
Introduction
FP and CT

Summary and conclusions

An introduction to category theory and
functional programming for scalable statistical

modelling and computation

Darren Wilkinson
@darrenjw

tinyurl.com/darrenjw

School of Mathematics & Statistics
Newcastle University, UK

Statistics Seminar, Newcastle University
3rd February 2017

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing

@darrenjw
tinyurl.com/darrenjw


Introduction
FP and CT

Summary and conclusions

Outline
What’s the problem?

Talk outline

What’s wrong with the current state of statistical modelling
and computation?

What is functional programming (FP) and why is it better
than conventional imperative programming?

What is category theory (CT) and what has it got to do with
FP?

How can we use CT and FP to make statistical computing
more scalable?

What does “scalable” mean, anyway?

Some examples along the way...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Outline
What’s the problem?

What’s up with statistical computing?

Everything!

R has become the de facto standard programming language
for statistical computing — the S language was designed by
statisticians for statisticians in the mid 1970’s, and it shows!

Many dubious language design choices, meaning it will always
be ugly, slow and inefficient (without many significant breaking
changes to the language)
R’s inherent inefficiencies mean that much of the R code-base
isn’t in R at all, but instead in other languages, such as
Fortran, C and C++
Although faster and more efficient than R, these languages are
actually all even worse languages for statistical computing
than R!

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Outline
What’s the problem?

Pre-historic programming languages

The fundamental problem is that all of the programming
languages commonly used for scientific and statistical
computing were designed 30-50 years ago, in the dawn of the
computing age, and haven’t significantly changed

Think how much computing hardware has changed in the last
40 years!
But the language you are using was designed for that hardware
using the knowledge of programming languages that existed at
that time
Think about how much statistical methodology has changed in
the last 40 years — you wouldn’t use 40 year old methodology
— why use 40 year old languages to implement it?!

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Outline
What’s the problem?

Modern programming language design

We have learned just as much about programming and
programming languages in the last 40 years as we have about
everything else

Our understanding has developed in parallel with
developments in hardware

People have been thinking a lot about how languages can and
should exploit modern computing hardware such as multi-core
processors and parallel computing clusters

Modern functional programming languages are emerging as
better suited to modern hardware

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

What is functional programming?

FP languages emphasise the use of immutable data, pure,
referentially transparent functions, and higher-order functions

Unlike commonly used imperative programming languages,
they are closer to the Church end of the Church-Turing thesis
— eg. closer to Lambda–calculus than a Turing–machine

The original Lambda–calculus was untyped, corresponding to
a dynamically–typed programming language, such as Lisp

Statically–typed FP languages (such as Haskell) are arguably
more scalable, corresponding to the simply–typed
Lambda–calculus, closely related to Cartesian closed
categories...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Functional programming

In pure FP, all state is immutable — you can assign names to
things, but you can’t change what the name points to — no
“variables” in the usual sense

Functions are pure and referentially transparent — they can’t
have side-effects — they are just like functions in
mathematics...

Functions can be recursive, and recursion can be used to
iterate over recursive data structures — useful since no
conventional “for” or “while” loops in pure FP languages

Functions are first class objects, and higher-order functions
(HOFs) are used extensively — functions which return a
function or accept a function as argument

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Concurrency, parallel programming and shared mutable
state

Modern computer architectures have processors with several
cores, and possibly several processors

Parallel programming is required to properly exploit this
hardware

The main difficulties with parallel and concurrent
programming using imperative languages all relate to issues
associated with shared mutable state

In pure FP, state is not mutable, so there is no mutable state,
and hence no shared mutable state

Most of the difficulties associated with parallel and concurrent
programming just don’t exist in FP — this has been one of
the main reasons for the recent resurgence of FP languages

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Ideal languages for statistical computing

We should approach the problem of statistical modelling and
efficient computation in a modular, composable, functional
way

To do this we need programming languages which are:

Strongly statically typed (but with type inference)
Compiled (but possibly to a VM)
Functional (with support for immutable values, immutable
collections, ADTs and higher-order functions)
and have support for typeclasses and higher-kinded types,
allowing the adoption of design patterns from category theory

For efficient statistical computing, it can be argued that
evaluation should be strict rather than lazy by default

