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Summary

Bacteria are single-celled organisms which often display heterogeneous be-
haviour, even among populations of genetically identical cells in uniform en-
vironmental conditions. Markov process models arising from the theory of
stochastic chemical kinetics are often used to understand the genetic regu-
lation of the behaviour of individual bacterial cells. However, such models
often contain uncertain parameters which need to be estimated from exper-
imental data. Parameter estimation for complex high-dimensional Markov
process models using diverse, partial, noisy and poorly calibrated time-course
experimental data is a challenging inferential problem, but a computationally
intensive Bayesian approach turns out to be effective. The utility and added-
value of the approach is demonstrated in the context of a stochastic model
of a key cellular decision made by the gram-positive bacterium Bacillus sub-
tilis, using quantitative data from single-cell fluorescence microscopy and flow
cytometry experiments.
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1. INTRODUCTION

Bacteria are single-celled prokaryotic organisms. Despite being relatively simple
organisms, they often display complex heterogeneous behaviour, even among popu-
lations of genetically identical cells in uniform environmental conditions (Wilkinson
2009). Markov process models arising from the theory of stochastic chemical ki-
netics (Wilkinson 2006) are often used to understand the genetic regulation of the
behaviour of individual bacterial cells. However, such models often contain uncer-
tain parameters which need to be estimated from experimental data. Parameter
estimation for complex high-dimensional Markov process models using diverse, par-
tial, noisy and poorly calibrated time-course experimental data is a challenging
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inferential problem, but several previous studies have demonstrated that progress
is possible (Golightly & Wilkinson 2005, 2006, Boys et al. 2008, Henderson et al.
2009). It will be demonstrated here that a computationally intensive Bayesian ap-
proach can, in principle, be effective for understanding the information in the data
regarding plausible parameter values. The utility and added-value of the approach
will demonstrated in the context of a stochastic model of a key cellular decision, the
decision to become motile, made by the gram-positive bacterium Bacillus subtilis.
The inferential issues will be illustrated using simulated data based on single-cell
fluorescence microscopy and flow cytometry experiments.

2. BACTERIAL GENE REGULATION

2.1. Bacillus subtilis

Bacillus subtilis (Sonenshein et al. 2002) is the most widely studied model gram
positive bacterium. It is relatively easy to culture in the lab, and is highly genetically
tractable, being naturally competent for genetic transformation (Dubnau 1991). It
was the first gram positive bacterium to be sequenced, and its genome is relatively
well characterised (Moszer et al. 2002). B. subtilis has a relatively interesting life
cycle, and must make expensive cellular decisions on the basis of the information it
has regarding its environment. The default behaviour for a B. subtilis cell in a rich
nutrient environment is to grow and divide, but in response to certain stresses it may
choose to become competent for genetic transformation (Dubnau 1991), sporulate
(Errington 1993), or become motile (Kearns & Losick 2005).

2.2. Motility regulation

One of the key decisions a B. subtilis cell must make is whether or not to grow
flagella and become motile (Kearns & Losick 2005), leading to the possibility of
swimming away from its current location to a new and better environment. Like
most other decision systems in living organisms, the precise details of how this
decision is made is extremely complex. In this paper we will focus on one small
aspect of this problem, in order to illustrate the important concepts without getting
lost in biological complexity.

Bacteria typically use special proteins called σ factors in order to regulate tran-
scription. Most genes cannot be transcribed (are turned off) unless an appropriate σ

factor is available. The B. subtilis sigma factor σD is key for the regulation of motil-
ity. Many of the genes and operons encoding motility-related proteins are governed
by this σ factor, and so understanding its regulation is key to understanding the
motility decision. The gene for σD is embedded in a large operon containing several
other motility-related genes, known as the fla/che operon. The fla/che operon itself
is under the control of another σ factor, σA, but is also regulated by other proteins.
In particular, transcription of the operon is strongly repressed by the protein CodY,
which is encoded upstream of fla/che. CodY inhibits transcription by binding to
the fla/che promoter. Since CodY is upregulated in good nutrient conditions, this
is thought to be a key mechanism for motility regulation.

As previously mentioned, many motility-related genes are under the control of
σD. For simplicity we focus here on one such gene, hag, which encodes the protein
flagellin (or Hag), the key building block of the flagella. It so happens that hag is
also directly repressed by CodY. The regulation structure can be illustrated using
the simple schematic given in Figure 1. It should be emphasised that this is only
one small component of the regulation of motility, and that a great deal more is
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Figure 1: A small component of the regulation of motility in B. subtilis

known about the complex regulation of motility than is presented here. However,
the aspect presented here is sufficient to illustrate the essential statistical issues.

