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Topics for the day

1. Classical models and threshold models

2. Dependence and non–stationarity

3. R session: weather extremes

4. Multivariate extremes

5. Bayesian inference for Extremes

6. R session: multivariate analysis and Bayesian inference
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Session 1. Classical models and threshold models

1.1 Introduction

1.2 Classical models

1.3 Threshold models
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1.1 Introduction

Statistical modelling of extreme weather has a very practical
motivation:

reliability —
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Statistical modelling of extreme weather has a very practical
motivation:

reliability — anything we build needs to have a good chance of
surviving the weather/environment for the whole of its working life.
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1.1 Introduction

Statistical modelling of extreme weather has a very practical
motivation:

reliability — anything we build needs to have a good chance of
surviving the weather/environment for the whole of its working life.

This has obvious implications for civil engineers and planners.
They need to know:

how strong to make buildings;

how high to build sea walls;

how tall to build reservoire dams;

how much fuel to stockpile;

etc.
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This motivates the need to estimate what the:

strongest wind;

highest tide;

heaviest rainfall;

most severe cold-spell;

etc. will be over some fixed period of future time.

Lee Fawcett and Dave Walshaw Newcastle University, Newcastle upon Tyne, U.K.

Modelling Environmental Extremes



This motivates the need to estimate what the:

strongest wind;

highest tide;

heaviest rainfall;

most severe cold-spell;

etc. will be over some fixed period of future time.

The only sensible way to do this is to use data on the variable of
interest (wind, rain etc.) and fit an appropiate statistical model.
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This motivates the need to estimate what the:

strongest wind;

highest tide;

heaviest rainfall;

most severe cold-spell;

etc. will be over some fixed period of future time.

The only sensible way to do this is to use data on the variable of
interest (wind, rain etc.) and fit an appropiate statistical model.

The models themselves are motivated by asymptotic theory, and
this is our starting point . . .
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1.2 Classical models

Extreme value modelling has a central theoretical result, analagous
to the Central Limit Theorem . . .

Suppose X1,X2, . . . , is an independent and identically distributed
sequence of random variables. Define

Mn = max{X1, . . . ,Xn}.

Lee Fawcett and Dave Walshaw Newcastle University, Newcastle upon Tyne, U.K.

Modelling Environmental Extremes



1.2 Classical models

Extreme value modelling has a central theoretical result, analagous
to the Central Limit Theorem . . .

Suppose X1,X2, . . . , is an independent and identically distributed
sequence of random variables. Define

Mn = max{X1, . . . ,Xn}.

We are interested in the limiting distribution of Mn as n → ∞.

As with the mean, X̄ , of {X1, . . . ,Xn}, the limiting distribution of
Mn as n → ∞ is degenerate, and we need to work with a
normalized version . . .
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The Extremal Types Theorem (Fisher and Tippett, 1928)

If there exist sequences of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G (z) as n → ∞,

where G is a non–degenerate distribution function, then G belongs
to one of the following families:
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The Extremal Types Theorem (Fisher and Tippett, 1928)

If there exist sequences of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G (z) as n → ∞,

where G is a non–degenerate distribution function, then G belongs
to one of the following families:

I : G (z) = exp

{

− exp

[

−

(

z − β

γ

)]}

, −∞ < z < ∞;

II : G (z) = exp

{

−

(

z − β

γ

)

−α
}

, z > β; [G (z) = 0, z ≤ β];

III : G (z) = exp

{

−

[

−

(

z − β

γ

)α]}

, z < β; [G (z) = 1, z ≥ β],

for parameters γ > 0, β, and α > 0.
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The Generalized Extreme Value Distribution (GEV)

Families I, II and III are widely referred to as Gumbel, Frechet and
Weibull (or Extreme Value Types I, II and III) respectively.
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The Generalized Extreme Value Distribution (GEV)

Families I, II and III are widely referred to as Gumbel, Frechet and
Weibull (or Extreme Value Types I, II and III) respectively.

Fortunately they can be combined into a single family, known as
the Generalized Extreme Value Distribution (GEV), with c.d.f.

G (z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}

, (1)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, and where µ, σ > 0
and ξ are location, scale and shape parameters respectively.
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The Generalized Extreme Value Distribution (GEV)

Families I, II and III are widely referred to as Gumbel, Frechet and
Weibull (or Extreme Value Types I, II and III) respectively.

Fortunately they can be combined into a single family, known as
the Generalized Extreme Value Distribution (GEV), with c.d.f.

G (z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}

, (1)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, and where µ, σ > 0
and ξ are location, scale and shape parameters respectively.