Scala is a popular language which meets the above constraints

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Monadic collections

A collection of type M[T] can contain (multiple) values of
type T

If the collection supports a higher-order function
map(f: T =>S): M[S] then we call the collection a Functor

eg. List(1,3,5,7) map (x =>x*2) = List(2,6,10,14)

If the collection additionally supports a higher-order function
flatMap(f: T =>M[S]): M[S] then we call the collection a
Monad

eg. List(1,3,5,7) flatMap (x =>List(x,x+1))
= List(1, 2, 3, 4, 5, 6, 7, 8)

instead of List(1,3,5,7) map (x =>List(x,x+1))
= List(List(1,2),List(3,4),List(5,6),List(7,8))

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Other monadic types: Option

Some computations can fail, and we can capture that
possibility with a type called Option

in Scala — it is Optional in Java 8 and Maybe in Haskell

An Option[T] can contain Some[T] or None

So if we have chol: Matrix =>Option[TriMatrix] we can
check to see if we have a result

But if we also have
triSolve: (TriMatrix,Vector) =>Option[Vector], how do
we “compose” these?

chol(mat) map (tm =>triSolve(tm,vec)) has type
Option[Option[Vector]] which isn’t quite what we want
chol(mat) flatMap (tm =>triSolve(tm,vec)) has type
Option[Vector] which we do want
flatMap allows composition of monadic functions

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Composing monadic functions

Given functions f: S =>T, g: T =>U, h: U =>V, we can
compose them as h compose g compose f or
s =>h(g(f(s))) to get hgf: S =>V

Monadic functions f: S =>M[T], g: T =>M[U],
h: U =>M[V] don’t compose directly, but do using flatMap:
s =>f(s) flatMap g flatMap h has type S =>M[V]

Can be written as a for-comprehension (do in Haskell):
s =>for (t<−f(s); u<−g(t); v<−h(u)) yield v

Just syntactic sugar for the chained flatMaps above — really
not an imperative-style “for loop” at all...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Other monadic types: Future

A Future[T] is used to dispatch a (long-running) computation
to another thread to run in parallel with the main thread

When a Future is created, the call returns immediately, and
the main thread continues, allowing the Future to be “used”
before its result (of type T) is computed

map can be used to transform the result of a Future, and
flatMap can be used to chain together Futures by allowing
the output of one Future to be used as the input to another

Futures can be transformed using map and flatMap

irrespective of whether or not the Future computation has yet
completed and actually contains a value

Futures are a powerful method for developing parallel and
concurrent programs in a modular, composable way

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Other monadic types: Prob/Rand

The Probability monad is another important monad with
obvious relevance to statistical computing

A Rand[T] represents a random quantity of type T

It is used to encapsulate the non-determinism of functions
returning random quantities — otherwise these would break
the purity and referential transparency of the function

map is used to transform one random quantity into another

flatMap is used to chain together stochastic functions to
create joint and/or marginal random variables, or to propagate
uncertainty through a computational work-flow or pipeline

Probability monads form the basis for the development of
probabilistic programming languages using FP

The probability monad is typically implemented as a State
monad, the mechanism for handling mutable state using FP

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Parallel monadic collections

Using map to apply a pure function to all of the elements in a
collection can clearly be done in parallel

So if the collection contains n elements, then the computation
time can be reduced from O(n) to O(1) (on infinite parallel
hardware)

Vector(3,5,7) map (_*2) = Vector(6,10,14)

Vector(3,5,7).par map (_*2) = ParVector(6,10,14)

We can carry out reductions as folds over collections:
Vector(6,10,14).par reduce (_+_) = 30

In general, sequential folds can not be parallelised, but...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Monoids and parallel “map–reduce”

A monoid is a very important concept in FP

For now we will think of a monoid as a set of elements with a
binary relation ? which is closed and associative, and having
an identity element wrt the binary relation

You can think of it as a semi-group with an identity or a
group without an inverse

folds, scans and reduce operations can be computed in
parallel using tree reduction, reducing time from O(n) to
O(log n) (on infinite parallel hardware)

“map–reduce” is just the pattern of processing large amounts
of data in an immutable collection by first mapping the data
(in parallel) into a monoid and then tree-reducing the result
(in parallel)

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Category theory

A category C consists of a collection of objects, ob(C), and
morphisms, hom(C). Each morphism is an ordered pair of
objects (an arrow between objects). For x, y ∈ ob(C), the set
of morphisms from x to y is denoted homC(x, y).
f ∈ homC(x, y) is often written f : x −→ y.