3. MODELLING AND INFERENCE

3.1. Stochastic kinetic models

Computational systems biology (Kitano 2002) is concerned with developing dynamic
simulation models of biological processes such as the motility regulation network
model previously described. Such models are useful for developing a quantitative
understanding of the process, for testing current understanding of the mechanisms,
and to allow in silico experimentation that would be difficult or time consuming
to carry out on the real system in the lab. Traditionally, continuous determinis-
tic models were developed, typically using an assumption of mass-action chemical
kinetics leading to systems of ordinary differential equations. However, in recent
years there has been increasing recognition of the importance of modelling intrinsic
stochasticity in intra-cellular biological processes, not captured by the traditional
approaches (Wilkinson 2009). The theory of stochastic chemical kinetics forms the
basis of a more realistic class of models, which models cellular dynamics using a
Markov jump process (Wilkinson 2006).

For mass-action stochastic kinetic models, it is assumed that the state of the
system at a given time is represented by the number of molecules of each reacting
chemical “species” present in the system at that time, and that the state of the
system is changed at discrete times according to one or more reaction “channels”.
We assume there are u species denoted X1, . . . ,Xu, and v reactions, R1, . . . ,Rv.
Each reaction Ri is of the form

pi1X1 + · · · + piuXu −→ qi1X1 + · · · + qiuXu, i = 1, . . . , v.

Here pij denotes the number of molecules of Xj that will be consumed by reaction
Ri, and qij the number of molecules produced. Let P be the v × u matrix formed
from the pij and Q be the corresponding matrix of the qij . We can write the entire
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reaction system in matrix/vector form as

PX −→ QX .

The matrices P and Q are typically sparse, and this fact can be exploited in com-
putational algorithms. The u × v matrix S = (Q − P )T is the stoichiometry matrix
of the system, and is especially important in computational analysis of stochastic
kinetic models, as its columns encode the change of state in the system caused by
the different reaction events. Let Xjt denote the number of molecules of Xj at time
t and Xt = (X1t, . . . , Xut)

T. We assume that reaction Ri has hazard (or rate law,
or propensity) hi(Xt, ci), where ci is a rate parameter. We put c = (c1, . . . , cv)T and

h(Xt, c) = (h1(Xt, c1), . . . , hv(Xt, cv))T in order to simplify notation. Under certain
assumptions (Gillespie 1992), it can be shown that the system evolves as a Markov
jump process with independent reaction hazards for each reaction channel. Further,
for mass-action stochastic kinetics, the algebraic form of each rate laws is given as

hi(Xt, ci) = ci

u
Y

j=1

 

Xjt

pij

!

, i = 1, . . . , v.

Hence, given a reaction network structure, the vector of reaction rate constants, c,
determines the stochastic behaviour of the system.

A mathematical representation of this Markov jump process can be constructed,
known as the random time change representation (Kurtz 1972), which turns out to
be very helpful for mathematical analysis of the system. Let Rit denote the number
reactions of type Ri in the time window (0, t], and then define Rt = (R1t, . . . , Rvt)

T.
It should be clear that Xt−X0 = SRt (this is known as the state updating equation).
Now for i = 1, . . . , v, define Ni(t) to be the count functions for v independent unit
Poisson processes. Then

Rit = Ni

„
Z t

0

hi(Xτ , ci)dτ

«

.

Putting N(t1, . . . , tv) = (N1(t1), . . . , Nv(tv))T, we can write

Rt = N

„
Z t

0

h(Xτ , c)dτ

«

to get

Xt − X0 = S N

„
Z t

0

h(Xτ , c)dτ

«

,

the random time-change representation of the Markov jump process. See Ball et
al. (2006) for applications of this representation to analysis of approximate system
dynamics.

This process is typically non-linear with unbounded state space. Consequently
the models are generally analytically intractable, but realisations of the model can
be simulated exactly using a computer, using a discrete event simulation algorithm,
known in this context as the Gillespie algorithm (Gillespie 1977). The inference,
or inverse problem, is to determine plausible values for the rate constants, c, from
partial, discrete and noisy observations of the system state.
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3.2. Bayesian inference for complex Markov process models

3.2.1. Concepts and notation

At some level, inference for complex Markov process models is not fundamentally
more difficult than for many other high-dimensional non-linear statistical models.
Given complete information about the trajectory of the process over a given fixed
time window, the likelihood of the process can be computed exactly. If we observe
the process x = {x(t) : t ∈ [0, T ]} where x(t) represents the values of Xt for one
particular (observed) realisation of the stochastic process, we can determine from
the reaction structure the time (ti) and type (νi) of the n reaction events occurring
in the time interval (0, T ]. Suppose that the ith reaction event is (ti, νi), i = 1, . . . n.
Also define t0 = 0, tn+1 = T . Let rj be the total number of type j events occurring
(so n =

Pv

j=1
rj). Then the complete-data likelihood for the observed sample path

is

L(c; x) ≡ Pr(x | c) =

(

n
Y

i=1

hνi
(x(ti−1), cνi

)

)

exp



−

Z T

0

h0(x(t), c) dt

ff

.

