremes which occur as
consecutive observations in a time—series (e.g.
consecutive hourly maximum wind gusts during a storm).
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All of these problems suggest fitting an appropriate limiting
multivariate distribution to the relevant data.

However, as we shall see, the derivation of such a multivariate
distribution is not as easy as we might hope. The analogy with

the Normal distribution as a model for means breaks down as
we move into n dimensions!

It is not even clear what the ‘relevant data’ should be!

Most of the increased complexity is apparent in the move from 1
to 2 dimensions, so we will focus largely on bivariate problems.
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4.2 Componentwise maxima models

Suppose we want to study the joint extremes of daily rainfall
accumulations at the network of 8 sites shown in Figure 14.
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Such issues are of great interest, especially currently, e.g.
given the severe flooding experienced in the UK recently.

Suppose we have sequences of daily total rainfall at each
location. There is liable to be strong inter—site dependence in
extremes, in the sense that days with heavy rain are liable to
occur simultaneously across locations.

The raw mutlivariate observations are 8—dimensional vectors of
the daily rainfall over the eight sites.

Now suppose we wish to take a block—maxima approach, with
‘blocks’ being years. For any given year, the 8—dimensional
vector of annual maxima is unlikely to be one of the raw
multivariate observations.
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Let's simplify to the bivariate case ...

Let (X1,Y1),(X2,Y2),... beiid. vectors with distribution
function F(x,y).

Now consider the componentwise block maxima

Myn= max {X;} and  My,= max {Y;}.
i=1,...,n i=1,...,n

We define the vector of componentwise maxima to be
Mn = (Mx,n; My,n)'

Mp, is not necessarily one of the original observations (X, Y;).
Nevertheless, we are interested in the limiting behaviour of My,
asn — oco.
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The first point to note is that standard univariate extreme value
results apply in each margin. When considering the
dependence, this allows us to make a simplifying assumption.

We assume that the X; and Y; variables have a known marginal
distribution. It is convenient to assume this is the GEV(0,1,1)
distribution, also known as the unit Fréchet distribution, which
has c.d.f.

F(z) =exp(—1/z), z>0.

This gives rise to a very simple normalization of maxima:
Pr(Xi < x) = Pr(My n/n < x) = exp(—1/x), X >0,

(and similarly for Y;).
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So if we consider the re—scaled vector
M, = ( max () /. max (Yi}/n )
i=1,....,n i=1,....,n
the margins are unit Fréchet for all n, and hence we can
characterize the limiting joint behaviour of My, without having to

worry about the margins.

Unfortunately no limiting parametric family exists! (for bivariate
extremes, or multivariate extremes in general).
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Theorem: limiting distributions for bivariate extremes

Let M = (Mg, My ,) be the normalized maxima as above,
where the (X;, Y;) are i.i.d. with standard Fréchet marginal
distibutions. Then if

Pr(M;(k,n? M;,n) — G(x,Y),
where G is non—degenerate, then G has the form
G(x,y)=exp{-V(x,y)}; x>0, y>0 (13)

where: .
V(x,y) = 2/ max (f, 1_—w> dH (w) (14)
0 Xy
and H is a distribution function on [0, 1] satisfying the mean
constraint: L
/ wdH (w) = 0.5. (15)
0
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Hence the class of bivariate extreme value distributions is in
one—to—one correspondence with distribution functions of the
form (13) satisfying the constraint (15). If H is differentiable with
density h, then (14) becomes

V(x,y) = 2/0l max <; 1;—°"> h(w)dw.

However some simple models arise when H is not
differentiable. E.qg. if H places mass 0.5 on each of w = 0 and
w =1, then we get

G(x,y) =exp{—(x"*+y™)}, x>0,y>0,

corresponding to independentx and y.
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Since the GEV provides the complete class of marginal limit
distributions, then the complete class of bivariate extreme value
distributions is obtained as follows. If we suppose X and Y are
GEV with parameters (uyx, ox, &) and (uy, oy, &y ) respectively,
then the transformations

_ 1/« _ 1/¢&
oo ()] - e (52
X y

obtain unit Fréchet margins. Hence

G(x,y) = exp{-V(X,y)}

is a bivariate extreme value distribution with the appropriate
margins for valid V(.), and provided [1 + & (X — px)/ox] > 0]
and [1+ & (x — 1y)/ay] > 0],
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Modelling

In practice, modelling usually involves identifying a parametric
sub—family withe appropriate flexibility to handle the structure
inherent in the data.

Models can be fitted, e.g. by maximum-likelihood estimation,
either in two steps (marginal components followed by
dependence function), or in a single sweep.

All of these procedures, including the choice of models, are

handled in a very similar way when dealing with threshold
exceedances. We consider the details in the next section.
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4.3 Threshold excess models

We want to define our bivariate extremes for those
observations which exceed a threshold in one or other margin.