So the Extremal Types Theorem can be restated with (1) as the
limiting form, and this provides the basis for our first modelling
approach . . .
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Note that the Extreme Value Types I, II and III correspond to the
cases ξ = 0, ξ > 0 and ξ < 0 respectively.
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Note that the Extreme Value Types I, II and III correspond to the
cases ξ = 0, ξ > 0 and ξ < 0 respectively.

For Type I, we need to take the limiting form of Equation (1) as
ξ → 0, which gives

G (z) = exp

{

− exp

[

−

(

z − µ

σ

)]}

, (2)

defined for all z .
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cases ξ = 0, ξ > 0 and ξ < 0 respectively.

For Type I, we need to take the limiting form of Equation (1) as
ξ → 0, which gives
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−
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z − µ
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Approach 1: “Block maxima”

Break up our sequence X1,X2, . . . into blocks of size n (with n

reasonably large), and extract only the maximum observation from
each block.
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Approach 1: “Block maxima”

Break up our sequence X1,X2, . . . into blocks of size n (with n

reasonably large), and extract only the maximum observation from
each block.

Now fit Model (1) to the sequence of extracted maxima
M(1),M(2), . . . ,M(N) and use this as the basis for statistical
inference.
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each block.

Now fit Model (1) to the sequence of extracted maxima
M(1),M(2), . . . ,M(N) and use this as the basis for statistical
inference.

The most common implementation of this approach for weather
data is to take our block size to be one year.

Lee Fawcett and Dave Walshaw Newcastle University, Newcastle upon Tyne, U.K.

Modelling Environmental Extremes



Approach 1: “Block maxima”

Break up our sequence X1,X2, . . . into blocks of size n (with n

reasonably large), and extract only the maximum observation from
each block.

Now fit Model (1) to the sequence of extracted maxima
M(1),M(2), . . . ,M(N) and use this as the basis for statistical
inference.

The most common implementation of this approach for weather
data is to take our block size to be one year.

This rough and ready approach has shown itself to be surprisingly
robust!
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Approach 1: Example

Consider the annual maxima of daily rainfall accumulations (mm)
at a location in SW England, from 1914 to 1961.
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Figure 1. Annual Maxima for Rain Data
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Approach 1: Inferences

Here our blocks have n = 365, which is reasonably large, so we fit
Model (1) to the N = 49 annual maxima (e.g. using maximum

likelhood estimation).

We obtain fitted parameter values (standard errors in parentheses):

µ = 40.7(1.5) σ = 9.4(1.2) ξ = 0.14(0.12).
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Approach 1: Inferences

Here our blocks have n = 365, which is reasonably large, so we fit
Model (1) to the N = 49 annual maxima (e.g. using maximum

likelhood estimation).

We obtain fitted parameter values (standard errors in parentheses):

µ = 40.7(1.5) σ = 9.4(1.2) ξ = 0.14(0.12).

More importantly, we can make inferences on the quantities most
useful to practitioners . . . .
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Approach 1: Inferences

Here our blocks have n = 365, which is reasonably large, so we fit
Model (1) to the N = 49 annual maxima (e.g. using maximum

likelhood estimation).

We obtain fitted parameter values (standard errors in parentheses):

µ = 40.7(1.5) σ = 9.4(1.2) ξ = 0.14(0.12).

More importantly, we can make inferences on the quantities most
useful to practitioners . . . .

For example, the 99th percentile in the distribution of annual
maxima is known as the 100 year return level.
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Approach 1: Inferences

Here our blocks have n = 365, which is reasonably large, so we fit
Model (1) to the N = 49 annual maxima (e.g. using maximum

likelhood estimation).

We obtain fitted parameter values (standard errors in parentheses):

µ = 40.7(1.5) σ = 9.4(1.2) ξ = 0.14(0.12).

More importantly, we can make inferences on the quantities most
useful to practitioners . . . .

For example, the 99th percentile in the distribution of annual
maxima is known as the 100 year return level.

The fitted value of this is easily obtained on inversion of Model (1):

q100 = 101.3(18.9).
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Approach 1: Remarks
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Approach 1: Remarks

We don’t need to deal explicitly with normalization constants.
We don’t even need to know n!
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Approach 1: Remarks

We don’t need to deal explicitly with normalization constants.
We don’t even need to know n!

The assumption of n independent and identically distributed
variables in each block is cavalier, but inferences are
surprisingly robust.
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Approach 1: Remarks

We don’t need to deal explicitly with normalization constants.
We don’t even need to know n!

The assumption of n independent and identically distributed
variables in each block is cavalier, but inferences are
surprisingly robust.

The inferences on return levels are crucial for designers and
engineers, to the extent they are built into legally binding
codes of practice.
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In actual fact, the existing codes of practice are usually based
on a very primitive version of the methods just described. Fits
are often based on restricting to one of the Fisher–Tippett
types, ignoring estimation uncertainty, and using an ad hoc

interpolation of return levels across a network of sites.
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In actual fact, the existing codes of practice are usually based
on a very primitive version of the methods just described. Fits
are often based on restricting to one of the Fisher–Tippett
types, ignoring estimation uncertainty, and using an ad hoc

interpolation of return levels across a network of sites.