See Chapter 10 of Wilkinson (2006) for further details. Note that the integral
occurring in the above equation is just a finite sum, so there are no computational
issues associated with evaluating it (though as usual, it is numerically advantageous
to actually work with the log of the likelihood).

There are further simplifications which arise for rate laws of the form hi(x, ci) =
cigi(x) (true for basic mass-action stochastic kinetic models), as then the complete-
data likelihood factorises as

L(c; x) =

v
Y

j=1

Lj(cj ; x)

where

Lj(cj ; x) = c
rj

j exp



−cj

Z T

0

gj(x(t))dt

ff

, j = 1, . . . , v.

These component likelihoods are semi-conjugate to priors of the form cj ∼ Γ(aj , bj)
and hence can be combined to get full-conditional posterior distributions of the form

cj |x ∼ Γ

„

aj + rj , bj +

Z T

0

gj(x(t))dt

«

.

All of the inferential complications arise from the fact that, in practise, we
cannot hope to observe the system perfectly over any finite time window. Obser-
vations of the system state will typically occur at discrete times, will usually be
partial (not all species in the model will be measured), and will often be subject
to measurement error. This data-poor scenario leads to a challenging missing-data
problem. Consider first the best-case scenario — perfect observation of the system
at discrete times. Conditional on discrete-time observations, the Markov process
breaks up into a collection of independent bridge processes that appear not to be
analytically tractable. We can attempt to use MCMC to explore sample paths con-
sistent with the end-points of the random intervals. Considering just one interval,
we need to explore rt consistent with xt+1 − xt = Srt. Both reversible jump and
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block-updating strategies are possible — see Boys et al. (2008) for details, but these
standard MCMC techniques do not scale well to large, complex models with very
large numbers of reaction events.

One way forward is to approximate the true Markov jump process by a diffusion
process, known in this context as the chemical Langevin equation (CLE) (Gillespie
2000). Then techniques for Bayesian estimation of stochastic differential equation
models can be applied (Golightly & Wilkinson 2005, 2006, 2008), but this approach
too is far from straightforward, and for many interesting problems the diffusion
approximation will be unsatisfactory.

3.2.2. Likelihood-free MCMC

One of the problems with the above approaches to inference in realistic data-poor
scenarios is the difficulty of developing algorithms to explore a huge (discrete) state
space with a complex likelihood structure that makes conditional simulation diffi-
cult. Such problems arise frequently, and in recent years interest has increasingly
turned to methods which avoid some of the complexity of the problem by exploit-
ing the fact that we are easily able to forward-simulate realisations of the process
of interest. Methods such as likelihood-free MCMC (LF-MCMC) (Marjoram et al.
2003) and Approximate Bayesian Computation (ABC) (Beaumont et al. 2002) are
now commonly used to tackle problems which would be extremely difficult to solve
otherwise.

A likelihood-free approach to this problem can be constructed as follows. Let
π(x | c) denote the (complex) likelihood of the simulation model. Let π(D |x, τ )
denote the (simple) measurement error model, giving the probability of observing the
data D given the output of the stochastic process and some additional parameters,
τ . Put θ = (c, τ ), and let π(θ) be the prior for the model parameters. Then the
joint density can be written

π(θ,x,D) = π(θ)π(x | θ)π(D |x, θ).

Suppose that interest lies in the posterior distribution π(θ,x | D). A Metropolis-
Hastings scheme can be constructed by proposing a joint update for θ and x as
follows. Supposing that the current state of the Markov chain is (θ,x), first sample a
proposed new value for θ, θ⋆, by sampling from some (essentially) arbitrary proposal
distribution f(θ⋆ | θ). Then, conditional on this newly proposed value, sample a
proposed new sample path, x

⋆ by forwards simulation from the model π(x⋆ | θ⋆).
Together the newly proposed pair (θ⋆,x⋆) is accepted with probability min{1, A},
where

A =
π(θ⋆)

π(θ)
×

f(θ | θ⋆)

f(θ⋆ | θ)
×

π(D |x⋆, θ⋆)

π(D |x, θ)
.