Morphisms are closed under composition, so that if
f : x −→ y and g : y −→ z, then there must also exist a
morphism h : x −→ z written h = g ◦ f .

Composition is associative, so that f ◦ (g ◦ h) = (f ◦ g) ◦ h for
all composable f, g, h ∈ hom(C).
For every x ∈ ob(C) there exists an identity morphism
idx : x −→ x, with the property that for any f : x −→ y we
have f = f ◦ idx = idy ◦f .

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Examples of categories

The category Set has an object for every set, and its
morphisms represent set functions

Note that this is a category, since functions are composable
and we have identity functions, and function composition is
associative
Note that objects are “atomic” in category theory — it is not
possible to “look inside” the objects to see the set elements —
category theory is “point-free”

For a pure FP language, we can form a category where
objects represent types, and morphisms represent functions
from one type to another

In Haskell this category is often referred to as Hask
This category is very similar to Set, in practice (both CCCs)
By modelling FP types and functions as a category, we can
bring ideas and techniques from CT into FP

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Set and Hask

0 ∈ ob(Set) is the empty set, ∅
There is a unique morphism from 0 to every other object — it
is an example of the concept of an initial object
0 in Set corresponds to the type Void in Hask, the type with
no values

1 ∈ ob(Set) is a set containing exactly one element (and all
such objects are isomorphic)

There is a unique morphism from every other object to 1 — it
is an example of the concept of a terminal object
1 in Set corresponds to the type Unit in Hask, the type with
exactly one value, ()
Morphisms from 1 to other objects must represent constant
functions, and hence must correspond to elements of a set or
values of a type — so we can use morphisms from 1 to “look
inside” our objects if we must...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Monoid as a category with one object

Given our definition of a category, we can now reconsider the
notion of a monoid now as a category with one object

The object represents the “type” of the monoid, and the
morphisms represent the “values”

From our definition of a category, we know that there is an
identity morphism, that the morphisms are closed under
composition, and that they are associative...

For a monoid type object, M in Hask, the (endo)morphisms
represent functions, fa :M −→M defined by fa(m) = m ? a

Again, we see that it is the morphisms that really matter, and
that these can be used to “probe” the “internal structure” of
an object...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Functors

A functor is a mapping from one category to another which
preserves some structure
A functor F from C to D, written F : C −→ D is a pair of
functions (both denoted F ):

F : ob(C) −→ ob(D)
F : hom(C) −→ hom(D), where ∀f ∈ hom(C), we have
F (f : x −→ y) : F (x) −→ F (y)
In other words, if f ∈ homC(x, y), then
F (f) ∈ homD(F (x), F (y))

The functor must satisfy the functor laws:
F (idx) = idF (x),∀x ∈ ob(C)
F (f ◦ g) = F (f) ◦ F (g) for all composable f, g ∈ hom(C)

A functor F : C −→ C is called an endofunctor — in the
context of functional programming, the word functor usually
refers to an endofunctor F : Hask −→ Hask

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Natural transformations

Often there are multiple functors between pairs of categories,
and sometimes it is useful to be able to transform one to
another

Suppose we have two functors F,G : C −→ D
A natural transformation α : F ⇒ G is a family of morphisms
in D, where ∀x ∈ C, the component αx : F (x) −→ G(x) is a
morphism in D
To be considered natural, this family of morphisms must
satisfy the naturality law:

αy ◦ F (f) = G(f) ◦ αx, ∀f : x −→ y ∈ hom(C)
Naturality is one of the most fundamental concepts in
category theory

In the context of FP, a natural transformation could (say)
map an Option to a List (with at most one element)

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Monads

A monad on a category C is an endofunctor T : C −→ C
together with two natural transformations η : IdC −→ T (unit)
and µ : T 2 −→ T (multiplication) fulfilling the monad laws:

Associativity: µ ◦ Tµ = µ ◦ µT , as transformations T 3 −→ T
Identity: µ ◦ Tη = µ ◦ ηT = 1T , as transformations T −→ T

The associativity law says that the two ways of flattening
T (T (T (x))) to T (x) are the same

The identity law says that the two ways of lifting T (x) to
T (T (x)) and then flattening back to T (x) both get back to
the original T (x)

In FP, we often use M (for monad) rather than T (for triple),
and say that there are three monad laws — the additional law
corresponds to the naturality of µ

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Kleisli category

Kleisli categories formalise monadic composition

For any monad T over a category C, the Kleisli category of C,
written CT is a category with the same objects as C, but with
morphisms given by:

homCT
(x, y) = homC(x, T (y)), ∀x, y ∈ ob(C)

The identity morphisms in CT are given by idx = η(x), ∀x,
and morphisms f : x −→ T (y) and g : y −→ T (z) in C can
compose to form g ◦T f : x −→ T (z) via

g ◦T f = µz ◦ T (g) ◦ f
leading to composition of morphisms in CT .