In any case the block–maxima approach is often very wasteful
of data, leading to large uncertainties on return level
estimates. This motivates a different approach (see later).
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Approach 1: Diagnostics

The goodness–of–fit of the GEV model is most easily assessed
using various diagnostic plots. Here we consider four plots:

1 Probability plot: the fitted value of the c.d.f. is plotted
against the empirical value of the c.d.f. for each data point.

2 Quantile plot: the empirical quantile is plotted against the
fitted quantile for each data point.

3 Return level plot: the return level (with error bars) is plotted
against the return period. Each data point defines a sample
point.

4 Density plot: the fitted p.d.f. is supereimposed on a
histogram of the data.
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For our rainfall example, the diagnostic plots look like this . . .

Probability Plot Quantile Plot

Return Level Plot Density Plot
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Approach 1: Confidence intervals for return levels

Although we could construct a symmetrical confidence interval for
the r–year return–level using classical likelihood theory
(q̂r ± 1.96 × standard error), this is not recommended.

This practice assumes the limiting quadratic behaviour of the
likelihood surface near the maximum, whereas in fact the surface is
usually very asymmetrical.
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Approach 1: Confidence intervals for return levels

Although we could construct a symmetrical confidence interval for
the r–year return–level using classical likelihood theory
(q̂r ± 1.96 × standard error), this is not recommended.

This practice assumes the limiting quadratic behaviour of the
likelihood surface near the maximum, whereas in fact the surface is
usually very asymmetrical.

We recommend using the method of profile likelihood to take this
into account: by reparametrization of Equation (1) to replace one
of the parameters by qr , we can maximize the likelihood
conditional on qr taking each possible value.

We plot this constrained value against qr . . .
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Approach 1: Profile likelihood confidence interval for q100

For the rainfall example we get . . .
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The likelihood–ratio test can be applied directly to this likelihood
surface by using a cut–off equal to 0.5 × χ2

1(�). Here we see that
the 95% confidence interval is approximately (78,176).
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1.3 Threshold methods

Threshold methods use a more natural way of determining whether
an observation is extreme - all values greater than some high value
(threshold) are considered.
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1.3 Threshold methods

Threshold methods use a more natural way of determining whether
an observation is extreme - all values greater than some high value
(threshold) are considered.

This allows more efficient use of data, but brings its own problems.
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1.3 Threshold methods

Threshold methods use a more natural way of determining whether
an observation is extreme - all values greater than some high value
(threshold) are considered.

This allows more efficient use of data, but brings its own problems.

We must first go back and consider the asymptotic theory
appropriate for this new situation.
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The Generalized Pareto Distribution (GPD)

The appropriate limit theorem can be stated as follows:
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The Generalized Pareto Distribution (GPD)

The appropriate limit theorem can be stated as follows:

Under very broad conditions, if it exists, any limiting distribution as
u → ∞ of (X − u|X > u) is of Generalized Pareto Distribution
(GPD) form (setting Y = X − u):
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The Generalized Pareto Distribution (GPD)

The appropriate limit theorem can be stated as follows:

Under very broad conditions, if it exists, any limiting distribution as
u → ∞ of (X − u|X > u) is of Generalized Pareto Distribution
(GPD) form (setting Y = X − u):

H(y) = 1 −

(

1 +
ξy

σ

)

−1/ξ

+

, (3)
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The Generalized Pareto Distribution (GPD)

The appropriate limit theorem can be stated as follows:

Under very broad conditions, if it exists, any limiting distribution as
u → ∞ of (X − u|X > u) is of Generalized Pareto Distribution
(GPD) form (setting Y = X − u):

H(y) = 1 −

(

1 +
ξy

σ

)

−1/ξ

+

, (3)

where a+ = max(0, a) and σ (σ > 0) and ξ (−∞ < ξ < ∞) are
scale and shape parameters respectively.
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Once again the GPD exists for ξ = 0, and is given by taking the
limit of (3) as ξ → 0. This time we get

H(y) = 1 − exp

(

−y

σ

)

, (4)

defined for y > 0.

This shows that when ξ = 0, the GPD is in fact the Exponential
Distribution with mean equal to the scale parameter σ (σ > 0).
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Return levels for the threshold excesses approach

If the GPD is a suitable model for exceedances of a threshold u by
a random variable X , then for x > u,

Pr{X > x |X > u} =

[

1 + ξ

(

x − u

σ

)]

−1/ξ

.
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Return levels for the threshold excesses approach

If the GPD is a suitable model for exceedances of a threshold u by
a random variable X , then for x > u,

Pr{X > x |X > u} =

[

1 + ξ

(

x − u

σ

)]

−1/ξ

.