Crucially, the potentially problematic likelihood term, π(x | θ) does not occur in
the acceptance probability, due to the fact that a sample from it was used in the
construction of the proposal. Note that choosing an independence proposal of the
form f(θ⋆ | θ) = π(θ⋆) leads to the simpler acceptance ratio

A =
π(D |x⋆, θ⋆)

π(D |x, θ)
.

This “canonical” choice of proposal also lends itself to more elaborate schemes, as
we will consider shortly.
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This “vanilla” LF-MCMC scheme should perform reasonably well provided that
D is not high-dimensional, and there is sufficient “noise” in the measurement process
to make the probability of acceptance non-negligible. However, in practice D is
often of sufficiently large dimension that the overall acceptance rate of the scheme
is intolerably low. In this case it is natural to try and “bridge” between the prior
and the posterior with a sequence of intermediate distributions. There are several
ways to do this, but here it is most natural to exploit the Markovian nature of
the process and consider the sequence of posterior distributions obtained as each
additional time point is observed. For notational simplicity consider equispaced
observations at integer times and define the data up to time t as Dt = {d1, . . . , dt}.
Similarly, define sample paths xt ≡ {xs | t − 1 < s ≤ t}, t = 1, 2, . . ., so that
x = {x1,x2, . . .}. The posterior at time t can then be computed inductively as
follows.

(i) Assume at time t we have a (large) sample from π(θ, xt | Dt) (for time 0,
initialise with sample from prior)

(ii) Run an MCMC algorithm which constructs a proposal in two stages:

(a) First sample (θ⋆, x⋆
t ) ∼ π(θ, xt | Dt) by picking at random and perturbing

θ⋆ slightly (sampling from a kernel density estimate of the distribution)

(b) Next sample x
⋆
t+1 by forward simulation from π(x⋆

t+1 | θ
⋆, x⋆

t )

(c) Accept/reject (θ⋆, x⋆
t+1) with probability min{1, A} where

A =
π(dt+1 |x

⋆
t+1, θ

⋆)

π(dt+1 |xt+1, θ)

(iii) Output the sample from π(θ, xt+1 | Dt+1), put t : = t + 1, return to step 2.

Consequently, for each observation dt, an MCMC algorithm is run which takes
as input the current posterior distribution prior to observation of dt and outputs
the posterior distribution given all observations up to dt. As dt is typically low-
dimensional, this strategy usually leads to good acceptance rates.

It is worth emphasising the generality of this algorithm. Although we are here
applying it to stochastic kinetic models, it is applicable to any Markov process
discretely observed with error. It is also trivially adaptable to non-uniform ob-
servations, and to observation of multiple independent time courses (the posterior
distribution from one time course can be used to form the prior distribution for
the next). It is also adaptable to data from multiple models which share many
parameters — an important scenario in systems biology, as we shall see later.

3.2.3. CaliBayes

The sequential likelihood-free algorithm described above can be implemented in a
reasonably generic manner. The resulting algorithms are very powerful, but excep-
tionally computationally intensive. It is therefore natural to want exploit powerful
remote computing resources connected to a local machine via the Internet. Cal-
iBayes (http://www.calibayes.ncl.ac.uk/) is an example of such a remote facil-
ity. Simulation models (either deterministic or stochastic) are encoded using the
Systems Biology Markup Language (SBML) (Hucka et al. 2003), and these are sent
to the remote server together with a large sample from the prior distribution and
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the experimental data. When the computations are completed, a large sample from
the posterior distribution is returned to the user. The CaliBayes system uses a
service-oriented architecture (SOA), and makes use of modern web-service technol-
ogy — further details are provided in Chen et al. (2010). The forward simulation of
SBML models is carried out using third-party simulators such as COPASI (Hoops
et al. 2006), FERN (Erhard et al. 2008) or BASIS (Kirkwood et al. 2003), and
these may be specified by the user. An R package (calibayesR) which provides a
user-friendly interface to most of the CaliBayes services is available from R-forge
(http://r-forge.r-project.org/).

