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Abstract

Bayesian methods are valuable, inter alia, whenever there is a need to extract information from data
that is uncertain or subject to any kind of error or noise (including measurement error and experimental
error, as well as noise or random variation intrinsic to the process of interest). Bayesian methods
offer a number of advantages over more conventional statistical techniques that make them particularly
appropriate for complex data. It is therefore no surprise that Bayesian methods are becoming more widely
used in the fields of genetics, genomics, bioinformatics and computational systems biology, where making
sense of complex noisy data is the norm. This review provides an introduction to the growing literature
in this area, with particular emphasis on recent developments in Bayesian bioinformatics relevant to
computational systems biology.
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1 Introduction

Bioinformatics and computational systems biology are
undergoing a Bayesian revolution similar to that al-
ready seen in genetics [1]. The reason is the same —
biology is complex, and data is noisy. Traditional sta-
tistical techniques struggle to cope with complex non-
linear models that are only partially observed. Due
to the fact that the Bayesian statistical paradigm is
fully probabilistic, there is no fundamental distinc-
tion between any of the unknowns in a statistical
model — parameters, hidden variables and observa-
tions are all treated together in a consistent manner
— and it is from this that the power of the method-
ology is derived [2]. Provided that you can write
down a statistical model relating the quantities you
are interested in to the data you can observe (pos-
sibly via many unobserved intermediary variables),
then you can (in principle) carry out Bayesian infer-
ence to extract the information in the data to give
fully probabilistic information on all unobserved mo-
del variables. The main limiting factor in apply-
ing Bayesian methods is computational. For non-
trivial problems, analytic approaches to Bayesian in-
ference are not possible, and their numerical solu-
tion is often challenging due to the need to solve
high-dimensional integration problems (which in the
discrete case translate to combinatorial summation
problems). Advances in the speed of commodity com-
puting hardware in recent decades has been paral-
lelled by developments in computationally intensive
algorithms for Bayesian inference. Arguably the most
important advance has been the development of a
range of techniques based on Markov chain Monte
Carlo (MCMC). The ideas originate from statistical
physics [3], but are now widely used for Bayesian
inference [4, 5]. Although by no means a panacea,
carefully crafted MCMC algorithms executed on fast
computers are able to solve a phenomenal range of
problems that would have been considered completely
intractable only a few years ago.

In the simplest (continuous) setting, we are in-
terested in making inferences about the parameter
vector φ of a probability (density) model p(y|φ) giv-
ing rise to an observed data vector y. If we treat
the parameters as uncertain, and allocate to them a
“prior” probability density π(φ), then Bayes theorem
gives the “posterior” density

π(φ|y) =
π(φ)p(y|φ)

p(y)
,

where p(y) is the marginal density for y obtained by
integrating over the prior. Since π(φ|y) is regarded as
a function of φ for fixed (observed) y, we can re-write
this as

π(φ|y) ∝ π(φ)p(y|φ),

so that the posterior is proportional to the prior times

the likelihood. Practical complications arise due to
the fact that typically the normalising constant p(y)
is not known, and either p(y|φ) will not be known
explicitly or marginalisation over some components
of φ will be required. Whilst analytically intractable,
these integration problems are typically amenable to
a Monte Carlo or MCMC solution. In the high-dimen-
sional context, it is often necessary to decompose the
full problem according to the underlying conditional
independence structure of the model, and it is in this
context that graphical models [6] (also known as con-
ditional independence graphs) are particularly useful.
In non-statistical communities, the term Bayes(ian)
network is often used to describe a discrete graph-
ical model. However, it is important to note that
graphical models can be used to describe any proba-
bilistic conditional independence structure, and that
many of the techniques that are often used to “learn”
Bayesian networks are not Bayesian.

The simplest example of a MCMC method is the
Gibbs sampler [7, 8]. Here a Markov chain is con-
structed with equilibrium distribution π(φ|y). Each
iteration of the sampler involves cycling through each
component of the p-dimensional vector φ in order and
sampling from π(φi|φ−i, y), i = 1, . . . , p, where φ−i

denotes the vector of all components of φ except φi.
Knowledge of the conditional independence graph for
the model can simplify the computation of these so-
called full-conditional distributions. In many cases
the full-conditionals will be straightforward to sample
directly, but in others, a Metropolis-Hastings method
will be required [9, 10]. Here a proposed new value is
simulated from a largely arbitrary proposal distribu-
tion, q(φ?

i |φi) and accepted with a probability care-
fully chosen to preserve the detailed balance of the
chain. Many practical details of the method are pre-
sented in [11, 12].