For our bivariate observation (X,Y), let’s focus on X. We have
already seen that the distribution function for the exceedances
of a threshold u by a variable X, conditional on X > u for large
enough u, is given by:

G(x) :L%H@}—us

definedon {x —u:x —u>0and (1 +¢&(x —u) /o) > 0},
where ¢ #0, 0 > 0,and A = Pr (X > u).
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Now we can obtain a unit Fréchet margin with the
transformation:

If we apply the analagous transformation to in the Y margin, we
obtain

ﬁ(iuy):exp{_v ()’Zay)}' X > Uy, Y>Uy7

V(x,y)= 2/01 max (;,1;—w> dH (w)

and H is a distribution function on [0, 1] satisfying the mean
constraint:

where:

/olwdH (w) = 05.
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Example: wave—surge data

Here we choose a different type of example of dependence to
the rainfall problem considered in Section 4.2. Here we
consider two variables recorded concurrently at the same site.

A series of 3-hourly measurements on sea—surge were
obtained from Newlyn, southwest England.

For suitably high thresholds, we can identify which observations
are extreme.
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Threshold Representation

Bivariate threshold models are complicated by the possibility
that a biviariate pair (x,y) may exceed a specified threshold in
only one of the two components.

Wave-Surge Data (1971-1977, Newlyn, Cornwall)
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Modelling the Dependence Structure

m The class of bivariate extreme value models contains many
families of distributions which can be used to model the
dependence structure in the data.

m The dependence structure must satisfy the conditions on
H(w).
Possible choices are:
m Logistic Model — symmetric
m Negative Logistic Model
m Bilogistic Model — asymmetric
m Dirichlet Model

Here we will focus on the logistic model and the bilogistic model
as two commonly used but contrasting choices.
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The Logistic Model

Logistic Model
G (x,y) = exp {— (X‘l/“ +y‘1/“)a}

Wherex >0,y >0and o € (0,1).
m o — 1 corresponds to independent variables.

m o — 0 corresponds to perfectly dependent variables.
m This model is symmetric - the variables are exchangeable.
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The Bilogistic Model

Bilogistic Model

G (x,y) = exp {xy'" +y (1 - 4)* "}

where0<a<1,0<fg<landy=~(x,y;q,p)isthe
solution of:

(L-a)x(1-7)"=@1-p)yr"

m Independence is obtained when o = § — 1 and when one
of « or g is fixed and the other approaches 1.

m When a = § the model reduces to the logistic model.

m The value of o — § determines the extent of asymmetry in
the dependence structure.
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Threshold Representation

Wave-Surge Data (1971-1977, Newlyn, Cornwall)

Region 3 Region 1
Region4 § . Region 2
T s 4//

Wave Height (m)

m For points in Region 1, the bivariate model structure shown
applies, and the density of F (X, y) gives the appropriate

likelihood component.

m In other regions, the likelihood component for the points

must be censored.
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Likelihood Function

The likelihood function can be written as:
L(0; (X1,¥1) .-, (Xn, Yn))—Hw (Xi,¥i))

where 6 gives the parameters of F and

( o%F

DY | () if (x,y) € Region 1

¥ (0;(x,y)) = ol if(xY) € Region 2
(X, i ! |

|y ~ TOGY)ERegion3

F(uc,uy)  if(x,y) € Region 4
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The various models can be fitted to data by maximum likelihood
estimation using routines available in the R package evd. We
will explore this in the second R practical.
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4.4 Point process representation

It helps our understanding of bivariate (and hence multivariate)
extremes to think in terms of a point process model as follows.

Let (x1,Y1), (X2,Y2), ... be a sequence of independent bivariate
observations form a distribution with standard Fréchet margins
such that

Pr{M;n <X, My, <y} — G(X,y).

Let N be a sequence of point processes defined by
Nn = {(n"Ix1,n7ty1), ..., (n"Ixn, n7tyn) L

Then
Nh — N

on regions bounded away from (0, 0), where N is a
non—-homogeneous Poisson process on (0, co) x (0, o).
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Moreover, if we change our coordinates to an angular-radial
form (‘pseudo-polar’) by setting

X
r=x and w= ,
X+y
then the intensity function of N is
dH (w)

Ar,w) =2

rz ’

where H is related to G in the usual way [(13) — (15)].
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This is helpful because r and w are measures of distance (from
the origin) and angle (from the x-axis) respectively, and the
dependence function H determines the angular spread of
points of N, and is independent of radial distance.

If H is differentiable, then since w measures the relative size of
x toy in the pair (x,y), then h(.) determines the density of
events of different relative size.

It is fairly easy now to picture what different densities h(.) will
look like it terms of the scatter of points in the limiting point
process N.
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The point process representation in practice

We assume the Poisson limit to be a reasonable approximation
to N,, on an appropriate region.