3.2.4. Approximate Bayesian computation

There is a close connection between LF-MCMC methods and those of approximate
Bayesian computation (ABC). Consider first the case of a perfectly observed system,
so that there is no measurement error model. Then there are model parameters θ
described by a prior π(θ), and a forwards-simulation model for the data D, defined
by π(D | θ). It is clear that a simple algorithm for simulating from the desired pos-
terior π(θ | D) can be obtained as follows. First simulate from the joint distribution
π(θ,D) by simulating θ⋆ ∼ π(θ) and then D⋆ ∼ π(D | θ⋆). This gives a sample
(θ⋆,D⋆) from the joint distribution. A simple rejection algorithm which rejects the
proposed pair unless D⋆ matches the true data D clearly gives a sample from the
required posterior distribution. However, in many problems this will lead to an
intolerably high rejection rate. The “approximation” is to accept values provided
that D⋆ is “sufficiently close” to D. In the simplest case, this is done by forming a
(vector of) summary statistic(s), s(D⋆) (ideally a sufficient statistic), and accepting
provided that |s(D⋆) − s(D)| < ε for some suitable choice of metric and ε (Beau-
mont et al. 2002). However, in certain circumstances this “tolerance”, ε can be
interpreted as a measurement error model (Wilkinson 2008), and for problems in-
volving large amount of data, ABC may be applied sequentially (Sisson et al. 2007).
Sequential ABC approaches have been applied to systems biology problems by Toni
et al. (2009). Further, it is well known that ABC approaches can be combined with
MCMC to get approximate LF-MCMC schemes (Marjoram et al. 2003).

4. MOTILITY REGULATION MODEL

4.1. Model structure

The essential relationships central to the model for motility regulation depicted in
Figure 1 can be translated into a set of biochemical reactions as given in Table 1.
The usual convention of starting names of genes with lower case letters and the cor-
responding proteins with upper case letters has been adopted. Again note that for
illustrative purposes, many simplifications have been made in this model. In par-
ticular, the processes of transcription, translation, folding and protein maturation
have been collapsed into a single reaction step.

Given specification of the initial conditions of the system and all reaction rate
constants, it is straightforward to simulate realisations from the associated Markov
jump process model using the Gillespie algorithm. A typical trajectory starting from
zero protein molecules is given in Figure 2. We can use simulated trajectories of this
nature in order to understand the associated inferential problem. Again, to keep
the problem as simple as possible, we will assume that just three rate constants are
uncertain, and that these are the object of inference, using appropriate time course
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Table 1: Basic reaction structure for the motility regulation model

codY −→ codY + CodY

CodY −→ ∅

flache −→ flache + SigD

SigD −→ ∅

SigD hag −→ SigD + hag + Hag

Hag −→ ∅

SigD + hag −→ SigD hag

SigD hag −→ SigD + hag

CodY + flache −→ CodY flache

CodY flache −→ CodY + flache

CodY + hag −→ CodY hag

CodY hag −→ CodY + hag

data. The three “unknowns” and their corresponding true values are

kSigDprod = 1, kflacherep = 0.02, kflacheunrep = 0.1.

They correspond to the maximal rate of production of SigD, and the binding and
unbinding of CodY to the fla/che operon, respectively. These are plausibly the
parameters of greatest scientific interest in the context of this model. The spec-
ification of sensible prior distributions for rate constants is a non-trivial problem
(Liebermeister & Klipp 2005), but here we will adopt independent finite uniform
priors on the log scale, as these have proven to be useful in applied work (Henderson
et al. 2010):

log(kSigDprod) ∼ Unif(log{0.01}, log{100}),

log(kflacherep) ∼ Unif(log{0.0002}, log{2}),

log(kflacheunrep) ∼ Unif(log{0.001}, log{10}).

These priors cover two orders of magnitude either side of the true value, and hence
represent very vague prior knowledge.

4.2. Single-cell time course data

4.2.1. Observation of σD

We will start by assuming that it is possible to directly observe the number of
molecules of σD in a single cell over time. Observations will be made every 5
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Figure 2: A typical realisation of the motility model

minutes (300 seconds) for 2 hours (7,200 seconds) giving a total of 24 observations.
We make the simplifying (and unrealistic) assumption that the initial state of the
cell is known. We assume that the measurements are subject to a small amount of
measurement error that is I.I.D. Gaussian with a known standard deviation of 10
molecules.

It is straightforward to apply the LF-MCMC algorithm described in Section 3.2.2
to this problem. Here, 1,000,000 particles were used, together with a burn-in of
1,000 iterations and a thin of 5, so that, in total, 5,001,000 MCMC iterations are
performed per observation. These figures were sufficient to give adequate coverage
and low autocorrelations in the particle chain.