2 Bioinformatics

2.1 Biological sequence analysis

One of the first areas to benefit from the application
of Bayesian approaches was biological sequence anal-
ysis. Here it had already been recognised that work-
ing with probabilistic models was extremely useful
[13]. Whilst for some simple hidden Markov mod-
els (HMMs) it is possible to estimate parameters us-
ing conventional statistical techniques (such as maxi-
mum likelihood via the EM algorithm) [14, 15], there
are many interesting problems where a conventional
approach would be inconvenient or unsatisfactory in
terms of the information provided by the analysis; see
[16] for a good introduction to the use of Bayesian
methods in this area. Good examples of this in-
clude simultaneous multiple sequence alignment [17,
18], motif discovery and transcription factor binding
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site prediction [19, 20] and protein secondary struc-
ture prediction [21]. One of the key benefits of the
Bayesian approach is that it allows proper propa-
gation of uncertainty across different levels of mod-
elling. So whilst a traditional approach to phylogeny
estimation would use a pre-calculated multiple align-
ment, uncertainty in the alignment will not propa-
gate through to uncertainty in the phylogeny. In fact
the converse is also true: models for alignment de-
pend implicitly on an assumed phylogeny, so uncer-
tainty in phylogeny induces alignment uncertainty.
Using a Bayesian approach, simultaneous estimation
is possible [22]. Even in the relatively simple context
of HMM-based ab initio DNA sequence segmenta-
tion, the Bayesian approach enables the convenient
inclusion of prior information, and provides much
richer information about the model parameters [23].
Further, since uncertainty about model structure is
treated consistently with parameter uncertainty in
the Bayesian context, variable dimension algorithms
such as reversible jump MCMC (RJMCMC) [24] can
be used to estimate the number of segments and the
order of the base dependence along with all other
aspects of the model [25]. Liu and Logvinenko [26]
provide a detailed review of Bayesian methods in se-
quence analysis.

2.2 Microarray data analysis

The analysis of gene microarray data [27] is another
area where Bayesian methods have proven to offer
many advantages over more conventional approaches
[28, 29]. Although amenable to simple statistical
analyses such as ANOVA, microarray data analysis is
often broken down into a collection of distinct steps
that fail to correctly propagate uncertainty. For ex-
ample, a typical analysis may begin with some kind
of normalisation process that produces “corrected”
expression levels. These normalised data will then
be subject to a secondary statistical analysis (such as
identification of differentially expressed genes) that
ignores any uncertainty in the normalisation processes.
Often then the differentially expressed genes will be
used for a further analysis that ignores the uncer-
tainty in the identification procedure. Using Bayesian
techniques it is possible to develop integrated mod-
els for the analysis of unnormalised cDNA microar-
ray data that correctly propagate uncertainty across
the various levels of analysis [30, 31]. Detailed mod-
elling combined with a carefully designed experiment
can allow coherent estimation of absolute transcript
concentrations from cDNA array data [32, 33]. It is
also much more convenient to pool information across
multiple experiments and studies using a Bayesian
approach [34]. For Affymetrix GeneChip data, devel-
oping probabilistic models of the hybridisation pro-
cess down at the probe level again allows extraction of

information likely to be missed using simpler stepwise
approaches [35, 36]. Bayesian methods also offer ad-
vantages when clustering of expression profiles is felt
to be relevant [37, 38, 39]. In fact, the initial task of
segmentation and raw intensity estimation can also
benefit from a Bayesian approach [40]. Further mod-
elling approaches and applications are discussed in
[41, 42, 43, 44, 45, 46]. Some recent developments in
the field are described in [29], which also covers some
proteomic applications.

2.3 Protein informatics

There are many applications of Bayesian techniques
to problems in protein informatics. Down at the
structure level, Bayesian techniques for site match-
ing and alignment have been shown to be particularly
valuable [47, 48, 49]. A Bayesian method for predict-
ing protein–protein interactions from genomic data
is given in [50]. Mass spectrometry data are widely
used for understanding the peptide/protein composi-
tion of a sample, but these data are subject to many
sources of variation, making Bayesian approaches to
data analysis highly desirable. Some methods for pro-
cessing “raw” spectra are discussed in [51, 52] in the
volume [29]. Bayesian methods can also be useful
in the context of mass spectrometry clustering and
classification [53, 54], as well as protein identification
[55, 56].