In FP, the morphisms in CT are often referred to as Kleisli
arrows, or Kleislis, or sometimes just arrows (although Arrow
usually refers to a generalisation of Kleisli arrows, sometimes
known as Hughes arrows)

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Apache Spark

We have already seen how parallel monadic collections can
automatically parallelise “map” and “reduce” operations

Apache Spark is a Scala library for Big Data analytics on
(large) clusters of machines (in the cloud)

The basic datatype provided by Spark is an RDD — a resilient
distributed dataset

An RDD is just a lazy, distributed, parallel monadic collection,
supporting methods such as map, flatMap, reduce, etc., which
can be used in exactly the same way as any other monadic
collection

Code looks exactly the same whether the RDD is a small
dataset on a laptop or terabytes in size, distributed over a
large Spark cluster

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Laziness, composition, laws and optimisations

Laziness allows some optimisations to be performed that
would be difficult to automate otherwise

Consider a dataset rdd: RDD[T], functions f: T =>U,
g: U =>V, and a binary operation op: (V,V) =>V for
monoidal type V

We can map the two functions and then reduce with:
rdd map f map g reduce op

to get a value of type V, all computed in parallel

However, re-writing this as:
rdd map (g compose f) reduce op

would eliminate an intermediate collection, but is equivalent
due to the 2nd functor law

Category theory laws often correspond to optimisations that
can be applied to code without affecting results — Spark can
do these optimisations automatically due to lazy evaluation

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Distributed computation

Big data frameworks such as Spark have been developed for
the analysis of huge (internet scale) datasets on large clusters
in the cloud

They typically work by layering on top of a distributed file
system (such as HDFS) which distributes a data set across a
cluster and leaves data in place, sending required computation
across the network to the data

With a little thought, it is clear that even in the case of
“small data” but “big models”/“big computation”, these
frameworks can be exploited for distributing computation

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Typeclasses

Typeclasses are a mechanism for supporting ad hoc
polymorphism in (functional) programming languages

They are more flexible way to provide polymorphic
functionality than traditional inheritance-based object classes
in conventional object-oriented programming languages

To define a typeclass (such as Monoid) for a basic type, the
language must support parametric types

To define a typeclass (such as Functor or Monad) for a
parametric type or type constructor, the language must
support higher-kinded types (very few widely-used languages
do)

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Typeclasses for Monoid, Functor and Monad

In Scala, we can define typeclasses for Monoid, Functor and
Monad (using parametric and higher-kinded types):

t r a i t Monoid[A] {

def combine(a1: A, a2: A): A

def id: A

}

t r a i t Functor[F[_]] {

def map[A,B](fa: F[A])(f: A => B): F[B]

}

t r a i t Monad[M[_]] extends Functor[M] {

def unit[A](a: A): M[A]

def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]

}

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

A generic collection typeclass

We can define a typeclass for generic monadic collections:

t r a i t GenericColl[C[_]] {

def map[A,B](ca: C[A])(f: A => B): C[B]

def reduce[A](ca: C[A])(f: (A, A) => A): A

def flatMap[A,B,D[B] <: GenTraversable[B]](

ca: C[A])(f: A => D[B]): C[B]

def zip[A,B](ca: C[A])(cb: C[B]): C[(A, B)]

def length[A](ca: C[A]): Int

}

and then define instances for standard collections (eg.
Vector), parallel collections (eg. ParVector), and distributed
parallel collections (eg. RDD)