The marginal posterior distributions for the three parameters of interest are
shown in Figure 3 (top). The [5%, 50%, 95%] quantiles of the marginals for
kSigDprod, kflacherep and kflacheunrep are [−0.13, 0.90, 2.66], [−5.93, −1.97, 0.45]
and [−4.86, −1.72, 1.07], respectively. It is clear that there is a great deal of infor-
mation in the data regarding the likely value of kSigDprod — the maximum rate of
production of σD, but apparently much less about the other two parameters. This
is somewhat misleading, as the two parameters are partially confounded and have
high posterior correlation as shown in Figure 3 (middle). The data therefore clearly
contains a reasonable amount of information about all three parameters. Figure 3
(bottom) shows in grey 90% equitailed pointwise posterior predictive probability
intervals for the key model species, with the (unknown, unobserved) true values
overlaid. Clearly the interval for σD is tight around the true values, as this is the
observed species, but the other two species are also reasonably well identified by the
observed data (and the model). Note that if further information is required, pooling
observations from multiple cells is straightforward, as the parameter posterior from
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one cell can be used as the parameter prior for the next in a natural sequential
manner.

4.2.2. Observation of Hag

It turns out not to be completely straightforward to observe levels of σD directly,
partly because the σD gene is embedded in the middle of the large fla/che operon.
Before examining in detail exactly how measurements are typically made, it is in-
structive to consider observation of Hag, which has its own promoter, and is strongly
activated by σD. We consider the same observation protocol as above, but this time
use (noisy) measurements of Hag levels in order to make inferences about the three
key unknowns.

The marginal posterior distributions for the three parameters of interest given
data on Hag are shown in Figure 4 (top). The [5%, 50%, 95%] quantiles of the
marginals are [0.29, 1.76, 3.61], [−6.32, −2.26, 0.41] and [−6.58, −4.01, −0.32],
respectively. These inferences are broadly consistent with the inference obtained by
observing σD, but there is less information in the Hag data than in the corresponding
data for σD.

4.2.3. Time-lapse microscopy and GFP reporters

In fact, it turns out not to be straightforward to accurately measure any native
protein directly. To observe and track gene expression in single living cells over time,
some kind of reporter system is typically employed. Although there are alternatives,
fluorescent reporters are often used, with green fluorescent protein (GFP) being the
most common. GFP was originally isolated from a jellyfish, and can be detected in
single living cells with a fluorescence camera attached to a powerful microscope if
the cells are first exposed to UV light. The gene for GFP, gfp, has to be integrated
into the host genome in such a way as to try to make the levels of mature GFP
correlate strongly with the levels of the target protein of interest. This often turns
out to be technically difficult, and less-than-perfect alternatives are often employed.

In the case of σD, the standard strategy is to form a fusion of the promoter of
hag, Phag to gfp, to get Phag-gfp, and then integrate this construct into a convenient
place in the genome, which is often at the locus known as amyE. The genotype of
the resulting mutant is typically written amyE ::Phag-gfp (Kearns & Losick 2005).
The rationale behind this construction is that Phag is strongly activated by σD, and
so when levels of σD are high, the production rate of GFP should also be high. Note
however, that there is absolutely no reason to suppose a linear relationship between
the levels of σD and the level of GFP, and hence the measured levels of fluorescence.
There are several additional sources of discrepancy, including the fact that GFP is a
relatively stable protein, and therefore decays more slowly than most other proteins.
Additionally, since the amyE locus is close to the origin of replication, there will
typically be two copies of this gene per cell, whereas the hag and σD genes are
far from the origin, and hence will typically be single-copy only. Although there
clearly is a relationship between the levels of σD and GFP, this relationship must
be explicitly modelled in a quantitative way. Some actual time lapse microscopy
images of cells of this genotype are shown in Figure 5. Images such as these must
be analysed to track individual cells over time, and to quantify the levels of GFP
fluorescence in each cell at each time point. Specialist image analysis algorithms
(Wang et al. 2010) can be used to automate this process.

The additional species and reactions can be added into the model considered
previously, and the SBML-shorthand (Wilkinson 2006) corresponding to the full
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Figure 3: Top: Marginal posterior distributions for the (log of the) three
parameters of interest, based on 24 observations of σ

D. True value shown as
a vertical line. Middle: Contour plot of the bivariate posterior distribution of
the (log of the) fla/che binding and unbinding constants. True value shown
as the intersection of the two lines. Bottom: Predictive distributions for the
key model species (90%, equitailed, pointwise) in grey, with true (unknown)
values overlaid.
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Figure 4: Top: Marginal posterior distributions for the (log of the) three
parameters of interest, based on 24 observations of Hag. Middle: Contour
plot of the bivariate posterior distribution of the (log of the) fla/che binding
and unbinding constants. Bottom: Predictive distributions for the key model
species, with true (unknown) values overlaid.
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Figure 5: Time-lapse microscopy images of growing and dividing B. subtilis
cells with genotype amyE ::Phag-gfp. Experiment conducted by the author
using a DeltaVision microscopy system during a visit to the lab of Dr Leendert
Hamoen (Newcastle).
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Figure 6: A typical realisation of the motility model, including the GFP
reporter

resulting model is given in the Appendix. A typical realisation from this full model
is shown in Figure 6, showing the relationship between a few of the key species.
Note the less-than-perfect relationship between the levels of σD and GFP .