3 Computational systems biol-
ogy

3.1 Introduction

The analysis of micro-array data is also central to
much research in computational systems biology, al-
though here the emphasis is slightly different. A
major concern of computational systems biology is
the development of dynamic predictive models of bio-
logical (especially genetic and biochemical) processes
[57]. The first stage in this process is the identifica-
tion of interacting partners (used in a loose sense).
One approach to identifying gene–gene interactions
is to attempt to use observed correlations in gene mi-
croarray data to infer networks of interaction.

3.2 Network inference

A variety of different approaches to network inference
are possible, and many widely used techniques are
fundamentally Bayesian in nature. Again, it is worth
emphasising the apparent confusion between discrete
Bayesian networks and more general Bayesian meth-
ods. The term “Bayes net” is generally used in non-
statistical communities to refer to discrete probabilis-
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tic graphical models, irrespective of whether the tech-
niques used to analyse them are Bayesian. Despite
some suggestions to the contrary in the literature,
there is no need to discretise continuous data in order
to learn a Bayesian network — only to learn a discrete
Bayes net. As mentioned above, graphical models can
be estimated without using Bayesian methods, but
there are advantages in doing so. This is particularly
true when the number of observations is small com-
pared to the number of variables, which is typically
the case in the context of microarray data analysis.

An early, influential paper on Bayesian networks
for expression data was [58]; also see [59] for a more
recent perspective. An approach based on manipu-
lation experiments for inferring directed networks is
described in [60]. An efficient method for inferring
undirected Gaussian graphical models is described in
[61]. More recently, a detailed comparison of various
methods for static network inference has been carried
out in [62]. Such methods do not have to be based on
micro-array data. Typically, using more quantitative
data on a (small) system of interest will lead to more
reliable conclusions. Single-cell flow cytometry data
is potentially useful in this context, and a strategy to
using this for inferring network structure is described
in [63]. It should be pointed out, however, that most
of these papers are not especially Bayesian in their
approach. More Bayesian approaches to the problem
of inferring sparse undirected (Gaussian) graphical
models are described in [64] and [65], based on ear-
lier work for graphical Gaussian model selection [66],
and these are likely to provide more robust inferences
in high dimensional settings, particularly since most
methods are able to provide marginal posterior prob-
abilities for the presence of individual network edges.

Time-course expression data provide some infor-
mation about system dynamics, and therefore dy-
namic network models provide a useful starting point
for top-down systems biology modelling. Dynamic
Bayesian networks (DBNs) have been widely used in
this context; see [67, 68] for details. For dynamic net-
works based on linear Gaussian models a fast “Bayes-
ian-inspired” algorithm has recently been proposed
[69]. As for static networks, fully Bayesian approaches
to this problem are likely to offer significant advan-
tages, and are currently the subject of ongoing re-
search.

Using Bayesian inference for integrating multiple
sources of data offers great potential, but currently
remains largely unexplored; see [70, 71, 72] for initial
attempts and perspectives.

3.3 Quantitative network models

As has already been stated, a key aim of systems bi-
ology is to develop quantitative, dynamic models of
biological processes of interest. One approach to this

problem is to extend the top-down network models
so that they provide some quantitative information
regarding dynamics [73]. However, this approach has
some shortcomings due to the fact that the elements
of the model do not link directly to physical param-
eters of interest. There is therefore great interest
in a different approach, based on using data to pa-
rameterise bottom-up mechanistic models of biolog-
ical processes. Obviously, non-Bayesian approaches
to this problem are possible [74, 75, 76], but are
limited in terms of the information they can pro-
vide. Even in the context of deterministic models of
biochemical networks based on ordinary differential
equations (ODEs), there is considerable utility in us-
ing a Bayesian approach in order to properly address
issues of noise modelling and parameter uncertainty
[77, 78]. It is also possible to improve parameter es-
timation using proper prior modelling of parameter
uncertainty [79].

A nice application of Bayesian modelling in the
context of quantitative modelling is the Characteriz-
ing Loss Of Cell Cycle Synchrony (CLOCCS) model
[80] for loss of synchrony in yeast populations. A sim-
ple application of this model is in the alignment of
data sets collected under different conditions. How-
ever, this model can also be combined with popula-
tion level data (such as gene expression array data) in
order to recover information about single-cell dynam-
ics from the population averaged data. This detailed
modelling of both the process of interest and its re-
lationship with the experimental data is a powerful
technique in this context, and similar strategies are
likely to lead to many other examples of extracting
better information from high-throughput data.