Convergence is guaranteed on any region bounded from the
origin, and things are especially simple if we choose a region of
from A = {(x,y) : Xx/n+y/n >y} for suitably large ro, since
then

00 1
/\(A):Z/A?—;dH(w):Z/r f'—;/ dH(w) = 2/ro,

o =0

which is constant with respect to the parameters of H.
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If we assume H has density h, then the likelihood is given by

Na
L(6; (x2,Y1), > (Xn,¥n)) = exp{AA)} T Ak /n.y6)/m)
i=1

Na

x Hh(wi),

i=1
where wi = X;)/(Xy + Y¢)) for the Na points (X, Yiy) which are
in A.

[This is based on assuming that we have already transformed
the margins so that (X1,Yy1), ..., (Xn,Yn) have standard Fréchet
distributions.]

Now we can fit the model using maximum-likelihood estimation.
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Point process model for wave—surge data

A point process model was fitted to the wave—surge data after
transformation to unit Fréchet margins, and using a threshold of
the form X +Y = rg, where ry was chosen so that the marginal
thresholds are both at the 95th percentile.

Fitting the two dependence models (logistic and bilogistic) to
the wave—surge data we obtain the following results:

Model  log-lik. o Ié)
Logistic  227.2 0.659 (0.013)
Bilogistic  230.2 0.704 (0.024) 0.603 (0.032)

These results suggest a fairly weak, while clearly significant,
dependence. The logistic and bilogistic models can be
compared using a likelihood ratio test, and significant
asymmetry is suggested.
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It is also possible to produce graphs of the fitted h(w) functions,
with the histograms of the empirtical w values super—imposed.

Here we just show the h(w) functions for some members of the
logistic family.
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4.5 Asymptotic dependence and independence

One key problem with using limit distributions for multivariate
extremes is that they force one of two possibilities:

extremes occur independently in the different margins;

extremes occur with a dependence structure which
conforms to an asymptotic extreme value distribution.

In practice this imposition is not helpful ... it is often the case
that asymptotic independence is suggested by the data, and
yet quite strong dependence is present, even at high levels.
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Data that seem to be dependent at ordinary levels may not
necessarily be dependent in the limiting distribution.

Consider the region A = {* > u, X > v}. Then:
C/n, Asymptotic Dependence
XY
| (37) A
C/n?, Exact Independence

where C is a constant term that does not depend on n.
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The coefficient of tail dependence

Consider the variable:
T =min(X,Y)
The distribution function of T is given by:

K

t>u,

where u is a threshold above which the data are regarded as
extreme and K is a (almost) constant term with respect to t.

4 gives a measure of extremal dependence between X and Y
and is known as the "coefficient of tail dependence ".
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Inference for &

The likelihood function for T is:

Lk gt = (1 YT RN T avs)
(K. 00 =117 5) LIt
i1

where ny is the number of observations that satisfy T > u.

Maximum likelihood sstimation gives the estimate:
A 1 fj
0= — log [ —
20 ()

evaluated for the n, points in the data set above u.
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Inference for &

4 describes the limiting dependence structure:

m § = 1 implies asymptotic dependence.
] % < § < 1 implies positive association.
mé= % implies near independence.

mO0<d< % implies negative association.

Plots of & against increasing u give an indication of the level of
dependence present between two processes in the limiting
distribution.
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Wave—surge data
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Wave-Surge data with 95% quantiles;

d—plot with 95% confidence bounds.

6 = 1 is within the 95% confidence bounds for all u as u
increases, suggesting the data to be asymptotically

dependent .
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Research into modelling data in such instances is all fairly
recent.

The most prominent work is the article by Heffernan and Tawn
(JRSS B, 2004). Here they develop semiparametric models
based on assuming observations are extreme in at least one
component, and then conditioning on this.

This approach can be quite messy in implementation,
combining as it does a range of different estimation procedures,
and some ad hoc assumptions concerning the parametric
forms of the key normalizing constants.

Here we briefly consider another approach, suggested by
(Bortot et al., 2000), and currently the subject of ongoing work
by Atyeo and Walshaw.
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The multivariate Gaussian tail model

The multivariate Gaussian tail model for the multivariate
distribution function F is defined on the joint tail region (Bortot
et al., 2000):

R(u) = (ug,00) x ... x (up, 00)

where u = (ug,...,Up). (e.9. Region 1 in Figure 15)
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For each observation in the joint tail region R(u) we transform
each marginal observation to have a standard Normal marginal
distribution, and then apply the p—dimensional standard Normal
distribution function. We then transform back to extreme value
margins.

This provides a more realistic representation of the
dependence, while retaining the asymptotic arguments for the
marginal extremes.

We have been able to fit such models to the 8-dimensional
rainfall problem associated with Figure 14, however inference
for this problem was much simplified by adopting a Bayesian
approach ...
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