We can then write code that is completely
parallelisation–agnostic

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

A scalable particle filter

Single–observation update of a bootstrap particle filter:

def update[S: State , O: Observation ,

C[_]: GenericColl ](

dataLik: (S, O) => LogLik , stepFun: S => S

)(x: C[S], o: O): (LogLik , C[S]) = {

va l xp = x map (stepFun(_))

va l lw = xp map (dataLik(_, o))

va l max = lw reduce (math.max(_, _))

va l rw = lw map (lwi => math.exp(lwi - max))

va l srw = rw reduce (_ + _)

va l l = rw.length

va l z = rw zip xp

va l rx = z flatMap (p => Vector.fill(

Poisson(p._1 * l / srw).draw)(p._2))

(max + math.log(srw / l), rx)

}

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Filtering as a functional fold

Once we have a function for executing one step of a particle
filter, we can produce a function for particle filtering as a
functional fold over a sequence of observations:

def pFilter[S: State , O: Observation ,

C[_]: GenericColl , D[O] <: GenTraversable[O]](

x0: C[S], data: D[O], dataLik: (S, O) => LogLik ,

stepFun: S => S ): (LogLik , C[S]) = {

va l updater = update[S, O, C](dataLik , stepFun) _

data.foldLeft ((0.0, x0))((prev , o) => {

va l next = updater(prev._2 , o)

(prev._1 + next._1, next._2)

})

}

Again, completely parallelisation–agnostic...

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Scalable statistical modelling

We have looked a lot at scalable statistical computation, but
what about scalable statistical modelling more generally?

Independently of any computational issues, statistical
modelling of large, complex problems is all about structure,
modularity and composition — again, the domain of category
theory...

When Bayesian hierarchical modelling, we often use
probabilistic programming languages (such as BUGS, JAGS,
Stan...) to build up a large, complex (DAG) model from
simple components

It turns out that monads, and especially free monads, can give
us a different (better?) perspective on building and inferring
probabilistic models

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Composing random variables with the probability monad

The probability monad provides a foundation for describing
random variables in a pure functional way

We can build up joint distributions from marginal and
conditional distributions using monadic composition

For example, consider an exponential mixture of Poissons
(marginally negative binomial): we can think of an
exponential distribution parametrised by a rate as a function
Exponential: Double =>Rand[Double] and a Poisson
parametrised by its mean as a function
Poisson: Double =>Rand[Int]

Those two functions don’t directly compose, but do in the
Kleisli category of the Rand monad, so
Exponential(3) flatMap {Poisson(_)} will return a
Rand[Int] which we can draw samples from if required

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Functional Programming
Category Theory
Scalable modelling and computation

Monads for probabilistic programming

For larger probability models we can use for-comprehensions
to simplify the model building process, eg.

f o r { mu <− Gaussian (10,1)

tau <− Gamma (1,1)

sig = 1.0/ sqrt(tau)

obs <− Gaussian(mu,sig) }

y i e l d ((mu,tau ,obs))

We can use a regular probability monad for building forward
models this way, and even for building models with simple
Bayesian inference procedures allowing conditioning

For sophisticated probabilistic sampling algorithms (eg. SMC,
MCMC, pMCMC, HMC, ...) it is better to build models like
this using a free monad which can be interpreted in different
ways

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Summary
Conclusions

Summary

You can’t learn much about either FP or CT in a single
talk/seminar

I don’t expect everyone to have understood everything!

The aim was to give a little insight into:

Why FP is interesting, and inherently more modular,
composable and scalable than imperative programming
Why CT is a good model for composable computation
(because it is a theory of structure and composition)
Why CT provides powerful abstractions which make FP easier,
more modular, and more general

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing



Introduction
FP and CT

Summary and conclusions

Summary
Conclusions

Conclusions

We should approach the problem of statistical modelling and
computation in a modular, composable, functional way,
guided by underpinning principles from category theory

To implement solutions to problems in statistical modelling
and computation in a more scalable way, we need
programming languages which are:

Strongly statically typed
Compiled
Functional
and support typeclasses and higher-kinded types

Scala and Spark provide a nice illustration of the power of this
approach, but there are other interesting languages, including:
Haskell, (S)ML, OCaml, Frege, Eta, ...

For more about Scala: darrenjw.wordpress.com

Darren Wilkinson — Statistics seminar, 3/2/17 CT and FP for scalable statistical computing

darrenjw.wordpress.com

	Introduction
	Outline
	What's the problem?

	FP and CT
	Functional Programming
	Category Theory
	Scalable modelling and computation

	Summary and conclusions
	Summary
	Conclusions