There is increasing evidence that stochasticity pla-
ys an important role in intra-cellular processes [81],
and there is therefore a great deal of interest in devel-
oping stochastic kinetic models of biological processes
[82, 83, 84, 85]. Further, experimental technology is
improving rapidly, so that (semi-)quantitative high-
resolution single-cell data of the type that is most in-
formative for the building of stochastic models is now
realistically attainable [86]. Typically data is gener-
ated via fluorescence microscopy, then processed to
extract gene expression time series [87]. Although
fully-Bayesian approaches to this image-analysis step
are likely to be extremely useful, such an techniques
do not yet seem to have been described in the lit-
erature. Stochastic kinetic models are particularly
difficult to estimate using non-Bayesian methods. A
valiant attempt is described in [88], but the applica-
bility of the methods described is limited due to the
extent to which non-Bayesian methods can cope with
hidden data. In particular, the parsimony assump-
tions that are typically required have the effect of
downward-biasing of parameter estimates. However,
whilst a fully Bayesian approach to inference for dis-
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crete stochastic models is possible [85, 89], it is com-
putationally problematic for models of realistic size
and complexity. Also see [90] for a related approach.
It turns out to be possible to instead work with a
continuous (approximate) formulation of stochastic
kinetics, known as the “chemical Langevin equation”
[91, 85]. This model seems to be quite adequate for
inferential purposes, and is advantageous due to the
fact that inference for this diffusion approximation
is more computationally amenable than for the dis-
crete formulation. A basic inferential algorithm for
this model is described in [92]. A better algorithm
for models of this type, based on ideas of sequential
Monte Carlo [93], is developed in [94], and applied
to a general and flexible class of stochastic kinetic
models in [95]. Finally, an efficient non-sequential
MCMC algorithm for stochastic kinetic models is de-
scribed in [96]. A recent review of fitting models to
data by Jaqaman & Danuser [97] includes references
to both the Bayesian and non-Bayesian literature.

There is another area of statistical methodology
that has obvious applications to systems biology mod-
elling: Bayesian analysis of computer code outputs
(BACCO) [98]. Here, a complex (but typically, deter-
ministic) computer simulation model is treated as a
“black-box” from a statistical perspective, and the re-
lationships between model inputs, outputs and exper-
imental data are studied in a non-parametric way, of-
ten utilising Gaussian processes [99]. Although these
techniques do not yet seem to have been applied to
systems biology modelling problems, they have been
applied to challenging problems in other application
areas [100, 101], so it seems inevitable that as systems
biology models become larger and more complex, and
BACCO techniques become more sophisticated (bet-
ter suited to high-dimensional inputs and outputs,
and intrinsic stochasticity in the computer models),
that applications of BACCO methods to problems in
computational systems biology will become common-
place.

4 Discussion

It is impossible in an article of this nature to give
a fully comprehensive review of all Bayesian work
in bioinformatics. Here the focus has been on work
which clearly demonstrates the advantages of the Bay-
esian approach, and that which is most directly rel-
evant to the new science of computational systems
biology. Of course this latter area is still an emerg-
ing field, and it is not yet clear which (if any) of the
methods and techniques described here will stand the
test of time. The main drawback of fully Bayesian
methods are the computational demands associated
with their computer implementation. This has so
far limited their application to certain challenging

problems in the bioinformatics arena (such as whole-
genome annotation). The Bayesian framework pro-
vides a coherent mathematical solution to the prob-
lem, but not always an efficient computational al-
gorithm for practical implementation. Even in diffi-
cult scenarios, however, probabilistic statistical mod-
els (such as Hidden Markov Models) are becoming
the accepted framework for analysis [13], and used in
conjunction with point estimation methods (such as
the EM algorithm) for parameter fitting. However,
experience from closely related disciplines suggests
that fully Bayesian approaches will turn out to pro-
vide the most satisfactory solutions to the complex
statistical inference problems which lie at the heart
of computational systems biology. Improvements in
computing hardware, the widespread availability of
parallel computer clusters, and the development of
computational Bayesian algorithms that are able to
exploit them [102], mean that there is likely to be an
increasing tendency to push for fully Bayesian solu-
tions to the challenging inferential problems in this
area, in order to maximise the information that can
be extracted from expensive experimental data.
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