Inference for this enlarged model can be carried out using the same LF-MCMC
algorithm as previously described. Again, assuming 24 measurements of GFP levels
(subjecting the cells to UV light more than once every 5 minutes is toxic), inference
for the three key unknowns can proceed as before.

The marginal posterior distributions obtained using this extended model for the
three parameters of interest are shown in Figure 7 (top). The [5%, 50%, 95%]
quantiles of the marginals are [0.14, 1.35, 3.31], [−6.91, −2.69, 0.37] and [−6.23,
−3.14, 0.23], respectively.

Although the GFP data is not quite as informative about the model parameters
as direct observations of levels of σD would be, considerable information can still
be gained. See Finkenstadt et al. (2008) for related work based on a linear noise
approximation. It is natural to wonder whether it is worth the effort of modelling
GFP levels explicitly as we have done here, rather than simply assuming that the
GFP levels correspond to levels of σD. We can examine this question by re-running
our inferential procedure for measurements on σD, but using the actual measured
levels of GFP.

The marginal posterior distributions for the three parameters of interest are
shown in Figure 8 (top). The [5%, 50%, 95%] quantiles of the marginals are
[−0.36, −0.08, 0.22], [−5.88, −3.62, −1.91] and [−1.81, 0.36, 2.11], respectively.
This (incorrect) posterior distribution is potentially misleading. There appears to
be very strong information regarding kSigDprod — more information than we re-
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Figure 7: Top: Marginal posterior distributions for the (log of the) three
parameters of interest, based on 24 observations of GFP. Middle: Contour
plot of the bivariate posterior distribution of the (log of the) fla/che binding
and unbinding constants. Bottom: Predictive distributions for the key model
species, with true (unknown) values overlaid.
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ally have. It so happens in this case that the posterior contains the true value, but
that is simply a consequence of the fact that the rates of production of GFP and
σD are assumed to be the same in this model. Further, the posteriors for the other
two parameters are not correctly centred on the true parameter values — the true
parameter values are very unlikely according to this posterior distribution. The
filtering distributions are also (obviously) very badly calibrated. Thus, quantitative
modelling of the relationship between measured GFP levels and the target protein
of interest is clearly worthwhile.

There is a further potential complication with the use of fluorescence (and lumi-
nescence) data that has not yet been discussed. Although there is reason to believe
that the measured fluorescence intensity will be in direct proportion to the number
of molecules of mature GFP, often the data is uncalibrated in the sense that the
constant of proportionality is (at least partially) unknown. Often it is possible to
get a good handle on it using calibration data, but in general it will be desirable to
include this constant as a further model parameter — see Henderson et al. (2010)
for an example. Furthermore, it is not even completely clear that the measured flu-
orescence is in fact directly proportional to the number of GFP molecules, as there
is some suggestion that at high concentration the GFP molecules form aggregates
which are not fluorescent (Iafolla et al. 2008).

4.3. Population data and knock-out variants

Ultimately, obtaining just one read-out on one particular protein is inevitably going
to be limited in terms of the information that can be obtained. There are several
obvious strategies to improve this situation. The first is to use multiple reporters
in the same cells. This can be accomplished by using different coloured fluorescent
reporters for different proteins of interest. In principle it is possible to use up to
around four such reporters within a cell using current technology, but in practice
it seems to be technically difficult to use more than two reliably. Another useful
technique is to obtain data from cells with key genes knocked out. Provided that the
gene is non-essential, it is easy to construct the model corresponding to the knock-
out, and this new model will have many parameters in common with the original.
Data from multiple models can be combined sequentially by taking the posterior for
relevant parameters from one model as priors for the next.

Time-lapse microscopy is currently the only practical way to track expression
in individual cells over time. However, there are other technologies, such as flow
cytometry, which can take measurements on thousands of individual cells at a given
time. This technology can be used to monitor how the distribution of expression
in a population changes over time (and in different knock-outs). This data too is
informative for model parameters, and is an effective alternative to time-lapse mi-
croscopy in certain situations. There are several ways that such population level
data can be used for model parameter inference. Perhaps the simplest (but compu-
tationally intensive) method is to use the ABC techniques described in Section 3.2.4
in conjunction with ensemble forward simulations from the model, conditioning by
checking whether the simulated distribution of measurements is sufficiently close to
the observed distribution, under some suitable metric on empirical distributions.