It follows that

Pr{X > x} = λu

[

1 + ξ

(

x − u

σ

)]

−1/ξ

, (5)

where λu = Pr{X > u}. So the level xm that is exceeded once
every m observations is the solution of

λu

[

1 + ξ

(

x − u

σ

)]

−1/ξ

=
1

m
.
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Rearranging this we obtain

xm = u +
σ

ξ
[(mλu)ξ − 1],

so long as m is large enough to ensure that xm > u.
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Rearranging this we obtain

xm = u +
σ

ξ
[(mλu)ξ − 1],

so long as m is large enough to ensure that xm > u. Now if there
are ny observations per year, then by setting m = N × ny , the
N–year return level is obtained as

zN = µ +
σ

ξ
[(Nnyλu)

ξ − 1] (6)

or when ξ = 0,
zN = u + σ log(Nnyλu),

and standard errors can be obtained using the delta method.
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Approach 2: “Exceedances over thresholds”
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Approach 2: “Exceedances over thresholds”

In practice, modelling might typically proceed as follows:
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Approach 2: “Exceedances over thresholds”

In practice, modelling might typically proceed as follows:

1 Choose some threshold u0 which is high enough so that the
GPD (3) is a good model for (X − u0|X > u0).
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Approach 2: “Exceedances over thresholds”

In practice, modelling might typically proceed as follows:

1 Choose some threshold u0 which is high enough so that the
GPD (3) is a good model for (X − u0|X > u0).

2 Fit the GPD to the observed excesses x − u0.
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Approach 2: “Exceedances over thresholds”

In practice, modelling might typically proceed as follows:

1 Choose some threshold u0 which is high enough so that the
GPD (3) is a good model for (X − u0|X > u0).

2 Fit the GPD to the observed excesses x − u0.

3 Use the fitted GPD, together with some model for the rate of
exceedances X > u0, to provide estimates for return levels.
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Approach 2: Example

For the rainfall data we used before, now consider the daily totals
themselves.
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Figure 2. Daily Rainfall (1914-1961)
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Approach 2: Threshold choice

Mean residual life plot

We make use of the fact that if the GPD is the correct model for
all the exceedances xi above some high threshold u0, then the
mean excess, i.e. the mean value of (xi − u), plotted against
u > u0, should give a linear plot (Davison and Smith, 1990).

[Because E [Xi − u0] is a linear function of u : u > u0]

By producing such a plot for values of u starting at zero, we can
select reasonable candidate values for u0.
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Approach 2: Mean residual life plot for daily rainfall
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Approach 2: Inferences

Model (3) turns out to work reasonably well for all the excesses
above u0 = 30mm.

This gives 152 exceedancs xi ; i = 1, . . . , 152, and Model (3) is
fitted to the values (xi − u), again using maximum likelihood. We
get

σ = 7.44(0.96) ξ = 0.18(0.10).

Lee Fawcett and Dave Walshaw Newcastle University, Newcastle upon Tyne, U.K.

Modelling Environmental Extremes



Approach 2: Inferences

Model (3) turns out to work reasonably well for all the excesses
above u0 = 30mm.

This gives 152 exceedancs xi ; i = 1, . . . , 152, and Model (3) is
fitted to the values (xi − u), again using maximum likelihood. We
get

σ = 7.44(0.96) ξ = 0.18(0.10).

Assuming a uniform rate of exceedances, we estimate the 100–year
return level:

q100 = 106.3(20.8).
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Approach 2: Diagnostics
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Approach 2: Profile likelilhood confidence interval for q100

From the graph below, this is approximately (81,184).
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Approach 2: Threshold choice revisited

If the GPD with shape parameter ξ and scale parameter σu0 is the
correct model for excesses over u0, then for any threshold u > u0,
the excesses will be GPD with shape parameter ξ, and scale
parameter

σu = σu0 + ξ(u − u0).
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Approach 2: Threshold choice revisited

If the GPD with shape parameter ξ and scale parameter σu0 is the
correct model for excesses over u0, then for any threshold u > u0,
the excesses will be GPD with shape parameter ξ, and scale
parameter

σu = σu0 + ξ(u − u0).

If we now use a modified version of the scale parameter,

σ∗ = σu − ξu,

we can see that both σ∗ and ξ should be constant over thresholds
greater than u0 if we model excesses xi − u for u > u0 using the
GPD.
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This provides us with a further tool for assessing our original
choice of threshold u0.

We refit the GPD for a range of thresholds upwards of u0, and
investigate the stability of our estimates of ξ and σ∗.
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Approach 2: Parameter stability plots
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We can be reassured about our original choice of u0 = 30!
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