5. SUMMARY

This paper has shown how Markov process models can be used to understand the
stochastic dynamics of bacterial gene regulation. Inference for model parameters
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Figure 8: Top: Marginal posterior distributions for the (log of the) three pa-
rameters of interest, based on 24 observations of GFP treated (incorrectly)
as observations of σ

D. Middle: Contour plot of the bivariate posterior distri-
bution of the (log of the) fla/che binding and unbinding constants. Bottom:
Predictive distributions for the key model species, with true (unknown) values
overlaid.
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from time-course measurements of system state is an important problem, and com-
putationally intensive Bayesian algorithms such as LF-MCMC and ABC have been
shown to be useful here due to their inherent flexibility. Explicit quantitative mod-
elling of the measurement process (including the relationship between fluorescent
reporters and their target proteins) has been shown to be an important and non-
ignorable aspect of the modelling process. There is clearly still a long way to go
before such techniques can be routinely used in practice as part of a systems bi-
ology approach. Combining time-lapse data from multiple experiments, mutants
and conditions, together with similar data from flow cytometry experiments, for pa-
rameter estimation and model comparison, is still technically challenging, and the
experimental systems themselves require improvement and calibration in order to
be suitable for fully quantitative analysis. Integrating these single-cell analyses with
other molecular biology technologies such as microarrays and RNA-Sequencing data
is a further challenge. However, many of the issues to be faced are fundamentally
statistical in nature, and so it seems that statisticians have an important role to
play in advancing current biological knowledge.
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APPENDIX

MOTILITY MODEL

The full SBML-shorthand (Wilkinson 2006) for the model considered in this paper
is given below. This can be converted to full SBML (Hucka at al. 2003) using the
tools available from:

http://www.staff.ncl.ac.uk/d.j.wilkinson/software/sbml-sh/

@model:2.1.1=BSMod02 "Bacillus subtilis motility with GFP"

@units

substance=item

@compartments

Cell=1

@species

Cell:codY=1 s

Cell:CodY=0 s

Cell:flache=1 s

Cell:SigD=0 s

Cell:hag=1 s

Cell:Hag=0 s

Cell:CodY_flache=0 s

Cell:CodY_hag=0 s

Cell:SigD_hag=0 s

Cell:Phag_gfp=2 s

Cell:SigD_Phag_gfp=0 s

Cell:CodY_Phag_gfp=0 s

Cell:GFP=0 s

@parameters

kProtDeg=0.0002

kCodOn=0.02

kCodOff=0.1

kProdSigD=1

@reactions

@r=CodYprod

codY->codY+CodY

k*codY : k=0.1

@r=CodYdeg

CodY->

kProtDeg*CodY

@r=SigDprod

flache->flache+SigD

kProdSigD*flache

@r=SigDdeg

SigD->

kProtDeg*SigD

@r=Hagprod

SigD_hag->SigD+hag+Hag

k*SigD_hag : k=1
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@r=Hagdeg

Hag->

kProtDeg*Hag

@r=hagact

SigD+hag->SigD_hag

k*SigD*hag : k=0.01

@r=haginact

SigD_hag->SigD+hag

k*SigD_hag : k=0.1

@r=flacherep

CodY+flache->CodY_flache

kCodOn*CodY*flache

@r=flacheunrep

CodY_flache->CodY+flache

kCodOff*CodY_flache

@r=hagrep

CodY+hag->CodY_hag

k*CodY*hag : k=0.01

@r=hagunrep

CodY_hag->CodY+hag

k*CodY_hag : k=0.1

@r=GFPprod

SigD_Phag_gfp->SigD+Phag_gfp+GFP

k*SigD_Phag_gfp : k=1

@r=GFPdeg

GFP->

0.5*kProtDeg*GFP

@r=Phag_gfpact

SigD+Phag_gfp->SigD_Phag_gfp

k*SigD*Phag_gfp : k=0.01

@r=Phag_gfpinact

SigD_Phag_gfp->SigD+Phag_gfp

k*SigD_Phag_gfp : k=0.1

@r=Phag_gfprep

CodY+Phag_gfp->CodY_Phag_gfp

k*CodY*Phag_gfp : k=0.01

@r=Phag_gfpunrep

CodY_Phag_gfp->CodY+Phag_gfp

k*CodY_Phag_gfp : k=0.1


